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Figure 1: Polynesian navifation
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Introduction

The Polynesian navigation problem asks to
move from islands to other islands without be-
ing lost. The navigation should be performed
without without GPS, compass and clocks.
The di�culty of the navigation is illustrated
by Figure 1: the ocean is huge, the islands are
small, the boats are more or less uncertain.

Among the techniques used by Polynesian,
the observation of the stars (see Figure 2) are
useful to get the heading, but also to detect
if the boat is on the route which leads us to
the desired island. The approach we will fol-
low to guarantee that we can reach an island
from another island, uses guaranteed integra-
tion [10], tube programming [9], [8], constraint
programming [11], localization [3], contractors
[2] and interval analysis [6][4].

∗Corresponding author.

Figure 2: Pair of stars technique: the boat
is on the right route if the bottom star rises
when the right star sets

Formalisation

The problem can be formalized as follows

• Given a set of geo-localized islands
mi, i ≥ 0.

• The ith coastal area is:

Ci = {x | ci (x) ≤ 0} .

• A robot has to move in this environment
without being lost.

Figure 3 represents a set of 4 islands with
the associated coastal zones C1,C2,C3,C4

(painted blue).
We assume the following

• The coastal areas are small compare to
the o�shore area.

• In the coastal area, the robot knows its
state.

• O�shore, the robot is blind and has an
open loop strategy, such as for instance
go North.
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Figure 3: Islands ans coastal zones

• The robot is described by blind state
equations{

ẋ = f (x,u) , u (·) ∈ [u] (t)
x (0) = x0

where the input u(t) belongs to the un-
certainty box [u] (t).

We de�ne the set �ow Φ : R × Rn → P (R)
as:

Φ(t1,x0) = { a|∃u (·) ∈ [u] (t) ,a = x(t1),
ẋ = f(x,u),x (0) = x0 }

Given the set A (for instance a coastal area),
the backward reach set [1] is de�ned by

Back(A) = { x | ∀ϕ ∈ Φ,
∃t ≥ 0,ϕ(t,x) ∈ A }

Interval analysis is often used to compute
backward reach sets in the case where the
robot is nonlinear [5], [7]. We have

Back(A ∪ B) ⊃ Back(A) ∪ Back(B) .

This is the Archipelago e�ect which tells us
that �nding an Archipelago (A ∪ B) is easier
than �nding individual islands, as illustrated
by Figures 4 and 5.
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Figure 4: Back(A) ∪ Back(B)
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Figure 5: Back(A ∪ B)

Moving between coastal zones

Assume that we have m coastal sets
C1,C2, . . . , i ∈ {1, 2, . . . } and open loop con-
trol strategies uj , j ∈ {1, 2, . . . } or equiva-
lently, we have set �ows Φj(t,x0). Moreover,
we assume that the control strategy cannot
change o�shore. As a consequence,

• From C1 we can reach C2 with the jth
control strategy if C1 ∩ Back(j,C2) 6= ∅.

• From C1 we can reach C2 with at
least one control strategy if C1 ∩⋃

j Back(j,C2) 6= ∅.



Figure 6: Reach an island from another island
using a 'Go-East' strategy

Figure 7: Reachability graph

• From C1 we can reach C2 ∪ C3 with
at least one control strategy if C1 ∩⋃

j Back(j,C2 ∪ C3) 6= ∅.

Therefore, we de�ne the reachability relation
↪→ as:

• Ca ↪→ Cb if from Ca we can reach Cb with
at least one control strategy j.

• ↪→ is the smallest transitive relation
which satis�es{

∀k ∈ K,Cik ↪→ Cb

∃j,Ca ∩ Back(j,
⋃

k∈KCik) 6= ∅
⇒ Ca ↪→ Cb

Consider for instance, the hyper-graph of Fig-

ure 6 where the relation A j→ B,C means that
from A the robot can reach either B or C using
the jth strategy. For instance, in our graph

C1 ∩ Back(1,C3 ∪ C4) 6= ∅ ⇒ C1
1→ (C3,C4)

Thus, the associated reachability graph
(corresponding to ↪→) is given by Figure 7.
In a similar way, we can also de�ne the for-

ward reach set as illustrated by Figure 8.
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Figure 8: Forward reach set from a given is-
land

No lost zone

We de�ne the no-lost zone as the set S of all
states that we may visit from a coastal area
without being lost with the available control
strategies. De�ne the index set associated
with the strategy Ij as

Ij = {k|Ck∩Back(j,
⋃
i 6=k

Ci) 6= ∅}.

If we start from Ck,k ∈ Ij , then we will reach
at least another coastal area with the control
strategy j. We have

{
x ∈ Back(j,

⋃
iCi)

x ∈ Forw(j,Ck), k ∈ Ij
⇒ x ∈ S

Thus

S ⊂
⋃
j

⋃
k∈Ij

Forw(j,Ck) ∩ Back(j,
⋃
i

Ci).

This property will allow us to have an inner
approximation of the no-lost zone, which is
the main contribution of this paper. This is il-
lustrated by Figure 9 with 8 strategies: North,
East, South, West, North-East, East-South,
South-West, West-North.
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Figure 9: No-lost zone associated with the 5
islands
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