
HAL Id: hal-02303242
https://ensta-bretagne.hal.science/hal-02303242v1

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding the polygon hull of a network without
conditions on the starting vertex

Ahcène Bounceur, Madani Bezoui, Mohammad Hammoudeh, Loïc Lagadec,
Reinhardt Euler

To cite this version:
Ahcène Bounceur, Madani Bezoui, Mohammad Hammoudeh, Loïc Lagadec, Reinhardt Euler. Finding
the polygon hull of a network without conditions on the starting vertex. Transactions on emerging
telecommunications technologies, 2022, 33 (3), pp.e3696. �10.1002/ett.3696�. �hal-02303242�

https://ensta-bretagne.hal.science/hal-02303242v1
https://hal.archives-ouvertes.fr

Finding the Polygon Hull of a Network Without
Conditions on the Starting Vertex

Ahcène Bounceur · Madani Bezoui ·
Mohammad Hammoudeh · Löıc
Lagadec · Reinhardt Euler

Abstract Many real-life problems arising within the fields of wireless com-
munication, image processing, combinatorial optimisation, etc., can be mod-
eled by means of Euclidean graphs. In the case of Wireless Sensor Networks
(WSN), the overall topology of the graph is not known, because sensor nodes
are often randomly deployed. One of the significant problems in this field is
the search for boundary nodes. This problem is important in cases such as
the surveillance of an area of interest, image contour reconstruction, graph
matching problems, routing or clustering data, etc. In the literature, many
algorithms are proposed to solve this problem, a recent one of which is the
LPCN algorithm and its distributed version D-LPCN which are both based
on the concept of a polar angle visit. An inconvenience of these algorithms
is the determination of the starting vertex. In effect, the point with the min-
imum x-coordinate is a possible starting point but it has to be known at
the beginning which considerably increases the algorithms’ complexity. In this
article, we propose a new method called RRLPCN (Reset and Restart with
Least Polar-angle Connected Node) which is based on the LPCN algorithm to
find the boundary vertices of a Euclidean graph. The main idea is to start the
LPCN algorithm from an arbitrary vertex and, whenever it finds a vertex with
an x-coordinate smaller than that of the starting one, LPCN is reset and
restarted from this new vertex. The algorithm stops as soon as it visits the

Ahcène Bounceur · Reinhardt Euler
Lab-STICC UMR CNRS 6285, Université de Bretagne Occidentale, Brest, France.

Madani Bezoui
University M’hamed Bougara of Boumerdes, Algeria
LaRoMad, University of Science and Technology, Houari Boumediene, Algeria.

Löıc Lagadec
ENSTA, Brest, France.

Mohammad Hammoudeh
Manchester Metropolitan University, UK.

E-mail: Ahcene.Bounceur@univ-brest.fr

2 Ahcène Bounceur et al.

same edge for the second time in the same direction. In addition to finding the
boundary vertices, RRLPCN also finds the vertex with minimum x-coordinate
which is the last starting point of our algorithm. The distributed version of
the proposed algorithm, called D-RRLPCN, is then applied to boundary node
detection in Wireless Sensor Networks. It has been implemented using real
sensor nodes (Arduino/XBee and TelosB). The simulation results have shown
our algorithm to be very performant in comparison to other algorithms1.

Keywords Polygon Hull · Wireless Sensor Network · Boundary Node
Detection · Polar angle

1 Introduction

Since the 1970s, the algorithmic search for a “border” (or “boundary”) cir-
cumscribing the elements of a set of points in the plane has attracted many
researchers. One prominent example for such a border is the “convex hull”
which could be illustrated by using a minimum size string to surround a set of
nails planted in a plane. In 1971, Graham [28] was the first to propose an al-
gorithm to find the convex hull of a set of points, which is based on the scan of
the point set. One year later, Jarvis [31] proposed his version, based on the use
of polar angles. After the work of these two pioneers, many other approaches
have emerged: the Quickhull algorithm [18] in 1977, Andrew’s algorithm [3] in
1979, Kallay’s algorithm [32] in 1984, Chan’s algorithm [11] in 1996, etc.

In some situations, the convex hull does not sufficiently reflect the geomet-
ric properties of a data set. The “concave hull”, called here “polygon hull”, is
more accurate for geometric analysis. This polygon hull approach is a more
advanced method designed to capture the precise shape of the data set’s sur-
face. However, the construction of such a hull is not straightforward. Most
algorithms require the knowledge of a starting point, supposed to belong to
the border.

The problem of finding the polygon hull of a connected Euclidean graph
can be formulated as follows: Given an undirected Euclidean graphG = (V,E),
where V = {v0, v1, ..., vn−1} is the set of vertices of G and E its set of edges,
we are looking for a closed cycle of minimum length in G such that all vertices
are either on or surrounded by that cycle. This cycle defines an area which is
also called a Polygon Hull, and it can be described by a sequence of vertices
BV and a set of edges BE as follows:

BV = (v0, v1, ..., vi−1, vi, vi+1, ..., vh) (1)

BE = {{v0, v1}, {v1, v2}, · · · , {vh−1, vh}} (2)

such that

v0 = vh.

1 This work is part of the research project PERSEPTEUR supported by the French
Agence Nationale de la Recherche ANR.

Title Suppressed Due to Excessive Length 3

The search for a polygon hull of a Euclidean graph arises as an essential
question in many fields such as Wireless Sensor Networks (WSN), statistics,
data analysis, image processing, fingerprint matching tests, biological net-
works, etc. Unfortunately, there exist only a few methods to solve such a
problem. In recent papers [36], [51], we have proposed an algorithm called
LPCN and its distributed version called D-LPCN [51]. The principle of these
algorithms is to start from the point with minimum x-coordinate and look for
a neighbor which forms the minimum polar angle. This process is repeated
until a polar angle is traversed for the second time. Despite the good perfor-
mance of this algorithm and its optimality, demonstrated in [36], it requires
an a priori knowledge of the starting vertex, which considerably increases its
complexity.

In this paper, we propose a new method called Reset and Restart. It is
an extension of the LPCN algorithm giving a new algorithm called RRLPCN,
which allows to find the polygon hull of a Euclidean graph without any con-
dition on the starting vertex. We also present a distributed version of this
algorithm, called D-RRLPCN, together with an application in the field of
WSNs.

A WSN consists of autonomous sensor nodes distributed in space to coop-
eratively monitor physical or environmental conditions such as temperature,
sound, vibration, pressure, motion, etc. Typical WSN applications may require
the random deployment of sensor nodes over a large target area. Besides, mil-
itary surveillance systems may also require the detection of activities around
the boundaries of the area under surveillance. Thus, the system should be
able to detect and identify any object entering or leaving the monitored area.
Therefore, developing mechanisms to identify network boundary nodes is a
significant and challenging problem.

RRLPCN is developed and validated theoretically using the CupCarbon
and Tossim simulators. The distributed version of our proposed algorithm (D-
RRLPCN) is applied to the boundary node detection problem in a wireless
sensor network. The simulation results show that D-RRLPCN consumes less
energy compared to some existing algorithms. After validation by simulation,
a real implementation is conducted using two types of wireless sensor nodes,
TelosB and Arduino Xbee.

The remainder of this paper is organized as follows. Section 2 presents re-
lated work from the fields of polygon hull determination and boundary node
detection in wireless sensor networks. A mathematical formulation of the prob-
lem of polygon hull finding is proposed in Section 3. In Section 4, the LPCN
algorithm and the Reset and Restart method are presented. Moreover, the
integration of Reset and Restart into LPCN is described. In Section 4.3 the
distributed version of RRLPCN is presented. The convergence of our method
is demonstrated in Section 5 in which simulation results and an implementa-
tion into real sensor nodes are shown. Section 6 briefly describes the use of
our approach for two other applications, and Section 7 concludes the paper.

4 Ahcène Bounceur et al.

2 Related work

In this section, we present a state of the art on algorithms to find convex,
concave or polygon hulls of a set of points in the plane and of Euclidean
graphs as well as on algorithms to detect boundary nodes of wireless sensor
networks. In this paper, we do not deal with security and mobility problems.
For this, it is suggested to refer to existing methods [4] [5] [25] [30] [2].

2.1 Finding hulls of a set of points in the plane

Chaudhuri et al. [12] have proposed an approach to find the concave hull of
a plane point set S. This technique is called perceptual boundary extraction,
and it is based on a new definition, called s−shape, which is simply the union
of lattice cells containing all the points of S. To obtain a polygon boundary,
another r − shape is defined, where r is obtained from s. For points p, q ∈ S,
the edge {p, q} is selected if and only if the boundaries of the disks centered
around p and q intersect at a point which is on the boundary of the union of
all the disks. The r − shape of S is then the union of the selected edges.

Garai et al. [24] have proposed an algorithm that starts with a convex
hull of the given points and reaches the final limit in two stages: division and
fusion. By splitting, one or more sides of the convex hull will be removed, and
new sides are added to maintain the inherent convexity. To obtain a smooth
polygon border, two or more sides are merged into one.

Adriano and Santos [48] have suggested an algorithm based on nearest
neighbors. It assumes that the currently selected point is related to its k nearest
neighbors. Then it selects the point forming the least polar angle with the
current point, just as in Jarvis’ algorithm [31]. A polygon hull is not obtained
for any set of points, and the value of k must be adapted to each case.

Gheibi et al. [26] have presented a shape reconstruction algorithm that
finds a polygon hull. The algorithm starts from the convex hull of the initial
pattern and gradually “concaves” it to obtain a polygon output. Thus, at any
step, each selected edge will be replaced by two new edges constructed so that
the shape remains a polygon. This process is repeated until the stop condition
is met.

Park and Se-Jong [49] have proposed a four-step algorithm. In the first step,
a set of convex hull edges is selected and a threshold value η is determined. In
the second step, a decision distance between these closest internal points and
the edge points is calculated. Third, if length of edge

decision distance > η, the search process
is executed. Finally, the second and third steps are repeated until there is no
more internal point to find.

The Regularized Geometric Hull (RGH) algorithm proposed by Korner et
al. [34] is used principally for biomedical image segmentation. It converts the
points of a data set into a set of triangles. Each triangle having its maximal
edge length greater than a given parameter ζ will be excluded. The value of ζ
regularizes the convexity or concavity of the geometric hull.

Title Suppressed Due to Excessive Length 5

The algorithm proposed by Methirumangalath et al. [47] starts by con-
structing the Delaunay graph G [56]. Afterwards, it creates a priority queue
of the outside edges of G in decreasing order of edge lengths. Then it removes,
repeatedly, the outside edge of the external triangle from the head of the pri-
ority queue and the current graph G, but only if it satisfies the defined circle
constraint and if G without the removed edge is regular. Once the outside edge
is removed from G, the adjacent sides of the external triangle are added to the
priority queue by maintaining the decreasing order of the edge lengths. This
process is repeated until there is no possibility of removing any outside edges
from the graph G.

The main idea of Braune et al.’s algorithm [10] is to start from the convex
hull of the entire data set. The convex hull is iteratively shrunk by replacing
edges that are too long by new edges that fit the data more accurately, and
then, to recursively split the convex hull path into two separate closed paths
as soon as this process converges to one point.

2.2 Finding boundary vertices of a Euclidean graph

To the best of our knowledge, LPCN introduced by Bounceur et al. [8,9,36] is
the only algorithm that can find the polygon hull of a Euclidean graph. This
algorithm is inspired by Jarvis’ algorithm designed to find the convex hull of
a set of points. The main idea of this algorithm is to start from the point
with minimum x-coordinate and to select a neighbor that forms the minimum
polar angle. This step will be repeated by every selected point with respect
to its neighbors, and the process stops as soon as a selected point is chosen a
second time. LPCN is presented in Section 3.2. A distributed version has been
published in [51].

2.3 Boundary node detection in Wireless Sensor Networks

Several solutions have been proposed to detect the boundary nodes in a wire-
less sensor network. These solutions can be classified into three categories:

Geometrical approach: The algorithms of this category assume that the sensor
nodes know their exact location within the network.

Martincic and Schwiebert [45] have presented an algorithm that requires
each node to know the positions and communication links of its 2-hop neigh-
borhood. Using this information, the node decides whether it is enveloped by
a circle of other nodes. If this occurs, the node is located in the interior of the
network.

The algorithm of Deogun et al. [15] only requires a node to be able to
determine the distances to its direct neighbors. The node selects four of its
closest neighbors which are far from each other. Then it checks whether three
of these neighbors are surrounded or not.

6 Ahcène Bounceur et al.

The approach proposed by Fang et al. [19] needs to know the position of
the nodes. Using a Delaunay graph and local searches, holes are identified.
Zhang et al. [59] apply localized Voronoi polygons for which each node has to
collect the positions of its direct neighbors.

The work introduced by Shirsat and Bhargava [54] only requires a node
to know an anti-clockwise order of its neighbors. Each node checks for empty
cones and cordless paths in the connectivity graph of its 2-hop neighborhood.

Luthy et al. [43] have presented an algorithm that draws an exact image
to decide whether the boundary of the nodes’ communication range is entirely
covered by the communication ranges of its neighbors.

Sahoo et al. [50] have proposed the sequential boundary node selection al-
gorithm SBNS and the distributed boundary node selection algorithm DBNS.
The first algorithm starts from the sink. Then it uses the right-hand rule
to select boundary nodes sequentially. The second algorithm defines extreme
nodes as boundary nodes and then connects them to form cycles enclosing
boundaries. An extreme node is defined as a node that has either maximum or
minimum values in its coordinates compared to those of its one-hop neighbors.

The algorithm of Lara-Alvarez et al. [38] is based on Ircod sensors. These
sensors determine a cyclic order neighbor and choose the first neighbor in
this order. Then the Right Hand without Crossings (RHWoC) rule is used to
determine the complete boundary.

Zhao et al. [61] have proposed two distributed algorithms based on compu-
tational geometry, Distributed Sector Cover Scanning (DSCS) and Directional
Walk (DW). The first is used to identify the nodes on the hole borders and
the outer boundary. The second is used to locate the coverage holes based on
the boundary nodes identified with DSCS and which they enclose.

Saoudi et al. [51] have presented a distributed version of the LPCN (Least
Polar-angle Connected Node) algorithm introduced in [36]. In each iteration,
the current boundary node chooses the nearest polar angle given by the previ-
ously chosen node and its neighbors, and the first node has to be a boundary
node. This node can be automatically determined using the Minimum Finding
algorithm. The algorithm works with any connected network, given as planar
or not, and it can determine for a disconnected network all the boundaries of
the different connected components.

Statistical Approach: This type of algorithm tries to exploit statistical proper-
ties such as node degrees to detect boundary nodes. As long as nodes are evenly
distributed, this approach works quite well since boundary nodes usually have
fewer neighbors than interior nodes. However, as soon as node degrees fluctu-
ate noticeably, most statistical approaches produce misclassifications. Besides,
these algorithms often require unrealistically high average node degrees.

Prominent statistical approaches are Fekete et al. [20,21], and Bi et al. [7].
Fekete et al. first analyze the node degree distribution in a theoretical study.
Their implementation in a second work requires data being collected over the
entire network to compute a histogram of node degrees. Using the histogram,
they determine a threshold value by which each node can classify itself as an

Title Suppressed Due to Excessive Length 7

inner node or a boundary node. In the approach proposed by Bi et al., nodes
need information only of their neighborhood localization. Each node compares
its node degree with the average node degrees of its 2-hop neighbors to decide
whether it is on the network boundary.

Topological Approach: Algorithms using this approach concentrate on in-
formation given by the connectivity graph and try to infer boundaries from its
topological structure. They often require nodes to gather information about a
large neighborhood or entail sophisticated algorithms with high computational
cost.

Funke [22] and Funke and Klein [23] have described algorithms that con-
struct iso-contours and check whether their contours are broken. If a node
detects that a contour is broken, it classifies the corresponding contour end-
points as boundary nodes. The first algorithm requires that the whole network
is flooded, starting from some seed nodes. The second algorithm is distributed,
based on 6-hop neighborhoods.

The methods proposed by Ghrist and Muhammad [27] and de Silva and
Ghrist [14] detect holes by utilizing algebraic homology theory. They are cen-
tralized and rely on restrictive assumptions on the communication model.

The algorithm of Kroller et al. [35] identifies complex combinatorial struc-
tures called flowers. Such flowers exist with high probability under some hy-
potheses on the communication model. The algorithm requires that every node
knows its 8-hop neighborhood.

Wang et al. [57] have introduced an algorithm that works well even in
networks with low average node degree. It involves multiple steps, some of
which require that the whole network is flooded.

Dong et al. [17] have described a distributed algorithm based on topological
transformations of the connectivity graph. It is, in particular, aimed at locating
small holes.

The approach presented by Li and Hunter [41] needs to determine all pairs
of nodes with overlapping sensing ranges (e.g., by comparing sensing results).
The graph induced by this information is used to detect holes in the network.
Boundary nodes are determined by finding circles in their 1-hop neighborhood.
Using knowledge of their k-hop neighborhood, holes of up to 4k+2 (k = 1, 2, ...)
hops in perimeter are found.

Dinh [16], Schieferdecker et al. [53], and Chu and Ssu [13] have introduced
algorithms that exploit the same basic information. Each node constructs a
graph induced by its neighbors at the exact 2-hop distance. It is checked
whether these graphs form closed circles. This is done by verifying the connec-
tivity of sub-graphs in Dinh’s case, by tree construction and analysis in the
approach of Chu and Ssu, who further provide a correctness proof for their
method.

Saukh et al. [52] have introduced an algorithm that tries to identify distinct
patterns in the neighborhood of a node. Under specific conditions, they can
guarantee that all nodes that are classified as interior nodes lie inside the
network. The algorithm is distributed and every node needs information only

8 Ahcène Bounceur et al.

on its k-hop neighborhood. The radius k depends on the node density. For low
density, k = 6 is used.

Sitanayah et al. [55] have presented a heuristic based on finding boundary
cycles inside a network. The principal idea of this approach is to start from a
first cycle which will be increased gradually by inserting other vertices until
it hits the boundary of the network. A vertex with the highest degree will be
chosen as the center of the cycle. In case that other cycles are found, they will
be merged. This approach can work with low-density wireless sensor networks.

Yan et al. [58] focus on detecting small coverage holes. They assume the
communication range of each node to be two times its sensing range and the
nodes know or can easily determine whether they are located on the outer
boundary of the network. Their theoretical reasoning implies the topologi-
cal Cech and Rips complexes. In their distributed implementation, each node
needs to find a Hamilton cycle in its 2-hop neighborhood.

In another work, Dong et al. [17] also focus on discovering small coverage
holes. They make the same assumptions as Yan et al. [58] regarding commu-
nication ranges and periphery awareness.

Khan et al. [33] devise a topology based method for hole detection, in which
the connectivity between nodes and their x-hop neighbors is used without the
location of nodes.

In this article, we propose an algorithm to find the polygon hull in a con-
nected Euclidean graph based on LPCN (Least Polar-angle Connected Node),
which allows to start from any point of the graph. A distributed version of the
algorithm is proposed in view of its application to boundary node detection in
wireless sensor networks.

3 Basic concepts

Before we begin the presentation of our proposed algorithm, let us give some
definitions that will help the reader to better understand our method.

Let G = (V,E) be a connected Euclidean graph in the plane, where V
and E are, respectively, the set of vertices and edges of G. Unless otherwise
specified, these definitions apply throughout this document.

3.1 Definitions

Definition 1
A boundary vertex of G is a vertex whose deletion will modify the geometric
area formed by the vertices of G.

Definition 2
If v is a boundary vertex of G, then there is no subset of V forming a polygon
and containing v in its interior.

Title Suppressed Due to Excessive Length 9

(a) (b)

(c) (d)

Fig. 1: Boundary and non-boundary vertices.

We can illustrate Definition 1 in Figure 1(a) which shows a graph with
two kinds of vertices. The boundary vertices are those that belong to the
orange edges, and the other ones are non-boundary vertices. The orange area
of Figure 1(b) shows the geometrical area formed by the graph. Figure 1(c)
shows a case where one boundary vertex is removed. As we can see, the new
shape of the graph is different from the original one. This means that the
deleted vertex is a boundary vertex. However, if we remove a non-boundary
vertex, as shown by Figure 1(d), the new geometrical area formed by the
vertices of the graph is the same as the original one, which means that the
deleted vertex is a non-boundary one.

3.2 Least Polar-angle Connected Node Algorithm (LPCN)

In this section, we review the LPCN algorithm used to find the polygon hull
of a Euclidean graph G = (V,E). The algorithm starts from a vertex of G
with minimum x-coordinate and determines the vertices v0, v1, ..., vh−1 of the
polygon hull. The main step of the algorithm is the selection of the neighbors of
the current vertex which forms the least polar angle. The process stops when
the angle corresponding to the starting vertex is visited twice. The LPCN
pseudo-code is described in Algorithm 1, where BV and BE are the sets of,
respectively, boundary vertices and boundary edges, defined by Equation 1

10 Ahcène Bounceur et al.

and Equation 2. In this algorithm N(p) represents the set of the neighbours
of the point p.

Algorithm 1 Least Polar-angle Connected Node (LPCN).

1: procedure LPCN (V,E)
2: P0 ← Pc ← a point having the minimum x-coordinate
3: Pp ← a fictitious point situated to the left of P (c)
4: BV ← {Pc}
5: BE ← ∅
6: once ← true
7: repeat
8: A ← {P ∈ N(Pc)/BE ∩ {{Pc, P}} = ∅}
9: Pmin ← argmin

P∈A
{ϕ(Pp, Pc, P)}

10: BV ← BV ∪ {Pmin}
11: BE ← BE ∪ {{Pc, Pmin}}
12: Pp ← Pc

13: Pc ← Pmin

14: if (once = true) then
15: once ← false
16: Pfirst ← Pmin

17: end if
18: until ((Pc = P0) and (Pmin = Pfirst))
19: return BV ,BE

20: end procedure

4 Boundary detection without condition on the starting vertex

4.1 Reset and Restart (R&R) technique

In this section, we describe a new method called Reset and Restart which will be
combined with the centralized algorithm LPCN in order to find the boundary
vertices of a connected Euclidean graph by starting from any vertex. As a by-
product, this method also allows to find the vertex with the minimum x-
coordinate in the graph. However, if the considered system is distributed then
the Reset and Restart concept must be combined with the D-LPCN algorithm.
In this paper we assume that the nodes/vertices of the graph are not mobile.
However, the mobility is considered as future work.

To illustrate the Reset and Restart technique let us take the graph shown
in Figure 2, where the vertex with minimum x-coordinate is linked by a chain
to the starting vertex. Suppose that the algorithm starts from vertex 1 as
shown by Figure 2(a). First, we will mark it and set the value of xmin = x1,
the x-coordinate of vertex 1 and go to vertex 2, as shown by Figure 2(b),
and select it. Since the x-coordinate of vertex 2 is greater than xmin, we se-
lect vertex 3 and compare its x-coordinate to xmin (cf. Figure 2(c)). Again,
the x-coordinate of vertex 3 is greater than xmin. Now vertex 4 is selected
(cf. Figure 2(d)). Since the x-coordinate of vertex 4 is less than xmin, ‘Reset’

Title Suppressed Due to Excessive Length 11

is launched, which consists first in unselecting all the selected vertices (Fig-
ure 2(e)). After that ‘Restart’ executes LPCN with the last selected vertex 4
and updates xmin to the value x4, the x-coordinate of vertex 4 (Figure 2(f)).
Then by executing LPCN, we select vertex 5 (Figure 2(g)). Again, since the
x-coordinate of vertex 5 is less than xmin (Figure 2(h)), we will execute the
Reset and Restart process (Figure 2(i)). Now, if we run LPCN from vertex 5,
we will find the polygon hull of the graph because the algorithm will be run
until it selects vertex 5 for the second time, which is the stop condition of the
algorithm.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2: Reset and Restart technique.

12 Ahcène Bounceur et al.

4.2 Reset and Restart with Least Polar-angle Connected Node (RRLPCN)

The major disadvantage of LPCN is the need for an a priori knowledge of
the vertex of G with minimum x-coordinate. Unfortunately, this information
is often unknown, and its search increases the complexity of the algorithm.
This is the main motivation for the proposed improvement of LPCN using the
Reset and Restart technique. The complexity of the proposed algorithm is the
same as that of the LPCN algorithm repeated each time the starting process is
executed. This means that O(RRLP CN) = w×O(LP CN) = w×O(dnb +n),
where n is the number of nodes, nb is the number of the boundary nodes and
d is the maximum degree of the network/graph.

The main steps of the new algorithm are described below:

1. In the Restart step, the starting vertex will select that vertex, which forms
the minimum polar angle between the starting vertex, a fictitious vertex,
which is an imaginary vertex situated on its left and its neighbors, as shown
by Figure 3. In this figure, the edge between the starting vertex and the
selected one is colored green.

Fig. 3: Minimum polar angle.

2. After the selection of the next vertex, we have two possible cases: Either
the x-coordinate of this vertex is greater or equal to xmin or it is less than
xmin.
(a) In the first case, we continue the execution of LPCN and select a sub-

sequent vertex.
(b) In the second case, we run Reset and set xmin equal to the current

vertex x-coordinate and we Restart the algorithm from this vertex.
Figure 4 shows an example where all the x-coordinates of the selected
vertices are greater than xmin.

We can conclude that finding the boundary vertices matches with finding a
vertex with minimum x-coordinate. Thus, Algorithm 2 shows the pseudo-code
of RRLPCN to find the boundary vertices by starting from any vertex of a

Title Suppressed Due to Excessive Length 13

Fig. 4: An example for polygon hull finding.

network. Additionally, a flowchart is presented in Figure 5, which resumes the
main steps of the introduced method.

Fig. 5: A flowchart of RRLPCN.

Figure 6 shows the execution of Algorithm 2 on a graph of 10 vertices.

14 Ahcène Bounceur et al.

Algorithm 2 Reset and Restart Least Polar-angle Connected Node
(RRLPCN).

1: procedure RRLPCN (V,E)
2: Pc ← an arbitrary vertex chosen from V .
3: BV ← [Pc]
4: Pfirst ← Pc

5: Pp ← a fictious vertex situated to the left of Pf

6: Xfirst ← the x-coordinate of Pfirst

7: repeat
8: A ← ∅
9: Pv ← argmin

Pj∈N(Pc) & Pj /∈A
{ϕ(Pp, Pc, Pj)}

10: Xv ← the x-coordinate of Pv

11: if Xv < Xfirst then
12: Reset: BV ← ∅; BE ← ∅
13: Restart: Pc ← Pv ; go to step 3;
14: end if
15: if BE ∩ {Pc, Pv} �= ∅ then
16: A ← A ∪ {Pv}
17: Go to 9
18: end if
19: BV ← BV ∪ {Pv}
20: BE ← BE ∪ {Pc, Pv}
21: Pp ← Pc

22: Pc ← Pv

23: until Pv = Pf

24: return BV ,BE

25: end procedure

The algorithm starts from the red vertex (see part (a)), which is set as a
starting vertex and with an x-coordinate equal to xmin. Then it computes the
next vertex among its neighbors, which is the neighbor forming the minimum
polar angle between a fictitious vertex, itself (the red vertex) and its neighbors.
In our example, the next vertex is the green vertex (see part (b)). Since the x-
coordinate of the green vertex is less than the x-coordinate of the red vertex,
the red vertex is Reset, the new starting vertex is the green vertex whose
x-coordinate is set to the new xmin (see part (c)). In the same way, the new
starting vertex computes the next vertex (see part (d)). Since the x-coordinate
of the next vertex is less than xmin, the next vertex is the new starting vertex,
its x-coordinate is set as xmin and the previously selected vertex is Reset (part
(f)). Using the same principle, the new starting vertex Restart the process and
computes the next vertex, since this time the x-coordinate of the next vertex is
greater than xmin. This process continues without Restart, until reaching the
most left green vertex (part (g)). Since the x-coordinate of this vertex is less
than xmin, all previously selected vertices (part (h)) are Reset, and the process
is Restart from this vertex. The algorithm selects all boundary vertices, until
arriving at the starting vertex, which computes the next vertex as the same
vertex selected in the previous round, and the stop condition is satisfied, i.e.,
all the boundary vertices are selected (part (i)).

Title Suppressed Due to Excessive Length 15

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6: An example for RRLPCN.

4.3 Reset and Restart combined with the Distributed Least Polar-angle
Connected Node algorithm (D-RRLPCN)

Boundary node detection is an essential problem in wireless sensor network
applications. It is necessary for keeping track of the coverage range and events
entering or leaving the region and for tracking communication with the ex-
ternal environment. It can be used for extracting further information about
the structure and robustness of the network which is employed for routing,
controlling and management purposes.

Suppose we have a wireless sensor network with all nodes deployed ran-
domly. There can be two kinds of nodes: those which are on the boundary and
the interior ones. We assume that each node can get its localization within the
deployment zone. Many existing methods can be used for this information [37,
44,60].

In order to define a wireless sensor network formally, we model it as a
Euclidean graph G = (V,E). We use the letter n to denote |V |, the number

16 Ahcène Bounceur et al.

of nodes in the network. For each node i of G, we use the notation nbrsi
to denote the ”number of neighbors” of i, that is those nodes located in the
communication range of i.

We also define a message alphabet, described in Table 1, and the functions
used in the algorithm in Table 2.

Message Description
AC Request coordinates
CS Send coordinates
SN Select a node
DN Reset node

Table 1: Deferrent messages and their description.

Function Description
getId() Returns the node identifier
getCoord() Returns the node coordinates (x, y)
getNumberOfNeighbors() Returns out− nbrsi, the number of neighbors of the node
send(m, adr) Sends a message m to the node having address adr,

if adr = ∗ it sends a message to all outgoing neighbors
reset() Reset node

Table 2: Functions used by D-RRLPCN.

Algorithm 3 exhibits the main steps performed by each sensor node for the
identification of the boundary nodes of a wireless sensor network. These steps
can be explained by the flowchart of Figure 7. In this case, the nodes are
completely independent and the x-coordinate of the starting node is sent to the
next boundary node in each iteration. If a node receives an x-coordinate which
is smaller then it own x-coordinate, this node will send to the previous found
boundary nodes a message to reset them as non-boundary nodes. Then, it will
restart the process of finding the boundary nodes.

5 Validation of the proposed algorithms

5.1 Analytical validation

In order to validate the proposed algorithm regarding optimality and conver-
gence, we will present, in the following, some mathematical concepts that will
allow us to define the final version of the proposed algorithm.

Proposition 1
After the application of LPCN starting from a non-boundary vertex v1 ∈ V ,
with Xv1 its x-coordinate and the degree of v1 being equal or greater than one,

Title Suppressed Due to Excessive Length 17

Algorithm 3 Distributed Reset and Restart Least Polar-angle Connected
Node (D-RRLPCN).
1: boundary = false;
2: once = true;
3: cid = getId();
4: cx = getX();
5: cy = getY();
6: i = 0;
7: n = getNumberOfNeighbors();
8: nid = 0;
9: nid ref = -1;
10: phi min = 10;
11: first = id of the starting node;
12: prevList=();
13: repeat
14: if (cid==first and once) then
15: boundary = true;
16: once = false;
17: xmin = cx;
18: px = cx-1;
19: py = cy;
20: data = cid+”|”+”AC”;
21: send(data, *);
22: end if
23: id = read();
24: type = read();
25: if (type==”AC”) then
26: data = cid+”|”+”CS”+”|”+cx+”|”+cy;
27: send(data, id);
28: end if
29: if (type==”CS”) then
30: id = read();
31: nx = read();
32: ny = read();
33: phi = angle(px, py, cx, cy, nx, ny);
34: if (phi<phi min) then
35: phi min = phi;
36: nid = id;
37: end if
38: i = i + 1;
39: if (i==n) then
40: if (nid==nid ref and cid==first) then
41: STOP
42: else
43: if (nid ref<0) then
44: nid ref = nid
45: end if
46: end if
47: i = 0;
48: data = cid+”|”+”SN”+”|”+cx+”|”+cy+”|”+xmin;
49: send(data, nid);
50: end if
51: end if

18 Ahcène Bounceur et al.

52: if (type==”SN”) then
53: boundary = true;
54: n = getNumberOfNeighbors();
55: nid = 0;
56: phi min = 10;
57: px = read();
58: py = read();
59: xmin = read();
60: if (cx<xmin) then
61: delay(t)
62: once = true;
63: first = cid;
64: data = cid+”|”+”DN”+”|”+first;
65: send(data, id);
66: else
67: prevList.add(id);
68: data = cid+”|”+”AC”;
69: send(data, *);
70: end if
71: end if

72: if (type==”DN”) then
73: boundary = false;
74: first = read();
75: if (prevList.size()>=0) then
76: data = cid+”|”+”DN”+”|”+first;
77: previous = prevList.getLast();
78: prevList.removeLast();
79: if previous.hasPrevious()) then
80: send(data, previous);
81: end if
82: end if
83: end if
84: until false

the sub-graph visited by LPCN is a cycle containing at least one vertex v0 ∈ V
with:

Xv0 < Xv1 (3)

where Xv0 is the x-coordinate of v0.

Proof
Suppose the opposite, i.e., v1 is a non-boundary vertex and there exists no
vertex visited by LPCN that has a smaller x-coordinate. This implies that
Xv1 is the minimal x-coordinate of the resulting subgraph G�. But G� is a
boundary of G and v1 ∈ G� which means that v1 is a boundary vertex. This
is a contradiction to the fact that v1 is a non-boundary vertex.

Theorem 1
Except for the finally calculated angle of the starting point, the RRLPCN al-
gorithm never calculates the same polar angle more than once.

Proof
We assume that the algorithm starts from vertex Pfirst and that at iteration

Title Suppressed Due to Excessive Length 19

Fig. 7: A flowchart of D-RRLPCN.

i, we can, without loss of generality, represent the current set of boundary
nodes Bi

V = {Pfirst, ..., Pi} by a vertex PiBV . On the other hand, we assume
that angles are calculated only in anti-clockwise order. Hence, any angle, as
given by two specific edges, will be calculated only once. Otherwise, if an
angle is calculated a second time, then the algorithm must pass a second time
through the vertex PiBV . This means that we pass a second time through the
starting vertex Pfirst which represents the stop condition of LPCN (cf. line 12
of Algorithm 2). This leads to a contradiction and therefore it is not possible
to calculate an angle more than once.

Theorem 2
The RRLPCN algorithm never runs the Restart Step (step-14) from the same
point.

Proof
Assume that at iteration k we will start RRLPCN with a vertex P k that has
already been visited. Let Bk−1

V be the set of the obtained vertices. Since the
algorithm restarts from the same vertex, Xk

P = argmin Xv

v∈Bk−1
V

, which means that

pk is a boundary vertex according to Theorem 1. Which is the stop condition
of LPCN.

20 Ahcène Bounceur et al.

Corollary 1
The RRLPCN algorithm converges in a finite number of steps.

Theorem 3 (See [36])
The polygon hull found by LPCN is of minimum cardinality.

Lemma 1
The polygon hull found by RRLPCN is of minimum cardinality.

Proof
When the algorithm executes the last iteration, it stops and finishes with a
vertex vf (stop condition satisfied). This means that there is no point vi ∈ V
such that xvi < xvf

. In other words, ∀vi ∈ V : xvi < xvf , consequently vf is
a vertex with minimum x-coordinate in the graph. Starting LPCN from this
vertex will give us the polygon hull of the graph according to Theorem 3.

5.2 Application to Wireless Sensor Networks

5.2.1 Simulation results

To validate and test our distributed algorithm, we have used the two simulation
environments CupCarbon [46] and TinyOS [40] Tossim [39]. The first one
allowed us to develop our protocol and to make debugging, and the second
one was used to test the final version and to analyze the performances.

CupCarbon [46] is a Smart City and Internet of Things simulator. Its ob-
jective is to design, visualize, debug and validate distributed algorithms for
monitoring, environmental data collection, and to create ecological scenarios,
generally within educational and scientific projects. CupCarbon proposes two
simulation environments. The first is a multi-agent environment, which en-
ables the creation of the mobility scenarios and the generation of events such
as fires and gas as well as the simulation of mobiles such as vehicles and flying
objects [42]. The second simulation environment uses the discrete event simu-
lation of wireless sensor networks taking into account the scenario created by
the first environment.

TOSSIM, the TinyOS Simulator, uses its hierarchical model by replacing
lower level hardware components with software-emulated ones. This approach
reduces the hole between the simulator and the real environment. By substi-
tuting low-level components, a high fidelity between reality and the simula-
tion environment is achieved. One of the advantages of the simulation with
TOSSIM is the reuse of the code since the code used for the simulation is the
same that will be exported to the real sensor nodes.

Energy efficiency is one of the most critical factors for WSN applications.
The lower the energy consumed by each node, the longer the network can
perform its mission. For this reason, our simulations are based on this measure
of performance. We calculate the average of energy consumed by each node in
miliJule (mJ) according to simulation parameters.

Title Suppressed Due to Excessive Length 21

Figure 8 represents the average consumption of nodes in mJ according to
their position (boundary nodes, neighbors of boundary nodes and inner nodes).
The purpose of this histogram is to compare the consumption of the nodes in
the network according to their positions. As can be noted, the boundary nodes
consume more energy, because they are the ones that participate most in the
algorithm, followed by the neighbors of boundary nodes and finally the inner
nodes.

0

2

4

6

8

10

12

14

16

Boundary Nodes Neighbors of
Boundary odes

Inner Nodes

En
er

gy
 C

on
su

m
pt

io
n

[
J]

Fig. 8: Energy consumption according to sensor node positions in D-RRLPCN.

As we have seen in Figure 8, the boundary nodes consume more energy
in comparison to other nodes. In Figure 9, the consumption of these nodes
according to their number of neighbors is examined. There is a correlation
between the energy consumption of these nodes and their number of neighbors.
The more the number of neighbors increases the more they consume energy.
One of the solutions to reduce this consumption is the reduction of the network
density.

It is possible to not activate all network nodes at the same time, which
will increase the lifetime of the network and reduce the consumption of the
boundary nodes.

22 Ahcène Bounceur et al.

Fig. 9: Energy consumption of boundary nodes according to the number of neighbors in
D-RRLPCN.

In order to prove the efficiency of D-RRLPCN regarding energy consump-
tion, we have compared it with D-LPCN, and three other algorithms (D-
LCPN, Min Finding, and D-LPCN+Min Finding).

Figure 10 shows a comparison histogram of the average of energy consump-
tion of nodes depending on their position in the network (boundary nodes,
neighbors of boundary nodes and inner nodes) for the two algorithms D-
RRLPCN and D-LPCN. The graph allows us to deduce that whatever the
position of the node in the network, D-RRLPCN consumes less energy than
D-LPCN.

Fig. 10: Comparison of D-LPCN and D-RRLPCN with respect to energy consumption ac-
cording to sensor node positions.

Title Suppressed Due to Excessive Length 23

Fig. 11: Comparison of the D-LCPN, Min Finding, D-LPCN+Min Finding and D-RRLPCN
with respect to energy consumption of boundary node according to number of neighbors.

The D-LPCN algorithm consists of two phases. The first phase allows to
find the starting node which is the node with minimum x-coordinate (in this
paper we call this part “Min Finding”). The second phase allows to start from
the starting sensor node found in the first phase to obtain a boundary of the
network.

Figure 11 shows the energy consumption of the boundary nodes depending
on their number of neighbors, for D-RRLPCN, the Min Finding, D-LPCN
without the first part (Min Finding) and the last graph representing the sum
of the two phases of D-LPCN. Considering the two phases of D-LPCN, D-
RRLPCN is more efficient regardless of the number of neighbors.

In Figure 12, a comparison with existing methods is given. We have com-
pared the energy consumption of three algorithms, namely Hop-based [29],
Distributed Boundary Detection (DBD) [58], and Located Voronöı Polygons
(LVP) [1] with that of D-RRLPCN. The energy consumption of boundary
nodes is calculated according to their number of neighbors.

24 Ahcène Bounceur et al.

Fig. 12: Comparison of D-RRLPCN, Hop-based, DBD and LVP with respect to energy
consumption of boundary nodes according to number of neighbors.

5.2.2 Implementation in Real Sensor Nodes

Building a wireless sensor network system needs development and integration
of many hardware and software components. Figure 13 shows the overall ar-
chitecture of the wireless sensor network system that we have developed. The
system includes a number of distributed wireless sensor nodes, where each
sensor node is a combination of a microcontroller, an XBee radio transceiver,
and a battery.

→ Design of Sensor Node
In this research, we have studied sensor nodes using Arduino and Digi XBee
modules. Arduino is an open-source computer hardware and software company,
project and user community that designs and produces devices for building dig-
ital applications and interactive objects that can sense and control the physical
world. These devices are based on a family of microcontroller board designs
produced primarily by Smart Projects in Italy, and also by numerous other
vendors, using different 8-bit Atmel AVR microcontrollers or 32-bit Atmel
ARM processors. In this work, we have used Arduino Uno R3 based on the
Atmel Atmega328 microcontroller.

For wireless communication, we have used the XBee module from Digi.
Xbee is basically used for this purpose. It offers the IEEE 802.15.4 connectiv-
ity in the 2.4GHz ISM band. There is a “pro” version which provides large
communication range, denoted as XBP24, and a “normal” version, denoted
as XB24. The term “series 1” is employed for the 802.15.4 version and “series
2” for the ZigBee version. The XBee module uses a UART (serial interface)
to communicate with the main board. The advantage is simplicity and the
possibility to re-use many serial tools. For our implementation, we have used
the Xbee series 1. The indoor communication range of this module is 30 m

Title Suppressed Due to Excessive Length 25

whereas the outdoor range is nearly 100 m. With low power consumption and
data rates of up to 250 kbps, Xbee devices are particularly suitable for fast
prototyping of wireless sensor network applications. It is possible to build a
simple star-structured network or a complex mesh network using these devices.
Table 3 summarizes the technical characteristics of the used sensor nodes.

Devices Specifications Values
Arduino UNO R3 Microcontroller ATmega328P

Flash Memory 32 KB
Clock Speed 16 MHz
SRAM 2 KB
EEPROM 1 KB

Xbee XB24 Frequency Band 2.4 GHz
RF Data Rate 250 kbps
Indoor/Urban Range 30 m
Outdoor/RF Line-of-Sight Range 100 m
Transmit Current 45 mA
Receive Current 50 mA

Battery Capacity 2200 mAh

Table 3: Technical characteristics of sensor nodes.

Figure 13 shows a wireless sensor network with 8 Arduino/Xbee sensor
nodes deployed randomly. The sensor nodes which have a green led turned on
are the boundary nodes detected by the D-RRLPCN algorithm.

Fig. 13: Execution of D-RRLPCN using real Arduino/XBee sensor nodes.

26 Ahcène Bounceur et al.

6 Other applications

There are several other problems and domains where we can apply the algo-
rithms proposed in this paper (RRLPCN and D-RRLPCN). We can cite two
examples:

Drawing object contours in images:
The algorithm combined with an algorithm to characterize the selected
zone can be used to draw object contours in images. The user has to click
on a pixel of the zone to study, and starting from this point, RRLPCN
can detect the contour of the selected zone (object). This technique can
be applied to identify the shape of a tumor, for example. RRLPCN can
be very useful in the medical field. Indeed, detecting the boundary of a
tumor with high precision is a very crucial task for the medical practitioner.
With RRLPCN, this task can be done by selecting any pixel of the radio
representing this tumor.

Defining the boundary of a two-dimensional Multi-Robot system:
a Multi-Robot system can be described as a set of robots operating in the
same environment. In these systems, we can use a boundary as a formal
practical definition of what is inside and outside the network. Knowing the
boundary would allow us to estimate the perimeter of the configuration.
For a surveillance application [6], robots on the boundary can specialize
in target monitoring, and notify the network when a target has entered or
left the tracking area. At each moment one of the robots can launch the
D-RRLPCN algorithm, and the boundary robots will be detected.

7 Conclusion

In this article, we have proposed a new technique called Reset and Restart,
which in combination with LPCN and D-LPCN allowed us to introduce two
new algorithms: RRLPCN and D-RRLPCN. Both algorithms now find the
polygon hull of a Euclidean graph without any assumption on the starting node
where the second is the distributed version of the first and particularly suited
for wireless sensor networks. We have also validated the proposed method
theoretically and computationally.

The D-RRLPCN algorithm has been developed and simulated using the
two simulation environments CupCarbon and TOSSIM. The results show that
it consumes less energy than D-LPCN and Hop-based, DBD, and LVP. The
algorithm has been implemented in two real sensor platforms, TelosB and
Arduino Xbee. As future work, we suggest an extension of the RRLPCN al-
gorithm to 3D space and a proposition of a distributed version for boundary
node detection in 3D wireless sensor networks.

Title Suppressed Due to Excessive Length 27

References

1. Abdelkader, K. Méthodes analytiques pour la couverture dans un réseau de capteurs
sans fil. PhD thesis, Université Abderrahmane Mira de Béjaia, 2010.

2. Aldabbas Omar, Abuarqoub Abdelrahman, H. M. A. B. Unmanned ground vehicle
for data collection in wireless sensor networks: Mobility-aware sink selection. The Open
Automation and Control Systems Journal 8 (2016), 35–46.

3. Andrew, A. M. Another efficient algorithm for convex hulls in two dimensions. Infor-
mation Processing Letters 9, 5 (1979), 216–219.

4. Baker, T., Aldawsari, B., Tawfik, H., Reid, D., and Ngoko, Y. Greedi: An energy
efficient routing algorithm for big data on cloud. Ad Hoc Networks 35 (2015), 83–96.

5. Baker, T., Mackay, M., Shaheed, A., and Aldawsari, B. Security-oriented cloud
platform for soa-based SCADA. In 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid 2015, Shenzhen, China, May 4-7, 2015
(2015), pp. 961–970.

6. Benzerbadj, A., Bouabdellah, K., Bounceur, A., and Hammoudeh, M. Surveillance
of sensitive fenced areas using duty-cycled wireless sensor networks with asymmetrical
links. J. Network and Computer Applications 112 (2018), 41–52.

7. Bi, K., Tu, K., Gu, N., Dong, W. L., and Liu, X. Topological hole detection in sensor
networks with cooperative neighbors. In Systems and Networks Communications, 2006.
ICSNC’06. International Conference on (2006), IEEE, pp. 31–31.

8. Bounceur, A., Bezoui, M., and Euler, R. Boundaries and Hulls of Euclidean Graphs:
From Theory to Practice. CRC Press, Taylor and Francis, Aug. 2018.

9. Bounceur, A., Euler, R., Benzerbadj, A., Lalem, F., Saoudi, M., Kechadi, T.,
and Sevaux, M. Finding a polygon hull in wireless sensor networks. In European
Conference on Operational Research, University of Strathclyde, Glasgow, UK (July
2015), Invited talk, EURO 2015.

10. Braune, C., Dankel, M., and Kruse, R. Obtaining Shape Descriptors from a Con-
cave Hull-Based Clustering Algorithm. In International Symposium on Intelligent Data
Analysis (2016), Springer, pp. 61–72.

11. Chan, T. M. Optimal output-sensitive convex hull algorithms in two and three dimen-
sions. Discrete & Computational Geometry 16, 4 (1996), 361–368.

12. Chaudhuri, A. R., Chaudhuri, B. B., and Parui, S. K. A novel approach to compu-
tation of the shape of a dot pattern and extraction of its perceptual border. Computer
Vision and Image Understanding 68, 3 (1997), 257–275.

13. Chu, W.-C., and Ssu, K.-F. Decentralized boundary detection without location in-
formation in wireless sensor networks. In Wireless Communications and Networking
Conference (WCNC), 2012 IEEE (2012), IEEE, pp. 1720–1724.

14. De Silva, V., and Ghrist, R. Coordinate-free coverage in sensor networks with con-
trolled boundaries via homology. The International Journal of Robotics Research 25,
12 (2006), 1205–1222.

15. Deogun, J. S., Das, S., Hamza, H. S., and Goddard, S. An algorithm for boundary
discovery in wireless sensor networks. In International Conference on High-Performance
Computing (2005), Springer, pp. 343–352.

16. Dinh, T. L. Topological boundary detection in wireless sensor networks. Journal of
Information Processing Systems 5, 3 (2009), 145–150.

17. Dong, D., Liao, X., Liu, K., Liu, Y., and Xu, W. Distributed coverage in wireless
ad hoc and sensor networks by topological graph approaches. IEEE Transactions on
Computers 61, 10 (2012), 1417–1428.

18. Eddy, W. F. A new convex hull algorithm for planar sets. ACM Transactions on
Mathematical Software (TOMS) 3, 4 (1977), 398–403.

19. Fang, Q., Gao, J., and Guibas, L. J. Locating and bypassing holes in sensor networks.
Mobile Networks and Applications 11, 2 (2006), 187–200.

20. Fekete, S. P., Kaufmann, M., Kröller, A., and Lehmann, K. A new approach
for boundary recognition in geometric sensor networks. ArXiv Preprint CS/0508006
(2005).

28 Ahcène Bounceur et al.

21. Fekete, S. P., Kröller, A., Pfisterer, D., Fischer, S., and Buschmann, C.
Neighborhood-based topology recognition in sensor networks. In International Sym-
posium on Algorithms and Experiments for Sensor Systems, Wireless Networks and
Distributed Robotics (2004), Springer, pp. 123–136.

22. Funke, S. Topological hole detection in wireless sensor networks and its applications.
In Proceedings of the 2005 joint workshop on Foundations of mobile computing (2005),
ACM, pp. 44–53.

23. Funke, S., and Klein, C. Hole detection or: how much geometry hides in connectivity?
In Proceedings of the twenty-second annual symposium on Computational geometry
(2006), ACM, pp. 377–385.

24. Garai, G., and Chaudhuri, B. A split and merge procedure for polygonal border
detection of dot pattern. Image and Vision Computing 17, 1 (1999), 75–82.

25. Ghafir, I., Saleem, J., Hammoudeh, M., Faour, H., Prenosil, V., Jaf, S., Jabbar,
S., and Baker, T. Security threats to critical infrastructure: the human factor. The
Journal of Supercomputing 74, 10 (2018), 4986–5002.

26. Gheibi, A., Davoodi, M., Javad, A., Panahi, F., Aghdam, M. M., Asgaripour, M.,
and Mohades, A. Polygonal shape reconstruction in the plane. IET Computer Vision
5, 2 (2011), 97–106.

27. Ghrist, R., and Muhammad, A. Coverage and hole-detection in sensor networks via
homology. In Proceedings of the 4th International Symposium on Information Process-
ing in Sensor Networks (2005), IEEE Press, p. 34.

28. Graham, R. L. An efficient algorith for determining the convex hull of a finite planar
set. Information Processing Letters 1, 4 (1972), 132–133.

29. Hammoudeh, M., Al-Fayez, F., Lloyd, H., Newman, R., Adebisi, B., Bounceur, A.,
and Abuarqoub, A. A wireless sensor network border monitoring system: Deployment
issues and routing protocols. IEEE Sensors Journal 17, 8 (2017), 2572–2582.

30. Hussain, A. J., Marcinonyte, D. M., Iqbal, F., Tawfik, H., Baker, T., and Al-
Jumeily, D. Smart home systems security. In 20th IEEE International Conference on
High Performance Computing and Communications; 16th IEEE International Confer-
ence on Smart City; 4th IEEE International Conference on Data Science and Systems,
HPCC/SmartCity/DSS 2018, Exeter, United Kingdom, June 28-30 (2018), pp. 1422–
1428.

31. Jarvis, R. A. On the identification of the convex hull of a finite set of points in the
plane. Information Processing Letters 2, 1 (1973), 18–21.

32. Kallay, M. The complexity of incremental convex hull algorithms in Rd. Information
Processing Letters 19, 4 (1984), 197.

33. Khan, I. M., Jabeur, N., and Zeadally, S. Hop-based approach for holes and bound-
ary detection in wireless sensor networks. IET Wireless Sensor Systems 2, 4 (2012),
328–337.

34. Körner, M., Krishna, M. V., Süße, H., Ortmann, W., and Denzler, J. Regularized
Geometric Hulls for Bio-medical Image Segmentation. The Annals of the BMVA,(4)
(2015), 1–12.

35. Kröller, A., Fekete, S. P., Pfisterer, D., and Fischer, S. Deterministic boundary
recognition and topology extraction for large sensor networks. In Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (2006), Society for
Industrial and Applied Mathematics, pp. 1000–1009.

36. Lalem, F., Bounceur, A., Bezoui, M., Saoudi, M., Euler, R., Kechadi, T., and
Sevaux, M. LPCN: Least Polar-angle Connected Node algorithm to find a polygon
hull in a connected euclidean graph. Journal of Network and Computer Applications
93 (2017), 38 – 50.

37. Langendoen, K., and Reijers, N. Distributed localization in wireless sensor networks:
a quantitative comparison. Computer Networks 43, 4 (2003), 499 – 518.

38. Lara-Alvarez, C., Flores, J. J., and Wang, C.-C. Detecting the boundary of sensor
networks from limited cyclic information. International Journal of Distributed Sensor
Networks 11, 7 (2015), 401–438.

39. Levis, P., Lee, N., Welsh, M., and Culler, D. Tossim: Accurate and scalable simula-
tion of entire tinyos applications. In Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems (New York, NY, USA, 2003), SenSys ’03, ACM,
pp. 126–137.

Title Suppressed Due to Excessive Length 29

40. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A.,
Gay, D., Hill, J., Welsh, M., Brewer, E., et al. Tinyos: An operating system for
sensor networks. In Ambient Intelligence. Springer, 2005, pp. 115–148.

41. Li, X., and Hunter, D. K. Distributed coordinate-free algorithm for full sensing cov-
erage. International Journal of Sensor Networks 5, 3 (2009), 153–163.

42. Lounis, M., Mehdi, K., and Bounceur, A. A cupcarbon tool for simulating destructive
insect movements. 1st IEEE International Conference on Information and Communi-
cation Technologies for Disaster Management (ICT-DM’14), Algiers, Algeria (March
24-25 2014).

43. Luthy, K., Grant, E., Deshpande, N., and Henderson, T. C. Perimeter detection
in wireless sensor networks. Robotics and Autonomous Systems 60, 2 (2012), 266–277.

44. Mao, G. Localization Algorithms and Strategies for Wireless Sensor Networks: Mon-
itoring and Surveillance Techniques for Target Tracking: Monitoring and Surveillance
Techniques for Target Tracking. IGI Global, 2009.

45. Martincic, F., and Schwiebert, L. Distributed perimeter detection in wireless sensor
networks. http://newslab.cs.wayne.edu/perimeter.pdf (2004).

46. Mehdi, K., Lounis, M., Bounceur, A., and Kechadi, T. Cupcarbon: A multi-agent
and discrete event wireless sensor network design and simulation tool. In 7th Interna-
tional ICST Conference on Simulation Tools and Techniques, Lisbon, Portugal, 17-19
March 2014 (2014), pp. 126–131.

47. Methirumangalath, S., Parakkat, A. D., and Muthuganapathy, R. A unified
approach towards reconstruction of a planar point set. Computers & Graphics 51
(2015), 90–97.

48. Moreira, A., and Santos, M. Y. Concave hull: A k-nearest neighbours approach for
the computation of the region occupied by a set of points. INSTICC Press (Institute
for Systems and Technologies of Information, Control and Communication) (2007).

49. Park, J.-S., and Oh, S.-J. A new concave hull algorithm and concaveness measure for
n-dimensional datasets. Journal of Information Science and Engineering 28, 3 (2012),
587–600.

50. Sahoo, P. K., Sheu, J.-P., and Hsieh, K.-Y. Target tracking and boundary node selec-
tion algorithms of wireless sensor networks for internet services. Information Sciences
230 (2013), 21–38.

51. Saoudi, M., Lalem, F., Bounceur, A., Euler, R., Kechadi, M.-T., Laouid, A.,
Bezoui, M., and Sevaux, M. D-lpcn: A distributed least polar-angle connected node
algorithm for finding the boundary of a wireless sensor network. Ad Hoc Networks 56
(2017), 56–71.

52. Saukh, O., Sauter, R., Gauger, M., and Marrón, P. J. On boundary recognition
without location information in wireless sensor networks. ACM Transactions on Sensor
Networks (TOSN) 6, 3 (2010), 20.

53. Schieferdecker, D., Völker, M., and Wagner, D. Efficient algorithms for dis-
tributed detection of holes and boundaries in wireless networks. In International Sym-
posium on Experimental Algorithms (2011), Springer, pp. 388–399.

54. Shirsat, A., and Bhargava, B. Local geometric algorithm for hole boundary detection
in sensor networks. Security and Communication Networks 4, 9 (2011), 1003–1012.

55. Sitanayah, L., Datta, A., and Cardell-Oliver, R. Heuristic algorithm for find-
ing boundary cycles in location-free low density wireless sensor networks. Computer
Networks 54, 10 (2010), 1630–1645.

56. Toussaint, G. T. The relative neighbourhood graph of a finite planar set. Pattern
Recognition 12, 4 (1980), 261–268.

57. Wang, Y., Gao, J., and Mitchell, J. S. Boundary recognition in sensor networks
by topological methods. In Proceedings of the 12th annual international conference on
Mobile computing and networking (2006), ACM, pp. 122–133.

58. Yan, F., Martins, P., and Decreusefond, L. Connectivity-based distributed coverage
hole detection in wireless sensor networks. In Global Telecommunications Conference
(GLOBECOM 2011), 2011 IEEE (2011), IEEE, pp. 1–6.

59. Zhang, C., Zhang, Y., and Fang, Y. Localized algorithms for coverage boundary
detection in wireless sensor networks. Wireless Networks 15, 1 (2009), 3–20.

60. Zhang, X., Tepedelenlioglu, C., Banavar, M., and Spanias, A. Node localization
in wireless sensor networks. Synthesis Lectures on Communications 9, 1 (2016), 1–62.

30 Ahcène Bounceur et al.

61. Zhao, L.-H., Liu, W., Lei, H., Zhang, R., and Tan, Q. Detecting boundary nodes and
coverage holes in wireless sensor networks. Mobile Information Systems 2016 (2016),
1–16.

