
HAL Id: hal-02303247
https://ensta-bretagne.hal.science/hal-02303247v1

Submitted on 29 Jan 2020 (v1), last revised 14 Mar 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Leader Election Algorithm based on the WBS
Algorithm Dedicated to Smart-cities

Nabil Kadjouh, Ahcène Bounceur, Abdelkamel Tari, Loïc Lagadec, Reinhardt
Euler, Madani Bezoui

To cite this version:
Nabil Kadjouh, Ahcène Bounceur, Abdelkamel Tari, Loïc Lagadec, Reinhardt Euler, et al.. A New
Leader Election Algorithm based on the WBS Algorithm Dedicated to Smart-cities. 3rd International
Conference on Future Networks and Distributed Systems (ICFNDS ’19), Jul 2019, Paris, France.
pp.1-5, �10.1145/3341325.3342014�. �hal-02303247v1�

https://ensta-bretagne.hal.science/hal-02303247v1
https://hal.archives-ouvertes.fr

A New Leader Election Algorithm based on the WBS Algorithm
Dedicated to Smart-cities

Nabil Kadjouh
LIMED laboratory
University of Bejaia

Bejaia, Algeria
nabil.kadjouh@gmail.com

Ahcène Bounceur
Lab-STICC CNRS UMR 6285

Université de Bretagne Occidentale
Brest, France

Ahcene.Bounceur@univ-brest.fr

Abdelkamel Tari
LIMED laboratory
University of Bejaia

Bejaia, Algeria
tarikamel59@gmail.com

Loïc Lagadec
Lab-STICC CNRS UMR 6285

ENSTA Bretagne
Brest, France

loic.lagadec@ensta-bretagne.fr

Reinhardt Euler
Lab-STICC CNRS UMR 6285

Université de Bretagne Occidentale
Brest, France

Reinhardt.Euler@univ-brest.fr

Madani Bezoui
LaRoMad Laboratory

USTHB
Boumerdes, Algeria

madani.bezoui@gmail.com

ABSTRACT
One of the interesting techniques for leader election is used in
the WBS (Wait Before Starting) algorithm, in which each node in
the network will wait for a time corresponding to its value be-
fore starting to send the 󰎓rst message to neighbours. This means
that the node with the smallest value becomes the leader and it
also starts 󰎓rst. This approach is impracticable in the case of real
values (case of GPS-coordinates). Also, if the values are very large,
the waiting time becomes too long. In this paper, we propose a fast,
fault-tolerant and low energy leader election algorithm dedicated
to smart-cities, which is based on the technique of waiting before
starting, withminimum complexity and inwhich every node sends
one and only one message. Here, the leader is the node with the
smallest x-coordinate and the total of sent and receivedmessages is
used to represent the global consumption in the network. We give
a detailed description of the algorithm, prove its accuracy, discuss
its complexity in terms of exchanged messages and evaluate its
performance using the CupCarbon simulator. We show that our
algorithm is well balanced in terms of energy consumption, it is
e󰎏cient and adapts well to the increase of the nodes number in
the network.

KEYWORDS
Leader election, Smart Cities, Distributed algorithm, Simulation ,
CupCarbon Simulator.

1 INTRODUCTION AND RELATEDWORK
A smart city is a city that collects and uses the data generated by
its inhabitants and its infrastructure to improve the quality of life
and to optimize resources. Connectedmeters can provide real-time
advice and alerts on energy consumption. The leader in distributed
systems is a node with a particular characteristic [2]. In the case of
routing, it can be the highest level or the lowest level of energy. In
case of the D-LPCN [? ?], it is the node that starts the algorithm,
which is the node having the minimum x-coordinate. Houses can
also be equipped with sensors and applications used to adapt the
temperature and the brightness automatically depending on the
outside weather. On the other hand, houses are connected by an
electricity Smart grid that optimizes the production and distribu-
tion of electricity to meet customer needs. It also allows control of
the pipeline network in real time. And car drivers can park quickly
with smart applications that indicate the closest free places in a
parking lot. In such networks, the choice of a coordinating node is
indispensable in order to ensure synchronization between the net-
work nodes. We call this coordinator the leader which is a node
with special properties. In the case of border detection, it can be
the node with the largest or the smallest x or 󱗌 coordinates. In the
rooting case, it can be the node having a high level of battery, so
everything depends on the application. The challenge here is to
󰎓nd a fast and least expensive way to elect the leader.

In the literature, few techniques have been used to elect the
leader according to the di󰎎erent types of a network. In the net-
work over a complete graph, in which all nodes can communicate
directly, Bully’s algorithm is the most known [10] since it is very
easy to apply. In this algorithm, a node P starts the election by
sending an Election message to all nodes having a higher identi-
󰎓er then waits. If no one responds after a speci󰎓c period, P be-
comes the leader, otherwise if one of the higher-ups answers, it
takes over. The main drawback of this algorithm is that it works
only with complete graphs. In addition, every time a node recovers
from a crash failure, it initiates an election, which consumes sys-
tem resources. In the same context, many improvements have been
based on Bully’s algorithm in order to have a better solution. One
of the most used solutions in this type of network is the LMF algo-
rithm (Local minimum 󰎓nding) [9], in which each node assumes
that its value is the minimum and broadcasts it, then waits. If it

1

ICFNDS ’19, July 1–2, 2019, Paris, France Nabil Kadjouh, Ahcène Bounceur et al.

receives a value lower its own, it looses its chance to become the
leader, otherwise, it becomes the leader. The ideaof this algorithm
is useful if the use conditions are veri!ed. In another type of net-
works all nodes are linked by a single path, and the best-known
example is the ring algorithm and its improvements [8]. The main
idea is that nodes are ordered so that every node knows its suc-
cessor. When a node P detects the crash of the leader, it sends its
value in the stack to its successor node. If the successor receives
the message, it adds its value to the stack and an election message
will circulate over the ring to arrive at the election initiator. The
election time is the same in the best and worst case because this
idea requires the traversal of all nodes, and therefore electing a
new leader takes a longer time.

In the random topology, the idea is to !nd an optimal path link-
ing all nodes which are used to elect the leader, and the known
structure representing this path is the spanning tree. In this con-
text, many strategies are based on the construction of a spanning
tree to elect the leader. LOGO [6], BrOGO [3] and DoTRo [5] are
three algorithms which recently appeared to elect the leader in a
random graph.

The basic idea of the BrOGOalgorithm (BranchOptima toGlobal
Optimum) is the construction of a spanning tree used to route the
best value from the leaves to the root.

The idea of the LOGO algorithm (Local Optima to Global Op-
tima) is to make two types of election, !rst local then global. The
local election is based on the LMF algorithm as previously seen, in
order to determine the local minima. Then in the global election,
the information of local leaders will be routed by construction of
the spanning tree from the local leaders to a reference node which
is the root of the spanning tree, to select the global leader. This
technique is fault-tolerant but it is relatively slow.

Another use of the LMF algorithm is in the DoTRo (Domination
Tree Routing) algorithm to determine the local leaders, each one
of which becomes the root of a spanning tree. If two trees meet
each other then the tree routing the minimum value will continue
its process, while the other tree will stop it. Finally, the leader will
be the root of the lonely spanning tree.

In this context, where we assume that the network is composed
of non-mobile nodes [?], we propose a new leader election al-
gorithm based on the waiting time function dedicated to smart
cities. Its idea is extracted from an algorithm recently published
and called WBS (Wait Before Start) [4] which uses the waiting
time to elect the leader. The principle is interesting and easy to
implement but only in very special cases. We dedicate Section 2
to describe the WBS algorithm. In Section 3 we show the detailed
description of the proposed algorithm. Section 4 contains the rep-
resentation of SenScript and the CupCarbon simulation environ-
ment and in Section 5, we present the results and a discussion of
the simulation. Finally, Section 6 concludes the paper.

2 THEWBS ALGORITHM
In this algorithm, the authors assume that the leader is the node
having the minimum value among all nodes in the network. In or-
der to elect this node, each node must wait for a duration which is
proportional to its value before sending its message, which means

that the leader is the node who starts !rst to send its unique mes-
sage to inform the other nodes using the $ooding process for ex-
ample. The example in Figure 1 represents an illustration of this
algorithm, where we assume that there are 3 nodes S1, S2 and S3
with values 8, 2 and 5 respectively. Then S1, S2 and S3 will wait 8,
2 and 5 seconds respectively. The node S2 after 2 seconds will send
a message !rst and becomes the leader.

Figure 1: An illustration of the WBS algorithm .

The pseudo-code of this approach is given by Algorithm 1. The
WBS algorithm needs as input data: the value of the x-coordinate
and "t , and the boolean Leader as output data. At the beginning
each node is initialized as a leader and will wait for the duration of
x!"t (Algorithm 1 lines 1:3); then if it does not receive anymessage
when waiting, it becomes the leader and broadcasts its message to
stops (lines 4:10). But if it receives a message it roots it and stops
(lines 11:16). Figure 1 shows that the node with the smallest x-
coordinate becomes the leader and constructs a spanning tree to
inform the other nodes that it is the leader.

Algorithm 1WBS: The pseudo-code of the WBS algorithm.
Input: x , "t
Output: leader
1: leader = true
2: once = false
3: t = x * "t
4: while (true) do
5: rx = read(t)
6: if (rx == null) then
7: leader = true
8: send(A, *)
9: stop()
10: end if
11: if ((rx == A) and (once == false)) then
12: once = true
13: send(A, *)
14: stop()
15: end if
16: end while

The idea of this algorithm is simple and easy to implement in
cases where the values are integers, but we cannot apply it if the
values are negative, real, or if the numbers are very large.

2

3 THE PROPOSED ALGORITHMS
In this section, we give a detail description of our algorithm. First,
we explain the global idea of the protocol, then before we describe
the di󰎎erent steps that compose it, where all used variables and
methods are presented in Table 1 and Table 2. Finally, we give an
illustration example. This algorithm is dedicated to the city, so we
have to know the x-coordinates of any marker in the city, for ex-
ample, a round-point, tricolour lights, billboard, bus stop or any
static object in the city. Here, we consider as a leader the node
having the smallest x-coordinate. A waiting time is imposed on all
nodes according to their x-coordinates so that the 󰎓rst node who
sends its message becomes the leader. In another way, the leader
here is the node that waits for the least duration and that sends
its message 󰎓rst. The algorithm needs as input data: the value of
x−coordinate and x .marker , also the boolean leader and id .leader
as output data (cf. Algorithm 2). This protocol can be summarized
in 5 main steps:

• Step 1: After having obtained its identi󰎓er, each node ini-
tializes the boolean values: leader and once to False, to say
that it is not a leader and it did not send or receive any mes-
sage until this moment (lines 1:3).

• Step 2: Calculating the new x −coordinate according to the
static marker, which is the distance between the node and
the marker on the x-axis (line 4).

• Step 3: Calculating wt , the waiting time according to the
new x − coordinate as follows: 󰎓rst eliminate the comma in
the x-coordinate by multiplying its value by 10000000 (line
5). Then use the logarithmic function to make this value
very small in order to minimize the waiting time (line 6).
Finally extract the waiting time which is the integer part of
the result (line 7).

• Step 4: After waiting for wt milliseconds (line 8), if there
is no receipt message, the node becomes the leader and in-
forms the others by sending its identi󰎓er (lines 9:13). Oth-
erwise, it reads the identi󰎓ers of the transmitter and of the
leader (lines 14:17).

• Step 5: If the node did not receive any message it will route
the leader and its identi󰎓ers to the others except the trans-
mitter, and stops (lines 18:24).

For the demonstration of the algorithm’s progress, Figure 2 shows
a representation of a random network topology with 100 nodes, on
a map of a real city part in which we have 󰎓xed a point represented
by a cross symbol. After calculating the new x-coordinates and the
waiting time of each node according to its position, the 󰎓rst node
that executes its program becomes the leader (cf . Figure 2 (c)) and
informs its neighbours by sending a message to them whenever
a node receives a message from its neighbour, it will send it to its
neighbours and stops as a non leader node (cf . Figure 2 (d)). Finally
the spanning tree of Figure 2 (e) represents the path of information
from the leader to all the nodes of the network.

4 THE SIMULATION ENVIRONMENT
In our work, we have used the CupCarbon simulator [1] [7], since
it is dedicated to Smart City and Internet of ThingsWireless Sensor
Networks (SCI-WSN) and also open source, including the use the
OpenStreetMap (OSM) in which we can drop our virtual network

(a)

(b)

(c)

(d)

(e)

Figure 2: Illustration of the proposed algorithm in a random
topology.

3

Variables Description
x x-coordinate of the node
x .marker x-coordinate of the marker in the city
leader A boolean variable. It is True if a node is the

leader and False otherwise
id .leader Leader identi󰎓er
id Node identi󰎓er
x .new The new x-coordinate according to the marker
once A boolean variable. It is True if a node send or

receive its 󰎓rst message and False otherwise
tmp Temporary variable
wt The waiting time
transmitter Id of the transmitter node

Table 1: Description of the variables.

Method Description
getId() Returns the node identi󰎓er
log(x) Returns the neperian logarithm of x
int(x) Returns the integer part of x after rounding

down
stop() Stops the program execution
send(ms󳓳,b) Sendsms󳓳 to the sensor node having b identier

, or in a broadcast (if b = *)
send(ms󳓳,*,b) Sends ms󳓳 to all sensors except node having b

identier
read() Waiting for receipt of message.
read(wt) Waiting for receipt of message. If there is no re-

ceived message after wt milliseconds then the
execution will continue and go to the next in-
struction

Table 2: Description of the methods.

on a real city in 2 or 3D. Also, it o󰎎ers an easy visual interface that
allows to implement distributed algorithms and visualize all simu-
lation events during the execution of the simulation process. In the
context of leader election, it is possible to highlight sent/received
messages with di󰎎erent colours for each node and at any point
in the simulation. The result (the leader’s node) can be a marked
node. Figure 3 represents the CupCarbon interface, in which an ex-
ample of the network is implemented on the Openstreet-map and
the sensors are deployed in a real city. The simulator uses a script-
language for coding the distributed algorithms called SenScript.
A code in SenScript is a set of commands which are of di󰎎erent
types: classic and non-classic. The classic commands are mathe-
matical operations, read/write, assign, test, etc. Figure 4 shows an
example of code written in SenScript.

5 RESULTS AND DISCUSSION
In this section, we have chosen three algorithms for leader election
from the literature: LOGO, BrOGO and DoTRo, to compare them
with our algorithm, because all four can be used in any type of net-
work. For the simulation, we have used CupCarbon to generate 4
random networks in a rectangular area with n randomly gener-
ated nodes. The value of n was 󰎓xed at 50, 100, 150 and 200 so that
the density of the nodes in each network remains the same. Note,

Algorithm 2 The pseudo-code of the proposed algorithm.
Input: x , x .marker ;
Output: leader ,id .leader ;
1: id = getId();
2: leader = false;
3: once = false;
4: x .new = x-x .marker ;
5: tmp=x .new * 10000000;
6: tmp = log (wt);
7: wt = int (tmp);
8: ms󳓳 = read(wt);
9: if (ms󳓳 == null) then
10: id .leader=id ;
11: leader = true;
12: send(id .leader+"|"+id , *);
13: once = true;
14: else
15: transmitter=read();
16: id .leader=read();
17: end if
18: while (true) do
19: if (once == false) then
20: send(id .leader+"|"+id , *, transmitter);
21: once = true;
22: stop();
23: end if
24: end while

Figure 3: CupCarbon simulator interface

that we consider asymmetric communication between nodes. In
this work, the leader is the node with the smallest x-coordinate.
For each network, we have calculated the number of transmitted
and received messages (exchanged messages) in order to compare
their energy consumption which is directly related to this metric.
We have obtained the graphs of Figures 5 and 6. As we can see in
the 󰎓rst histogram, the number of messages sent by our algorithm
is equal to the networks size in all cases, because each node sends
one and only message during the execution of the algorithm, in
contrast to the other algorithms. The best results are provided by

4

Figure 4: An example of code written in SenScript

the algorithm LOGO compared to BrOGO and DoTRo with a num-
ber greater than twice the network size in all cases. In the second
histogram, the number of messages received by our algorithm is
the smallest in all cases, and it represents the sum of the number
of neighbors of all the nodes. The results of the BrOGO algorithm
are close to that of our algorithm compared to the results of LOGO
and DoTRo. The results of the simulation show that the energy
consumption is balanced in our algorithm, independent of the net-
work size.

Figure 5: Total of sent messages for all algorithms

6 CONCLUSION
In this paper, we have presented a new algorithm for leader election-
dedicated to Smart cities based on theWBS techniquewhichworks
onlywith integer values.We have added awaiting time adjustment
mechanism that allows us to use any type of value. We have sim-
ulated our algorithm on the CupCarbon environment. The results
show that our algorithm is fast and less expensive with a complex-
ity equal to one and only one message sent by each node and an
average number of neighbours for the messages received by each
node. The results of the simulation show that the energy consump-
tion is balanced in our algorithm and independent of the network
size.

Figure 6: Total of received messages for all algorithms

REFERENCES
[1] Ahcène Bounceur. 2016. CupCarbon: a new platform for designing and simu-

lating smart-city and IoT wireless sensor networks (SCI-WSN). In Proceedings of
the International Conference on Internet of things and Cloud Computing. ACM, 1.

[2] Ahcene Bounceur, Madani Bezoui, and Reinhardt Euler. 2018. Boundaries and
Hulls of Euclidean Graphs: From Theory to Practice. Chapman and Hall/CRC.

[3] Ahcène Bounceur, Madani Bezoui, Reinhardt Euler, Nabil Kadjouh, and Farid
Lalem. 2017. BROGO: A new low energy consumption algorithm for leader elec-
tion in WSNs. In 2017 10th International Conference on Developments in eSystems
Engineering (DeSE). IEEE, 218–223.

[4] Ahcène Bounceur, Madani Bezoui, Reinhardt Euler, and Farid Lalem. 2017. A
wait-before-starting algorithm for fast, fault-tolerant and low energy leader
election inWSNs dedicated to smart-cities and IoT. In 2017 IEEE SENSORS. IEEE,
1–3.

[5] Ahcene Bounceur, Madani Bezoui, Loic Lagadec, Reinhardt Euler, Laouid Ab-
delkader, and Mohammad Hammoudeh. 2018. DoTRo: A New Dominating Tree
Routing Algorithm for E"cient and Fault-Tolerant Leader Election inWSNs and
IoT Networks. In International Conference on Mobile, Secure, and Programmable
Networking. Springer, 42–53.

[6] Ahcène Bounceur, Madani Bezoui, Umber Noreen, Reinhardt Euler, Farid Lalem,
Mohammad Hammoudeh, and Sohail Jabbar. 2017. LOGO: A New Distributed
Leader Election Algorithm inWSNs with Low Energy Consumption. In Interna-
tional Conference on Future Internet Technologies and Trends. Springer, 1–16.

[7] Kamal Mehdi, Massinissa Lounis, Ahcène Bounceur, and Tahar Kechadi. 2014.
Cupcarbon: A multi-agent and discrete event wireless sensor network design
and simulation tool. In 7th International ICST Conference on Simulation Tools and
Techniques, Lisbon, Portugal, 17-19 March 2014. Institute for Computer Science,
Social Informatics and Telecommunications , 126–131.

[8] Md Murshed, Alastair R Allen, et al. 2012. Enhanced bully algorithm for leader
node election in synchronous distributed systems. Computers 1, 1 (2012), 3–23.

[9] Nicola Santoro. 2006. Design and analysis of distributed algorithms. Vol. 56. John
Wiley & Sons.

[10] Andrew S Tanenbaum and Maarten Van Steen. 2007. Distributed systems: prin-
ciples and paradigms. Prentice-Hall.

5

