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ABSTRACT

The main parameter studied in a simulation of a Wireless Sensor

Network is the lifetime of the network. In other words, the state

of the battery of each node. That is why modelling correctly the

battery is very important to obtain realistic results. In real appli-

cations, many types of batteries can be considered, where their

lifetime depends on the weather variations and on the type of the

considered sensor node. In this paper, we present some models of

batteries simulated with the CupCarbon simulator. The models are

obtained by estimating the consumption of real batteries. This is

done by studying series of discharging current values with respect

to different voltage values and different temperatures. Furthermore,

we implement a new module in the CupCarbon simulator to al-

low testing the proposed models and to implement new personal

models.

KEYWORDS

Battery modelling, CupCarbon simulator, energy consumption, sim-

ulation, Internet of things, Wireless sensor network

1 INTRODUCTION

The evolution of the Internet in recent years does not only con-
cern computers but also the objects. These objects are equipped 
by sensors to collect information about the real world and with 
the communication antennas to connect to the Internet. The 
connected objects can include traffic lights, factories, dams, gas 
meter, phones, etc. The necessity to supervise the environment 
with the internet gives birth to the field of wireless sensor 
networks (WSN) which is an interface between the physical 
environment and the numerical world. The use of the sensors 
makes possible to monitor the environment and

provide sensed data. It is then possible to follow the state of the 
objects, their temperature, the presence of the gases, the bacteria, 
moistures, insects, etc. The appearance of WSN leads to the 
appearance of new approaches and new chal-lenges. The 
management of the energy consumption of the sensors and the 
maximization of their lifetime are the most important chal-lenges 
since the sensors are supplied by batteries with very limited 
capacities which are generally not replaceable and non-refillable. 
Batteries’ lifetime depends on several factors such as their design 
and the weather variations. It is then essential to simulate the bat-
teries before the real deployment of the network in order to study 
its lifetime according to the environment where it will be deployed. 
In this context, we will present mathematical models of batteries 
starting from the study of the discharging current values according 
to various tension and temperature values in order to calculate their 
lifetime under climatic conditions similar to the real environment 
where they will be used. These models are based on the regression 
method. We have developed and integrated a new module in the 
CupCarbon simulator. It allows to simulate the sensors real batter-
ies. Thus, CupCarbon becomes a platform to test the mathematical 
models of the sensors’ batteries under different climatic conditions. 
This document is divided as follows: Section 2 describes WSNs. In 
Section 3, we present different battery modelling techniques. In 
Section 4 we present the CupCarbon simulator and the structure 
of the new module. In Section 5 we describe a case study and we 
conclude.

2 WIRELESS SENSOR NETWORKS

The progress in the field of microelectronics and the revolution in

the field of networks generated a new type of networks called wire-

less sensor network. They are performant communicative networks

with low cost and low energy consumption. They are embedded,

autonomous, and self-configurable systems used in various appli-

cations (industrial, medical, military and environmental).
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A sensor is an electronic component that contains four units [1]:

(1) Sensing unit Generally it is composed of two components:

the sensor itself and an analogue-to-digital converter. The

sensing unit provides the collected information to the pro-

cessing unit.

(2) Processing unit Contains a microcontroller equipped with

a small memory of storage, which works by a special op-

erating system conceived for microsensors (Tiny OS, for

example), it is used to execute the communication protocols

which allow collaboration between the network nodes.

(3) Transmission unit The role of this unit is the transmission

and the reception of the data.

(4) Energy control unit It is responsible for distributing the

necessary energy to the other units.

Figure 1: A sensor node Arduino/XBee with a motion

sensor unit.

A wireless sensors network (WSN) is composed of a set of nodes

of sensors. The position of the nodes is not necessarily predeter-

mined, they can be dispersed randomly in a zone called interest

zone, or sensing field. Each node of the network is able to sense, to

collect and to transfer the data by a multi-jump routing to a specific

node considered as a point of collection called sink. Then the sink

transmits these data using Internet or a satellite to a host computer

to analyse it and to take a decision.

Figure 2: Structure of a Wireless sensor network

The common point between the different WSN applications is

the need to have a reliable network while minimizing the energy

costs in order to extend the lifetime of the network. The deploy-

ment of the nodes of sensors is generally within inaccessible zones

and in most of the cases the replacement or the recharging of the

batteries is impossible or difficult, which makes the calculation

of power consumption one of the most interesting metric perfor-

mances of the network, and to minimize energy consumption will

be the most important challenge in this technology. In a WSN, en-

ergy consumption is an important parameter to take into account

during the deployment of the network which makes the simulation

of this type of network an essential task especially if the number

of the nodes is very important. It is therefore necessary to study

the environment in which our network will be deployed and to

observe the behaviour of the nodes in the simulator before the real

deployment. In order to facilitate the design and the study of a

WSN, several tools for simulation have been created. There exist a

big number of tools of simulation and modelling of the WSN, the

authors in reference [1][2][14] present a set of 36 simulators and

emulators, such as Castalia, TOSSIM, COOJA/MSPSim, OMNET++,

J-Sim MiXiM, NesCT, PAWiS, SENSIM, Viptos, VisualSense, Atar-

raya, WSNet, J-Sim, and CupCarbon. Simulation makes it possible

to recreate a real and complex physical scenario by the execution

of a computer program on a computer or a network, whereas the

emulation seeks to substitute material by software [4].

3 BATTERY MODELING IN WSN

The lifetime of the battery depends mainly on the speed of consump-

tion of apparatus energy; in the periods of strong consumption of

energy the battery loses its effectiveness and its capacity but in the

periods of rest the battery can recover a part of its capacity loss:

thus the battery lifetime will be extended [5].

3.1 Battery modelling

A battery is composed of one or more cells that are connected in

parallel or series, where cells contain a chemically stored energy

which is converted into electrical energy by an electrochemical re-

action. A cell is composed of an anode, a cathode and an electrolyte,

which separates the two electrodes.

Figure 3: Structure of a battery
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Various batteries are available today on the market, which proves

the technological progress in this field. Battery technology has ad-

vantages and disadvantages and it is adaptable to a specific applica-

tion, where each type differs from the other by the chemical com-

ponent. Among these types we find [6]: Acid lead, Valve-Regulated

Lead Acid (VRLA), Nickel Cadmium (Ni-Cd), Hydride Nickel-Metal

(Nor-MH), Lithium Ion (Li-Ion), Sodium Sulfur (Na-S), Mono-sulfide

Lithium-Iron, Nickel Zinc (Refillable Alkaline System), Metal Air

Zinc-Bromine, Sodium-Beta and others. The following electric prop-

erties are generally employed to characterize a battery, its capacity,

its tension, the maximum current that it can support and its lifetime.

One of the most important characteristics of a battery is its capacity,

which represents the quantity of current which can be extracted

from an electrode via the electrolyte and active materials of the

electrodes, on a discharge. This capacity is expressed in ampere-

hour, Ah (1 Ah = 3600 coulombs). We often use another unit, the

watt-hour Wh (1 Wh = 3600 J).

Figure 4: Characteristics of a battery

Figure 4 shows a Li-ion battery, having a capacity of 500mAh

and a Tension of 3.7V. If a battery capacity is given by C (Ah) and

its current by I (A) then its autonomy in hours (h) is given by T as

follows:

T =
C

I
(1)

Example

If C=800mA and I=10mAh, the autonomy = 80h (less than 4 days).

In the literature, many models of batteries can be found; vari-

ous approaches were used to model the properties of the battery

varying from electrochemical very detailed models to the high

level stochastic models. We found: electrochemical models, circuit-

electric models, analytical models, Kinetic models, Stochastic mod-

els [5] [6] [7] [8] , modeling by fuzzy logic [9], The Kalman filter [10],

and the artificial neurological network [11].

3.2 The regression

The study of the various values of current according to the tem-

perature and the tension leads us to use one of the techniques of

predicting future value on the basis of the existing data; it is the

technique of regression. The most known regressions are Linear,

Logarithmic, Exponential, Polynomial and Power [13].

3.2.1 Linear regression. Linear regression is a straight linewhich

generally represents an increase or a regular reduction:

y =mx + b (2)

wherem is the slope and b is the ordinate.

3.2.2 Polynomial regression. Polynomial regression is generally

used to represent fluctuations of data. The order of the polynomial

curve can be given by the number of fluctuations in the data or by

the number of curvatures of the curve

y = b + c1x + c2x
2
+ ... + cnx

n (3)

where b, c1, c2,.., cn are constants.

3.2.3 Logarithmic regression. Logarithmic regression is themost

exact possible curve which proves to be the most useful when the

frequency of modification of the data increases or decreases quickly

and then stabilizes itself.

y = c lnx + b (4)

where c and b are constants and ln is the Neperian logarithm func-

tion.

3.2.4 Power regression. Power regression a curve particularly

adapted to the data set that compares measures which increase at a

specific speed. You cannot create such a curve if your data contain

zero or negative values.

y = cxb (5)

where c and b are real constants.

3.2.5 Exponential regression. Exponential regression is used

when the data values increase or decrease always more quickly.

You cannot create a curve of the exponential tendency for data

containing the zero or negative values.

y = c ebx (6)

where c and b are constants.

3.2.6 The coefficient of determination. Regression is more pre-

cise when its coefficient of determination (r2) is equal or close to 1.

r is the correlation coefficient of Pearson and given by Equation (7).

r =

∑

(x − x̄ ) (y − ȳ)
√

∑

(x − x̄ )2 (y − ȳ)2
(7)

where x̄ ,ȳ are samples averages.

3.3 Modelling by regression

3.3.1 The used data. We are interested in certain types of sen-

sors which are used in the design of Smart city projects such as:

Concertina, MygaleS4, SPI-108, MCam, Oldham OLCT 50, Oldham

OLCT 80 and Oldham TX12. The data are results obtained by tests

for various types of sensors. Tests for each sensor were carried

out in various temperatures under various tensions. Each sensor

has a card which shows the various values of the tension and the

values of the temperature as well as the values of the correspondent

measured current.
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3.3.2 Work proceedings. We took as sample the average curve

obtained by the calculation of the median values of currents in the

various temperatures; we calculated the equations of the various

regressions and among these curves, we have chosen the best by

the calculation of coefficients of determination r2. We obtain the

equation of the curve of tendency in the form:

I = f1 (V ) (8)

For the moment we have only a function which turns a value of the

current according to the tension given in average temperature. To

calculate the measured value of the current in an unspecified tem-

perature x it is necessary to calculate the current distance between

this temperature x and the average temperature. This distance is

given by:

Distx = DU ∗ (tx − tmoy ) (9)

where tx is the given temperature, tmoy is the average temperature

and DU is the unit distance, i.e., the difference of current for two

successive temperatures:

DU =
averaдe ((max −min)i )

tmax − tmin

(10)

Finally, we formulate the models in the following form:

I = f1 (V ) (11)

Figure 5: Work proceedings

3.3.3 Results. By the application of this technique we obtain

the models represented in Table 3.

3.3.4 Discussion. Concerning the modelling of the Concertina

sensor we found the best model by use of polynomial regression

with a total of errors equal to 11.03 for the 30 cases and an average

error of 0.37. In the case of Mygale4S sensor, we found the best

model by the use of power regression with a total of errors equal to

21.80 for the 50 cases and an average error of 0.44. For the Oldham

OLCT 50 sensor, we found the best model by the use of power

regression with a total of errors equal to 29.01 for the 120 cases

Sensor type Model

Concertina I = 0.0197∗V 2
−1.4764∗V+44.588+(T−17.5)∗0.0273

MyGale4S I = 221.5 ∗V −0.632 + (T − 17.5) ∗ 0.041

Oldham Olct 50 I = 644.72 ∗ V −0.831 − ((390.26 ∗ V −1.707) ∗ (T −

16.5)/75)

Oldham Olct 80 I = 0.0724∗V 2
−4.0504∗V +94.723+(T −17.5)∗0.025

Table 1: Results.

and an average error of 0.24. Finally, for the modelling of Oldham

OLCT 80 sensor we found the best model by the use of polynomial

regression with a total of errors equal to 71.47 for the 91 cases and

an average error of 0.79.

4 INTEGRATION IN CUPCARBON

4.1 Description of the CupCarbon simulator

CupCarbon is an open source platform for designing and simulating

Smart-City and Internet of Things Wireless Sensor Networks. It is

programmed in the Java language. Figure 6 shows themain interface

of this simulator.

Figure 6: Main IHM of the CupCarbon simulator

Its objective is to design, visualize and validate distributed algo-

rithms for monitoring, environmental data collection, etc. and to

create environmental scenarios such as fires, gas, mobiles, It can be

used for educational and scientific projects, It offers two simulation

environments: A multi-agent environment [15], which enables the

design of mobility scenarios and the generation of events such as

fires and gas as well as the simulation of mobiles such as vehicles

and flying objects [14]. A discrete event simulation of wireless sen-

sor networks takes into account the scenario designed on the basis

of the first environment. Networks can be designed on a geograph-

ical map using the OpenStreetMap (OSM) framework to deploy

sensors directly on the map. For programming and configuring

each sensor node individually, a scripting language called SenScript

is included in the simulator. CupCarbon is more focused on the

application layer compared to the other layer which makes it a real

complement to the other simulators [16]. In order to test and vali-

date the battery models in the CupCarbon simulator we improved

its architecture by adding a new module named "Weather event"

and also some modifications in the other modules especially on

"BatteryModel" and "Discrete Event Simulation".
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4.1.1 Weather event module. To simulate the batteries under

climatic variations we need a temperature files management sys-

tem, for which we built a system useful to import, affect, validate,

modify and create a temperature file. This file contains temperature

information about the environment during the simulation. It must

be composed of two fields: the duration in seconds and the tem-

perature value in ◦C . The duration represents the time difference

between two events of temperature: previous and current events.

The temperature file takes as extension .wsc. Figure 7 shows an

example of a fragment of a temperature file. Our system is an inter-

Figure 7: A fragment of temperature file

face between the process of simulation and the file of temperature.

From the value of the simulation current time it calculates the cor-

responding temperature and it classifies the temperature change

event in the list of events to execute them.

4.1.2 Battery model module. In the CupCarbon simulator we

used files for battery models. Such a file contains information about

battery characteristics such as model name, battery capacity (in

mAh), battery tension in Volts and the discharge current formula

which is of the form: I = f (T ,V ) as shown in the modelling section.

Amodel file of the batterymust respect this last format and also take

the extension .bmf. We have developed a battery model system

manager to create, remove, modify, import and assign it to the

corresponding sensor. This system is an interface between the

process of simulation and the various models. Starting from the

discharge duration calculated in the simulation and the current

temperature it calculates the power consumption based on the

battery model characteristics and includes the discharge current

formula.

4.1.3 Discret event simulation module. In the Discrete Event

Simulation module we have added the option of simulation under

climatic conditions. This option uses the services offered by the

two studied managers: battery model manager and temperature file

manager to calculate the sensors battery lifetime under weather

variations of the environment in which will be installed. The tem-

perature change was included in the events list as an environmental

event.

4.2 How to calculate consumption at a given

temperature ?

The capacity of a battery is the quantity of the electrical energy

after reception of a full charge. It is usually expressed in milli-

amperes-hours (mAh). If the battery capacity equals 1000mAh,

this signifies that this battery will be exhausted after 3600 seconds

(1 hour) under a discharge current equal to 1000mA. The power

consumption depends on the discharge current, the data size and

the duration of the transmission, which means that

Globale (joule ) −→ Capacity (mAh) (12)

Consumede (joule ) −→ Current (mA)∗Datasize∗Trans−time (second )

(13)

which gives by the application of the rule of three on (12) and (13)

Consumede =
Globale ∗Current ∗ Datasize ∗Trans − time

Capacity
(14)

According to the models found, the current is a function of the

temperature and the voltage knowing that the voltage is constant

and depends on each type of battery by replacing the variables with

the corresponding values which are:

• Global energy = 19160 Joule

• Data size = 1024 bits

• Transmission time = 0.004 second

• Capacity = 2200 mAh

• Voltage = 4.7 volts

Table 2 represents the models of energy consumption we ob-

tained for each sensor type.

Sensor type Model

Concertina E = 0.000273 ∗ (T emperature − 17.5) + 0.38084

MyGale4S E = 0.00041 ∗ (T emperature − 17.5) + 0.83293

Oldham Olct 50 E = 0.00028 ∗ (T emperature − 17.5) + 1.78179

Oldham Olct 80 E = 0.00025 ∗ (T emperature − 17.5) + 0.77285

Table 2: Models of energy consumption.

5 CASE STUDY

The example below shows the energy consumption of each of these

models by comparison with the classic model integrated into the

simulator.(cf. Figure 8). For this, we have chosen five sensors of

the same type to execute the same script at the same time, and

for each sensor we have assigned a different consumption model

among the obtained models. Every 200 seconds we have calculated

the energy consumption for each model, and the results obtained

are represented in Table 3 whose corresponding graph is given in

Figure 9.

In general, the models that depend on the temperature are more

consumed than the default model integrated with the simulator

and the consumption of each model follows a growing line. The

Classical model consumes 4 joules in the first 200 seconds and

for each time an increase of 3 joules every 200 seconds for the

Concertina model, the consumption in the first 200 seconds equal

to 17 joules and each time an increase average of 15 joules each
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200 seconds, the consumption of the two models MyGaleS4 and

OldHamOLCT50 are very close, in the first 200 seconds the con-

sumption is between 33 and 36 joules and each time an increased

average between 30.6 and 32.8 joules every 200 seconds. On the

other hand, the OldHamOCT50 model is the most consumed among

the other models with an increased average of consumption be-

tween 66 and 77 joules. This different energy consumption between

the study models means that energy consumption depends on many

factors which are:

• Climatic conditions such as temperature and humidity.

• The operating conditions: the size of transmitted data, speed

and transmission distance and power of the transmission.

• Factors depends on the battery itself like: state of the battery,

current of discharge, capacity, operating voltage and the

battery ageing.

Figure 8: Simulation with different energy consumption

models

Time(s) Classic Concertina MyGaleS4 OldHamOLCT50 OldHamOLCT50

0 0 0 0 0 0

221 4 17 36 77 33

424 7 31 69 147 64

625 10 46 101 216 94

830 13 61 134 287 124

1020 16 75 164 353 153

Table 3: Results of simulation of different energy

consumption models.

6 CONCLUSION

In this work, we tried to clarify the manner we presented wireless

sensor real batteries simulation under different climatic conditions

by the CupCarbon simulator. For that, we have built models of real

batteries by the study of the discharge current values according to

different tension and temperature values. We used the of regression

technique to build themathematical models andwe found aminimal

average error equal to 0.24 in the battery of sensors Oldham OLCT

50, but the maximum average error is 0.97 in the battery of sensors

Oldham OLCT 80. After that we have developed a new module and

Figure 9: Simulation results of different energy

consumption models

integrated into the CupCarbon simulator to test and validate the

real sensor battery models under meteorological variations.
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