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This study aims to propose a methodology to rapidly obtain low-cycle fatigue life predictions. The main idea is to

use a recently developed simplified method to estimate the stabilized stress-strain curve in confined plasticity in

order to apply a fatigue criterion. This original simplified method is based on the use of an adjustable scale

transition rule which has been demonstrated to be more robust to multiaxial loadings than classic plasticity

correction rules. Different procedures are used to calibrate the localization operator and are compared to each

other. The whole method is validated on a double notched specimen subjected either to compressive or tensile

repeated loading. Kinematics and isotropic hardenings with threshold are used to model the partial mean stress

relaxation that is observed experimentally. A modification of the Morrow fatigue criterion is proposed to en-

hance the prediction of the influence of the load ratio, represented by the local stabilized mean stress. The full

design chain validation on notched specimens has shown a constant conservatism on the fatigue life predictions

whatever the nominal load ratio and level. The results obtained with the simplified method are very similar to

those obtained with finite elements.

1. Introduction

Fatigue life prediction of complex structures in low-cycle fatigue is

still an industrial challenge. Indeed, the application of fatigue life cri-

teria such as those proposed by Morrow [1] or Smith-Watson-Topper

[2] requires the determination of the stabilized cyclic strain-stress

curve. These values have to be determined at the critical point, around

which confined plasticity frequently appears. This can be achieved with

finite element analysis but the number of elements necessary to obtain a

converged solution at the critical point may impede this solution for

large structures. The number of cycles necessary to obtain a stabilized

solution is also often a problem because of the plasticity that generally

occurs during low-cycle fatigue and induces progressive slow mean-

stress relaxation.

In order to avoid long and costly finite element computations, rapid

simplified methods have been developed. Their aim is to estimate the

strain-stress histories during cyclic loadings only at the critical point. As

early as 1961, Neuber [3] proposed a rule for shear strained prismatic

bodies with notches. Another approach has been then proposed by

Molski-Glinka [4] called the equivalent strain energy density (ESED)

method. Later on, Moftakhar [5] suggested that Neuber’s rule can be

considered as an upper bound estimation whereas ESED as lower bound

estimation of the actual elasto-plastic notch tip behavior. For the last

40 years, several authors have worked on the energetic interpretation of

Neuber’s rule [6–10] and on its extension to different loading condi-

tions such as multiaxial cases [5,11–15]. Nevertheless, it is established

that the predictive capability of Neuber’s rule or of ESED method re-

mains dependent on the material constitutive behavior and the mode of

loading [16–20].

More recently, Herbland [21] has proposed another method to solve

the problem in the general multiaxial case. This method is based on the

use of an adjustable scale transition rule. It implies the calibration of a

localization operator, using the results of a finite element (FE) simu-

lation of the first load. Darlet [15] has subsequently proposed a similar

approach by using another identification method of the localization

operator. The aim of this paper is to propose a full design chain

⁎ Corresponding author.

E-mail address: bruno.levieil@ensta-bretagne.org (B. Levieil).

T

1



integrating this new approach and to compare the predictions given by

this chain with experimental results.

Experimental validation is accomplished on plate specimens with

two notches, used to induce confined plasticity. In this study, Darlet’s

and Herbland’s identification methods will thus be used and compared

with one another as well as with FE predictions and experimental re-

sults. The discussion will cover key elements of strain-stress histories

with focus on the chosen fatigue criterion, in particular in the case of

compressive mean stress. This specific load case can occur under

compressive loadings or when the structure presents compressive re-

sidual stresses [22]. It has been less studied than tensile loading cases

that are more frequent in the literature [23–26].

The present paper is divided into five main sections. First, the fa-

tigue tests conducted on notched specimens that will be used for the

method validation are presented. Then, simplified methods for local

stress/strain calculation are introduced with a focus on Darlet’s and

Herbland’s propositions.

In the third part, the material behavior is identified. Its elasto-

plastic behavior is described using two alternative behavior laws

identified using an original sequential identification procedure: a first

law with classical non-linear hardenings as proposed by Armstrong &

Frederick [27] and Voce [28]; and an original second law with

threshold hardenings [29].

The aim of using these two laws is to underline their mean stress

relaxation prediction capability. Then, purely alternated strain con-

trolled tests on axisymmetric specimens are performed to identify the

low-cycle fatigue properties. A modification of the Morrow fatigue

criterion is proposed to enhance the prediction of the mean stress effect,

in the particular case of compressive mean stress. This experimental

part is achieved with the introduction of the fatigue testing on notched

specimens under tensile or compressive repeated loadings.

In the fourth part, Herbland‘s and Darlet’s parameters are calculated

using the material behavior law on a quasi-static finite element ana-

lysis. The predictions of the stabilized stress-strain curves obtained with

the simplified methods are thus compared to those obtained using a

reference non-linear finite element cyclic analysis rather than to com-

pare results to other simplified methods such as Neuber or ESED.

Indeed, the results obtained with finite elements analysis are considered

the most accurate. The same comparative work is accomplished em-

ploying the stabilized parameters used for the fatigue life calculation.

The last part of this paper aims at validating the fatigue life prediction

for the notched specimens. A multiaxial equivalent formulation of the

scalar parameters used in the fatigue life criterion is proposed. Fatigue

life prediction can then be obtained. A comparison is made with the

experimental data obtained on the notched specimens under tensile

repeated loadings or compressive repeated loadings.

2. Case study

Fatigue tests were conducted on ferritic high-strength steel speci-

mens under two different load ratios. The geometry of these notched

specimens is indicated in Fig. 1. These specimens were machined with

an electrical discharge machine. A slight electro-polishing was per-

formed at the notch surface to reduce all residual stresses. Initial stress

measurements were achieved using an X-Ray diffraction device. All

initial residual stresses were lower than 5% of the material elastic limit.

A nominal stress-controlled loading was applied at the end of the

notched specimens in the→e1 direction. The nominal maximal principal

Nomenclature

b Manson-Coffin criterion exponent

bi kinetic parameter of the isotropic hardening

c Basquin criterion exponent

Ci linear parameter of the kinematic hardening

pd equivalent plasticity rate

d ̲ p∊∊ plasticity rate

E Young’s modulus

f yield surface

G shear modulus

J̲̲ deviatoric projector
J σ( )2 von Mises equivalent stress

K̲̲T
ν stress concentration operator considering the material

Poisson’s coefficient

K̲̲T
0.5 stress concentration operator considering a 0.5 Poisson’s

coefficient

L̲̲ localization operator
L̲̲D Darlet localization operator
L̲̲E Eshelby operator
L̲̲H Herbland localization operator

Ni number of cycles to initiation

p accumulated plastic strain

Qi asymptotic parameter of the isotropic hardening

Rlimi threshold parameter of the isotropic hardening

Ri isotropic hardening

Rε strain ratio

Rσ stress ratio
Rσ
loc local stress ratio

Rσ
nom nominal stress ratio

X̲i kinematic hardening

Xlimi threshold parameter of the kinematic hardening

z surface inclusion parameter

Z surface inclusion constant

β Eshelby parameter

Δ ∊∊ cyclic strain range

Δ eq∊∊ equivalent strain range

σΔ cyclic stress range

γi kinetic parameter of the kinematic hardening∊̲∊ strain tensor

a∊∊ strain amplitude

̲ e∊∊ elastic strain tensor
̲ I∊∊ strain tensor in an inclusion

εf
' Basquin criterion parameter

̲ p∊∊ plastic strain tensor

̲ p
I∊∊ plastic strain tensor in an inclusion

̲ p
loc∊∊ local plastic strain tensor

y∊∊ strain at the elastic stress
ν Poisson’s coefficient

σ̲ stress tensor

Σ̲ stress tensor in the elastic matrix

σnom nominal stress

σa
nom nominal stress amplitude
σ̲D deviatoric stress tensor

σ f
' Manson-Coffin criterion parameter

σ̲ I stress tensor in an inclusion

σ̲ loc local stress tensor
σ̲max
loc maximum local stress tensor

σ̲min
loc minimum local stress tensor

σm mean stress

σm
eq equivalent mean stress

σmax maximum stress

σmax
eq equivalent maximum stress

σmax
nom maximum nominal stress

σmin
nom minimum nominal stress

σr elastic stress estimation

σy elastic stress
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stress ratio is defined, in a multiaxial proportional case, by

=R σ σ/ .σ
nom

min
nom

max
nom (1)

The notched specimens were tested in fatigue for repeated nominal

stress loads. Compressive (Rσ
nom=-∞) and tensile (Rσ

nom =0) nominal

loads were applied. Fatigue tests were conducted at 2 Hz. Crack in-

itiation was detected with the alternating current potential drop tech-

nique [30] calibrated for a 0.8 mm crack length. Two distinct Wöhler

curves, shown in Fig. 2, were obtained indicating that, as expected, the

nominal stress ratio has an important effect as compressive tests

showed longer lifespan. It is worth noting that, although the nominal

stress ratio is controlled, the local stress ratio can only be evaluated

numerically and evolves during the test until strain and stresses are

stabilized.

3. Simplified methods and fast prediction of stabilized stress-

strain curves in a located plastic zone

When confined plasticity appears around notches or any other

geometric singularity, a specific methodology has to be employed to

predict the stabilized stress-strain curve, necessary for the fatigue cri-

terion application. Cyclic finite element analysis is a common solution,

but the computation time necessary to obtain an accurate prediction of

the stabilized stress-strain curve can be costly due to the local plastic

behavior that induces slow cyclic stress relaxation. This is an additional

motivation to the development of simplified methods to estimate the

stabilized stress-strain curve only at the critical point.

Since Neuber’s rule [3], many authors have proposed different

simplified approaches [4,5,31]. In recent years, Herbland has proposed

a multiaxial approach that has shown better correlation under cyclic

multiaxial loadings with numerical finite element analysis predictions

than Neuber’s method [32,33]. Herbland’s method is based on the use

of a relationship between the stress tensor at the critical point, σ̲ loc, and

the stress tensor at the same point if an elastic behavior is assumed,

inspired by localization laws of multi-scale approaches [34]. Fig. 3 il-

lustrates the analogy between the confined plasticity problem and the

localization problem written for an elasto-plastic inclusion in an elastic

matrix [35,36]. For this problem the stress tensor in the inclusion, σ̲ I ,

can be related to the stress tensor applied in the matrix, Σ̲, by

= −σ L̲̇ Σ̲̇ ̲̲ : ̲̇
I E

p
I∊∊ (2)

where ̲ p
I∊∊ is the plastic strain tensor in the inclusion. The dot operator

over a letter refers to its time derivative. L̲̲E is Eshelby’s fourth-order

localization operator, which depends on the shear modulus, G, and the

Poisson’s ratio of the material, ν,

= −L G β J2 1̲̲ ( ) ̲̲E (3)

with

= −
−β
ν

ν

2 4 5

15 1

( )

( )
,

(4)

given by the Eshelby analysis [34], and J̲̲ the deviatoric projector ex-

pressed as

=
⎛

⎝

⎜
⎜
⎜
⎜⎜

− −
− −
− −

⎞

⎠

⎟
⎟
⎟
⎟⎟

J

2 3 1 3 1 3

1 3 2 3 1 3

1 3 1 3 2 3

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

̲̲

/ / /

/ / /

/ / /

(5)

in Voigt notation.

For the confined plasticity problem, Eq. (2) can be replaced by

= −σ K σ L̲̇ ̲̲ ̲̇ ̲̲ : ̲̇
loc

T
ν nom

p
loc∊∊ (6)

where K̲̲T
νis the fourth-order tensor of the stress concentration factors

calibrated on any elastic increment of the finite element simulation,

̲ p
loc∊∊ is the plastic strain tensor at the critical point. As this problem is

different from Eshelby’s problem, the localization operator L̲̲ differs. It

depends on the material, the geometry and the loading conditions.

However, some simplifications can be performed to reduce the

number of terms to be identified using the free edge condition and the

symmetries at the critical point [21]. Assuming →e( )2 is the normal di-

rection to the free surface, tensors can be simplified to

=
⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=
⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

σ

σ

σ

σ

L

L L

L L

L

0

0

0

0

0

0

0

0 0 0
0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0

0 0 0

̲ , ̲ , ̲̲ .loc
p
loc

p
loc

p
loc

p
loc

11

33

13

,11

,33

,13

1111 1133

1133 3333

1313

∊∊
∊∊
∊∊
∊∊

(7)

Herbland proposed to identity the localization operator (denoted

L̲̲H in this case) on the numerical elasto-plastic simulation of the first

quarter cycle. Once the localization and the stress concentration op-

erators are identified the cyclic stress-strain curves are simulated ana-

lytically for a few tens of cycles until the critical point behavior is

stabilized. The analytical calculation is immediate which means that

the numerical cost is only the cost of simulating the first quarter cycle.

In order to obtain the Wöhler curve, only the highest load has to be

simulated and the different values of the localization operators are

obtained thanks to the different increments of the calculation.

More recently, Darlet et al. [15] have proposed another metho-

dology to identify this localization operator thanks to the analogy with

a hemispheric inclusion at the surface of a matrix (Fig. 3). The locali-

zation operator can then be written as

Fig. 1. Specimen geometry (units in mm).

Fig. 2. Fatigue curves of the notched specimen for two nominal load ratios.
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=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

− −
− −

−

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−
L

G β Z G β Zz

G β Zz G β Z

G β Z

2 1 0 2 1

0 0 0

2 1 0 2 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0

0 2 1 0

0 0 0

̲̲

( ) ( )

( ) ( )

( )

D

z1

2

(8)

Sauzay numerically estimated =Z 1.79 and =z Z0.79/ in the case

of a flat surface [37]. For the confined plasticity problem, Darlet pro-

posed to consider =Z 1.79 as for the reference problem but a value of z

which depends of the material, the geometry and the loading

conditions. To determine the expression of this parameter, it is worth

noting that the localization equation implies a direction move in the

stress space for σ̲̇ loc, when plasticity appears except in specific cases,

i.e., that σ̲̇ loc does not remain proportional to K σ̲̲ : ̲̇T
ν nom [9]. Darlet

showed that when ≫p
loc

e
loc∊∊ ∊∊ , it can be assumed that

∝σ K σ̲ ̲̲ : ̲loc
T

nom0.5
(9)

withK̲̲T
0.5 the stress concentration tensor using a 0.5 Poisson’s coeffi-

cient.
For the same configuration (i.e., ≫p

loc
e
loc∊∊ ∊∊ and then ≫̇ ̇ )p

loc
e
loc∊∊ ∊∊ ,

Eq. (6) can be simplified as follows

=L K σ̲̲ ̲̇ ̲̲ : ̲̇p
loc

T
ν nom∊∊ (10)

(i.e., σ̲̇ loc is negligible with respect to L̲̲ ̲̇ p
loc∊∊ ).

Using the normality rule in the previous equation (i.e., the plastic

flow is normal to the von Mises yield surface), it can be shown that

∝L J σ K σ̲̲ : ̲̲ : ̲ ̲̲ : ̲̇loc
T
ν nom

(11)

Using Eq. (9), Eq. (11) can be expressed as

∝L J K σ K σ̲̲ : ̲̲ : ̲̲ : ̲ ̲̲ : ̲̇T
nom

T
ν nom0.5

(12)

Considering that the nominal loading direction is→e1 and the normal

direction to the free surface is→e2, Eq. (12) implies

⎛

⎝

⎜
⎜⎜

− + −

− + −

⎞

⎠

⎟
⎟⎟
∝ ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( ) ( )

( ) ( )

K z K

z K K

K

K

1

0

1

0

z
T T

T
z

T

T
ν

T
ν

2 ,1111
0.5 1

2 ,3311
0.5

1

2 ,1111
0.5

2 ,3311
0.5

,1111

,3311
(13)

To satisfy this equation, the value of z can be finally be evaluated as

= − + −
− + −

z
K K K K

K K K K

.

K K K K

T
ν

T T
ν

T

T
ν

T T
ν

T

K K K K

2 2 ,1111 ,3311
0.5

,3311 ,1111
0.5

,3311 ,3311
0.5

,1111 ,1111
0.5

2 2

T
ν

T T
ν

T

T
ν

T T
ν

T

,3311 ,3311
0.5

,1111 ,1111
0.5

1111 3311
0.5

,3311 ,1111
0.5

(14)

Fig. 3. Analogy between Kröner’s approach and the confined plasticity problem.

Fig. 4. Load-unload test control procedure.
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As shear stresses and strains can be neglected in this study, Eq. (6)

can also be reduces to the following system of equations with three

parameters in the localization operator

⎧
⎨⎩

= − −
= − −

σ K σ L L

σ K σ L L

loc
T
ν nom

p
loc

I
loc

loc
T
ν nom

p
loc

I
loc

11 ,1111 11 1111 ,11 1133 33

33 ,1133 11 3333 ,33 1133 11

,

,

∊∊ ∊∊∊∊ ∊∊ (15)

Consequently, to identify the localization operator in Darlet’s pro-

position, two purely elastic FE analysis are needed, one considering the

material Poisson’s coefficient ν and one considering that the Poisson’s

coefficient is equal to 0.5 to represent the incompressible plastic be-

havior. The localization operator is the same for every load levels unlike

in Herbland’s method. In both method, a numerical model is necessary

to identify the localization operator and the material elasto-plastic be-

havior has also to be determined for the analytical cyclic calculation.

4. Material properties

4.1. Material elasto-plastic behavior

In order to identify the material elasto-plastic behavior, a strain-

controlled tensile test is performed with reversed compressive loadings

(until the compressive elastic limit was reached) at different chosen

plastic strain levels. The objective of this so-called “load-unload” test is

to observe the evolution with plastic strain, of the size and the center of

the elastic domain, and thus to characterize respectively the material

isotropic and kinematic hardenings [38]. The test procedure, illustrated

in Fig. 4 is the following:

(1) The specimen is first loaded in tension. The initial Young’s modulus

is evaluated using a linear regression between two stress values,

corresponding approximately to 10 and 40% of σr , where σr is an

Fig. 5. Load-unload test results.

Table 1

Material parameters for behavior Law 1 (without thresholds).

Parameter σC /1 y γ1 σC /2 y σC /3 y γ3 σX /3lim, y b1 σQ /1 y σR /1lim, y

Value 85.7 5000 3.14 500 1000 0 1000 −0.500 0

Table 2

Material parameters for behavior Law 2 (with thresholds).

Parameter σC /1 y γ1 σC /2 y σC /3 y γ3 σX /3lim, y b1 σQ /1 y σR /1lim, y

Value 85.7 5000 3.14 157 1000 0.343 1000 −0.157 0.343

Fig. 6. Stress and hardening evolution with strain for the two behavior laws compared to the experimental data.
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Fig. 7. Identification of MCB parameters for uniaxial cyclic strain-controlled

tests = −R 1∊∊ .

Fig. 8. Stabilized stress-strain curves at R
ε
=−1 (a), R

ε
=0 (b), R

ε
=−0.2 (c) and R

ε
=−5 (d).

Fig. 9. Fatigue life curves for different load ratios compared to the Manson-

Coffin-Basquin criterion.
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Fig. 10. Experimental stabilized stress/strain curves for three load ratios at two strain amplitudes: Δε/2= 0.69εy (a) and Δε/2=0.87εy (b).

Fig. 11. Experimental vs. predicted lifespans for uniaxial cyclic strain-controlled tests under four load ratios for four fatigue criteria: MCB (a), Morrow (b), SWT (c),

MM (d). Stabilized parameters used for the predictions are measured experimentally.
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estimation of the initial elastic limit.

(2) When the stress-strain curve crosses the tensile offset line (purple

dashed line in Fig. 4), the tensile elastic limit σy is detected. The

chosen offset value corresponds to 30% of the strain at σr .

(3) Strain is added until the desired level of plastic strain p∊∊ is reached.

(4) The specimen loading is reversed, unloading the specimen.

(5) The Young’s modulus is evaluated again during the unloading on

the same range of values as in the previous step. The linear re-

gression was performed between −σ σ0.1max r and −σ σ0.4max r .

(6) When the stress-strain curve crosses the compressive offset line

(orange dashed line in Fig. 4), the compressive elastic limit for the

chosen plastic strain p∊∊ is detected. The specimen load is reversed

again.

(7) Steps 2–6 are repeated for each desired plastic strain level. The

Young’s modulus is recalculated for each loading or unloading.

During each unloading, the specimen load varies from the tensile

elastic limit to the compressive elastic limit at a given plastic strain.

The load-unload test is plotted in Fig. 5. For confidentiality matter,

stresses are normalized by the elastic limit of the material σy and strains
by = σ E/ .y y∊∊

This experimental elasto-plastic behavior can be modeled using a

mixed model proposed by Chaboche [39]. It combines various isotropic

(Ri) and kinematic hardenings (X̲i). The elastic domain is defined by

∑ ∑= − − + =( )f J σ X R σ 0( ̲ ̲ )i i y2 (16)

where J (·)2 refers to the von Mises equivalent stress. Chaboche pro-

posed a threshold kinematic hardening [29] expressed as

Fig. 12. Comparison of experimental versus predicted mean stress with a classic Chaboche model (a) and with threshold hardenings (b).

Fig. 13. Experimental vs. predicted lifespans for uniaxial cyclic strain-controlled tests under four load ratios for the modified Morrow criterion. Stabilized parameters

used for the predictions are obtained using Law 1 (11.a). and Law 2 (11.b).

Fig. 14. Part mesh with boundary conditions.
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= − 〈 − 〉X C γ
X

J X
X p

2

3
1̲̇ ̲ ̇

( ̲ )
̲ ̇i

p
i

lim i

i
ii

,

2

∊∊
(17)

where Xlim i, is the threshold value, +C γ X( / )i i lim i
2

3 , is the saturation

value in the uniaxial case and γi rules the kinetic of the kinematic

hardening. When plasticity initiates, <J X X( ̲ )i lim i2 , , the hardening is

linear, as in the Prager model [40]. When the hardening reaches the

threshold value Xlim i, , it describes a non-linear kinematic hardening as

in the Armstrong-Frederick model [27].

The isotropic hardening is adapted from the Voce model [28] to

obtain a similar behavior

= − 〈 − 〉R b Q R R ṗ ( | | ) ̇i i i i lim i, (18)

where Rlim i, is the threshold value, +Q Ri lim i, is the saturation value

and bi rules the kinetic of the isotropic hardening.

The equivalent cumulative plasticity rate is defined as

=pd 2

3
d d̲ : ̲ .p p∊∊ ∊∊

(19)

The plasticity flow is calculated using the normality rule given by

= −
− ∑p

σ X

σ XJ
d d

3

2̲
( ̲ ̲ )

( ̲ ̲ )
,p

D

i2

∊∊
(20)

with σ̲D the deviatoric stress tensor.

To identify the hardening parameters, the threshold hardening va-

lues Rlim i, and Xlim i, are set at zero initially. The model identified is thus

a mixed model using the Voce isotropic hardening model and the

Armstrong-Frederick kinematic hardening model. This behavior law is

called “Law 1”. Besides an easier description of the identification pro-

cedure, the introduction of this first law will later help to point out the

advantages of the second behavior law that uses threshold hardenings

(“Law 2”) to improve the description of the cyclic behavior.

A sequential identification in which each parameter is identified

separately is proposed here. The complete identification of the first

behavior law is described in the following:

(1) First, the yield strength σy and the elastic modulus E are de-

termined.

(2) The tensile behavior is identified using as many kinematic hard-

enings as necessary. Here, one non-linear kinematic hardening X̲1
(parameters C1 and γ1) and one linear kinematic hardening X̲2
(parameters C2 and =γ 02 ) are used.

(3) Then, isotropic hardening is identified with as many isotropic

hardenings as necessary. In this study, only one isotropic hardening

R1 was used, using parameters b1 and Q1. However, the description

of the tensile curve is then modified by the introduction of isotropic

hardening and needs to be corrected.

(4) To compensate this influence, a third kinematic hardening (X̲ )3 is
added by defining parameters as = −C b Q3 1 1 and =γ b3 1.

This procedure can be set on this material because the isotropic

hardening is negative (the size of the elastic domain decreases with

plastic strain), leading to a negative value of theQ1 parameter and thus

to a positive value of C3 parameter. Nevertheless, in the case of a po-

sitive isotropic hardening, this procedure has to be adjusted as it would

lead to a negative C3 parameter. In that case, steps 2–4 are applied

replacing isotropic hardenings by kinematic hardenings and vice-versa.

As previously stated, a second behavior law is identified. In this law,

Xlim i, and Rlim i, values are still set at zero except for the isotropic and

kinematic hardenings identified in steps 3 and 4 in the previous se-

quential identification procedure, (X̲3 andR )1 . To conserve the hard-

enings mutual compensation, the non-zero threshold values are set

equal, i.e., =X Rlim lim,3 ,1. The threshold value is optimized to suppress

any step effect in the mean stress relaxation curve, visible in Fig. 12 and

described in the next section.

Identified parameters for both behavior laws are given in Tables 1

and 2. Parameters γ2, Xlim,1 and Xlim,2 are equal to zero. Ci, Xlim i, , Qi,

and Rlim i, are divided by the elastic limit σy for confidentiality matters.

Both identified laws are presented in Fig. 6 showing that the mea-

sured tensile behavior as well as the hardening evolutions can be cor-

rectly described by the two laws. Although the kinetic of the hardenings

is slightly modified by the presence of an initial linear behavior in Law

2, the monotonic tensile curve is not influenced by the thresholds

parameters as the hardenings still compensate each other. The main

interest induced by the presence of thresholds can be underlined by the

cyclic behavior study presented in the next section.

4.2. Material cyclic properties

Uniaxial purely alternated strain-controlled tests ( =−R 1)∊∊ were

Fig. 15. Comparison between experimental gauge measurements and numer-

ical predictions using the two behavior laws of stabilized strain range in 11

direction.

Fig. 16. Numerical predictions of the local stress ratios using the two behavior

laws.
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carried out on axisymmetric specimen to calibrate the Manson-Coffin-

Basquin (MCB) criterion [41,42] given by

= + = +ε ε ε σ

E
N ε N

∆

2

∆

2

∆

2
2 2( . ) ( . ) .e p f

r
b

f r
c

0

'
'

(21)

where 2Δ /∊∊ is the strain amplitude, σ f
' and b (resp. εf

' and c) are
parameters of the elastic (resp. plastic) regression in a log-log diagram,

shown in Fig. 7 [16].

Three other load ratios were considered to study their effect on the

fatigue life:

– Repeated strain-imposed tests =∊R 0( ),

– Alternated tests with positive mean strain =−∊R 0.2( ),

– Alternated tests with compressive mean strain =−∊R 5( ).

The strain ratio influence is shown on the stabilized stress-strain

curves (Fig. 8). Partial mean stress relaxation can be observed for the

lowest strain amplitudes whereas a complete mean stress relaxation is

observed for the highest strain amplitude levels, whatever the load

ratio.

The consequence of the strain ratio on the fatigue life is shown in

Fig. 9. Compressive load ratios corresponding to < −R 1ε do not affect

the fatigue life whereas tensile load ratios with > −R 1ε do reduce the

fatigue life. This observation can be explained if both main effects of the

strain ratio are considered. The first effect is the modification of the

mean stress itself, which enhances the fatigue life if mean stress is

compressive or reduces it otherwise. The second effect is the increasing

of the maximum absolute plastic strain, which increases the damage

and thus reduces the fatigue life. In the case of a tensile load ratio, both

effects decrease the fatigue life, whereas they can compensate each

other, in the case of negative mean stress as illustrated in Fig. 10.

Generally, the load ratio effect is taken into account introducing the

mean stress σm influence or the maximum stress σmax influence in MCB

criterion. In the first case, this corresponds to the Morrow criterion [1]

Fig. 17. Stabilized curves in direction 11 and 33 for the two behavior laws at =R 0σ
nom for three load levels.
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that is formulated as

= − +ε σ σ

E
N ε N

∆

2
2 2( · ) ( · ) .

f m
r
b

f r
c

'
'

(22)

In the second case, this corresponds to the Smith-Watson-Topper

(SWT) [2] criterion that is expressed as

= ⎡
⎣
⎢⎢ + ⎤

⎦
⎥⎥

+ε σ

E
N σ ε N

σ

∆

2
2 2

1
( · ) ( · ) .

f
r

b
f f r

b c

max

2

'
' '

2

(23)

Both criteria cannot take into account the experimentally observed

asymmetric effect of the load ratio (Fig. 9). A modified Morrow cri-

terion (MM) is thus proposed considering the positive part of the mean

stress, noted using Macaulay brackets 〈 〉σm . The modified Morrow cri-

terion is thus defined by

= − 〈 〉 +ε σ σ

E
N ε N

∆

2
2 2( · ) ( · ) .

f m
r
b

f r
c

'
'

(24)

The comparison of experimental versus predicted fatigue lifespans

for the four criteria (MCB, Morrow, SWT and MM) using the experi-

mental stabilized values is shown in Fig. 11. Predictions are improved

with the MM criterion, which is also the only one to predict con-

servative fatigue life whatever the load ratio.

The last validation step of the fatigue criteria consists in using the

predicted stabilized stress-strain curves, instead of the experimental

ones. The predicted mean stress is thus compared to the experimental

mean stresses in Fig. 12. It shows that, with the behavior Law 1, a

complete mean stress relaxation is predicted for strain amplitudes

higher than ∊0.7 y. It leads to an underestimation of the stabilized mean

stress which implies non-conservative fatigue life predictions. With the

behavior Law 2, a partial mean stress relaxation is obtained. Mean

stress absolute values are uniformly overestimated which could be due

to a long term softening of the material that is not taken into account in

the model.

Fig. 13 shows the influence of the behavior law on the fatigue

lifespans obtained using the modified Morrow criterion with the pre-

dicted stabilized stress-strain curves. Predictions are more conservative

using Law 2 than using Law 1 that can underestimate the stabilized

mean stress. The conservatism factor can be as high as three for the

highest lifespan of cyclic test with positive mean strain. This corre-

sponds to applied strain amplitudes lower than ∊0.7 y where the mean

stress is slightly overestimated, whatever the chosen behavior law. For

applied strain amplitudes higher than ∊0.7 y or for cyclic tests with

negative mean strain, lifespans are correctly predicted.

Fig. 18. Stabilized parameters for the two behavior laws and the two load ratios ( =R 0σ
nom and = −Rσ

nom  ).
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5. Prediction of the stabilised local behavior

5.1. Finite element modeling and validation

One fourth of the double-notched specimen was meshed using 8-

node hexahedra with linear integration. The in-plane mesh was ex-

truded to obtain the 3D model as shown in Fig. 14 (10 elements are

used through the thickness). Experimental gauge measurements at the

notch tip were accomplished using KYOWA® KFG-02-120-C1-11 strain

gauges. Correlation between strain range measurements and FE

Fig. 19. Comparison of fatigue lifespans predicted using the modified Morrow criterion with FE and SM with experimental data.

Fig. 20. Fatigue life prediction using HSM and the modified Morrow criterion for the two load ratios ( =R 0σ
nom and = −Rσ

nom  ).
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predictions is shown in Fig. 15. It shows that both behavior laws can

predict the strain amplitude but only Law 2 can predict an influence of

the nominal load ratio on the local maximum principal stress ratio

defined as

=R
σ

σ
.σ

loc min
loc

max
loc (25)

Fig. 16 shows that, whatever the nominal load ratio and level, the

predicted local stress ratio with behavior Law 1 is close to −1, in-

dicating that the mean stress is totally relaxed. It implies thus that,

according to Law 1, the nominal load ratio has no effect on the local

load ratio and thus on the fatigue life, which is in contradiction with the

obtained experimental results (Fig. 2). On the contrary, using behavior

Law 2, the predicted local stress ratio varies from −5 to −1 for re-

peated compressive nominal loadings and from −0.2 to −1 for re-

peated tensile nominal loadings.

5.2. Simplified methods validation

Cyclic behavior can then be obtained for both localization opera-

tors. Stabilized curves at =R 0σ
nom , obtained using both simplified

methods (HSM and DSM) are plotted in Fig. 17 and compared to FE.

Curves are plotted for three load levels: the highest and lowest bounds

used for the fatigue testing ( =σ σ0.21a
nom

y and =σ σ0.36a
nom

y) and a
medium level =σ σ0.29( a

nom
y).

The shape of the stabilized curves obtained using simplified

methods is similar to those obtained with FE, especially in the principal

direction. For both load ratios and behavior laws, the shape and the size

of the stabilized curves are correctly described although the maximum

and minimum strain are underestimated by simplified methods, in

comparison with FE curves. Fortunately, the only strain parameter used

in the fatigue criteria is the strain amplitude which is similar between

the different methods.

6. Fatigue life prediction using stabilized stress-strain curves

6.1. Multiaxial formulation of fatigue parameters

In order to obtain fatigue lifespan for the notched specimens using

the modified Morrow (MM) criterion, a multiaxial formulation using

equivalent scalar parameters has to be employed as expressed in the

following relationship

= − 〈 〉 +σ σ

E
N ε N

2
2 2

Δ
( · ) ( · ) .

eq f m
eq

r
b

f r
c

'
'∊∊

(26)

Some formulations have been proposed based on von Mises for-

mulations of the strain amplitude and maximum stress [44]. Here, an

equivalent strain amplitude parameter is used, written as

= + +
ν

∆ ∆

1 2

2

3
∆ ∆Δ

̲ : ̲
̲ : ̲ .eq

e e
p p

2
∊∊ ∊∊ ∊∊ ∊∊ ∊∊

(27)

It can be linked to a critical plane approach under an uniaxial strain

but unlike such approaches, it can be easily implemented in a finite

element code, as it is not necessary to determine a critical plane.

In order to preserve the mean stress sign, the von Mises equivalent

stress cannot be employed directly as it would lead to positive

equivalent mean stress under compressive loadings. For this reason, the

first invariant of the mean stress is chosen to apply the MM criterion

=σ tr σ( ̲ )m
eq

m (28)

A comparison of the stabilized values of both equivalent parameters

used in the proposed fatigue criterion is shown in Fig. 18. It appears

that, whatever the behavior law, parameters obtained using simplified

methods are very similar to FE. It is important to note that the

equivalent mean stress is always totally relaxed with Law 1 whatever

the load ratio or level, whereas Law 2 predicts an effect of the load ratio

and load level.

The highest difference in the predicted equivalent mean stress, be-

tween simplified method results and FE results, reaches 0.18σy. It comes

from the difference in the mean stress prediction in the→e3 direction as

indicated by the stabilized curves in Fig. 10d). However, this variance

does not induce a significative change in fatigue life prediction as will

be shown later. The equivalent strain amplitude is less sensitive to this

difference because of the quadratic norm employed in Eq. (27).

6.2. Fatigue life prediction

The fatigue life predictions obtained using the MM criterion are

plotted in Fig. 19. The first observation is that all criteria and methods

are conservative. Predictions obtained with both simplified methods are

very similar to those obtained using finite elements, showing that the

differences observed on the stress-strain curves and on the stabilized

equivalent parameters are negligible, with respect to the global con-

servatism of the whole design process. This conclusion is in accord with

[45].

To complete and conclude this study, Fig. 20 shows the comparison

between the experimental data and the predicted fatigue lifespans with

the MM fatigue criterion and Herbland simplified method. The factor of

security appears to be dependent of the load ratio with Law 1 but not

with Law 2. A slight dependence on the load level can be observed with

Law 2, which may be explained by a potential long-term softening of

the material that cannot be taken into account by the behavior law.

Fig. 21. Full fatigue life design chain diagram.
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The global conservatism is not linked to the proposed simplified

approach as results obtained with finite element analysis are identical.

The first order factor in the fatigue life criterion is the strain amplitude

which suggests that the prediction obtained with both methods over-

estimate the real strain amplitude. However, the strain amplitude va-

lues predicted with the behavior law (whether it is with the simplified

method or with finite element analysis) are very close to the strain

gauges measurements shown in Fig. 15. The main hypothesis of the

important conservatism factor is, in the author’s opinion, the strain

amplitude gradient around the notch. Indeed, the volume that under-

goes the maximum strain amplitude differs in the case of the criterion

calibration specimens and the notched specimen. To take this effect into

account, an effective volume approach could be used [46].

7. Conclusion

In this study, a full design chain to predict fatigue life of structures

in confined plasticity cases was presented. This method is sum-up in

Fig. 21. The main conclusions on the different steps of the proposed

design chain are:

– The mean stress cannot be predicted correctly with classic non-

linear hardenings as proposed by Armstrong & Frederick or Voce.

Threshold kinematic hardenings, as proposed by Chaboche, can be

used to enhance the mean stress prediction. In this paper, a similar

non-linear isotropic hardening with threshold is proposed to permit

a sequential identification of the behavior law using a particular

load-unload test.

– Simplified methods based on the use of an adjustable scale transition

rule can be used to predict the stabilized cyclic stress-strain curve.

Darlet’s and Herbland’s localization operators were compared in this

study and have shown similar capability. Fatigue life predictions

obtained using both approaches are also similar to those obtained

using FE showing that the use of the simplified method only reduces

the computation time but not the fatigue life prediction accuracy.

– As Darlet’s operator only requires elastic calculations, it is easier to

implement than Herbland’s approach, especially if the behavior law

is not already implemented in the finite element code. However,

validation of the approach on multiaxial and non-proportional loads

could also help to choose one or the other approach. Comparison

between these two approaches and other already existing methods

will be of interest for future work.

– The method could be enhanced to reduce the conservatism. The

material volume that undergo the same load is different between the

calibration samples and the notched specimen. This could explain

part of the conservatism because of the local approach. The use of an

effective volume approach could help to reduce the conservatism

factor [46]. The over-estimation of the mean stress could also be a

reason of the conservatism.

– The particular case of compressive loads was studied. Tensile mean

stress reduces the fatigue life whereas compressive mean stress does

not affect it. A modified version of the Morrow criterion is proposed

to account for this effect.
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