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Abstract. In Vacuum Infusion (VI) process, used to manufacture large composite structures, 

the fibrous preform undergoes large deformations during the impregnation due to the use of a 

flexible vacuum bag. Moreover, the resin pressure difference between the upstream and 

downstream sides of the preform leads to a non-uniform preform thickness during the mold 

filling process, which may degrade the part quality. Thus, the prediction of resin flow and 

preform thickness variations is a very important issue. However, fluid-structure interaction 

modeling is a difficult task, mainly due to the complex mechanical behavior of the preform. 

Indeed, the through-thickness deformation of fabrics depends on many factors such as loading 

type, fabric saturation and fabric type, and also on strain rate effects, as already observed in the 

literature. In this study, one focuses on the preform deformation during decompaction. 

Experimental measurements were performed using a universal testing machine with different 

strain rates, for two different types of fiberglass fabrics, i.e. a random mat and a twill weave 

fabric, in a dry or wet state saturated by liquids with different viscosities. From these fabric 

characterization tests, a constitutive model was deduced, which was subsequently implemented 

in a numerical software to simulate preform decompaction during VI process. Some VI process 

experiments were also conducted in order to measure the liquid pressure gradient and the 

preform thickness profile during the mold filling stage and validate the numerical results. It 

was found from fabric characterization tests that strain rate and viscosity have no significant 

impact on the preform response in decompaction, in the tested ranges of strain rate and 

viscosity, for both the random mat and twill weave fabric. However, the analysis of VI process 

experimental results highlights that, in the case of the twill weave fabric, a time lag appeared 

between the resin pressure rise and the preform thickness increase, which suggests that a 

viscoelastic behavior was nevertheless present; whereas in the case of the random mat, it seems 

thus sufficient to model the preform deformation occurring during the impregnation of VI 

process with a simple time-independent constitutive law. 

1.  Introduction 

Composite manufacturing processes by Liquid Composite Molding (LCM) are closed-mold techniques 

where a liquid resin is impregnated into a dry fibrous reinforcement pre-placed in a mold. LCM 

processes offer some technical advantages such as applicability to complex part geometries, high 



 

 

 

 

 

 

structural performance and low manufacturing cost. In addition, health risks to operators due to 

styrene vapors are eliminated contrary to open-mold techniques. Vacuum Infusion (VI) process, also 

known as Vacuum Assisted Resin Infusion (VARI) or Resin Infusion under Flexible Tooling (RIFT), 

is one of LCM processes particularly suitable for the production of large composite structures. Tooling 

cost is reduced by the use of a single side mold on which the preform is laid up. A thin plastic film, 

referred to as vacuum bag, replaces the upper rigid half mold [1]. 

Due to the flexibility of the vacuum bag, the fibrous preform undergoes large deformations during 

the process. Firstly, while air is extracted from the closed cavity by a vacuum pump before the resin 

infusion, the preform is compacted by the atmospheric pressure applied on the flexible vacuum bag; 

then, once the resin valve is opened, the liquid resin impregnates the compacted dry reinforcement and 

inlet resin pressure leads to a local decompaction state of the preform during the mold filling process. 

Compaction pressure on the fibrous reinforcement gradually reduces due to fluid pressure which 

increases as the resin flows, inducing variations in fiber volume fraction and therefore in 

permeability [2]. The differential pressure between the upstream and downstream sides of the preform 

may degrade the final part quality as it gives rise to non-uniform final thickness and fiber volume 

fraction distribution [3]; whereas permeability changes make it difficult to predict process cycle 

times [4]. Thus, this strong coupling between the resin flow and the fabric deformation has to be 

properly considered in the numerical simulation of the process to improve final part quality and 

optimize process cycle time. It is however a difficult task mainly due to the complex mechanical 

behavior of the preform. Indeed, the through-thickness deformation of fabrics is affected by many 

factors such as fiber architecture, loading type and saturation state. Furthermore, available results in 

the literature do not present a consistent agreement on the presence of significant viscoelastic effects 

during the mechanical response of preforms submitted to compaction pressure. Modeling of the mold 

filling stage of VI process is therefore challenging, due to the complex characterization of the 

mechanical behavior of preform throughout the impregnation. As a matter of fact, the preform is 

decompacted during the impregnation by the resin, i.e. in wet conditions; whereas it is initially dry 

when compacted at the pre-filling stage of VI process.  

This study focuses on the factors which may influence the through-thickness behavior of the fabric 

during the VI process filling stage. Different effects on the mechanical response of the preform were 

examined, in particular during decompaction, such as the influence of strain rate, viscosity of the 

liquid resin and fabric architecture. The objective is to dispose of a more reliable characterization of 

fabrics behavior using a universal testing machine. The testing conditions may be chosen so as to 

reproduce at best the real conditions occurring during an impregnation experiment. The final purpose 

is to improve the modeling of VI process through the implementation of the most appropriate 

constitutive law for the mechanical behavior of the fabric into the numerical model. 

To this end, experimental measurements of preform compaction and decompaction were carried 

out on a universal testing machine, with different strain rates relevant to the impregnation experiments 

of VI process, for two different types of fiberglass fabrics, i.e. a random mat and a twill weave fabric, 

in a dry or wet state saturated by liquids with different viscosities. Some VI process experiments were 

performed in parallel in order to obtain the liquid pressure gradient within the fabric and the preform 

thickness profile during the mold filling stage. Fabric characterization experiments were performed in 

the same conditions as VI experiments, i.e. with the same fabric types, numbers of plies, compaction 

pressure and impregnating liquid. The liquid pressure gradient and the preform thickness profile were 

measured respectively by pressure transducers and by vertical displacement sensors, integrated into 

the mold set-up. Finally, these two data were compared to numerical results obtained with the 

previously characterized constitutive law. 

2.  Literature review 

The mechanical behavior of fabrics has already been studied by many researchers with the objective to 

better understand the physics of VI process and to improve its modeling. Several authors performed 



 

 

 

 

 

 

compaction experiments on fabrics so as to highlight the relevant factors which may influence their 

mechanical response. These main factors are listed below. 

2.1.  Fabric architecture 

Many parameters affect the reinforcement behavior such as the fabric architecture, as seen in Chen et 

al. [5]. These authors conducted compaction experiments on three types of dry fiberglass preforms 

with different architectures, i.e. continuous strand mats, plain woven materials and unidirectional 

knitted fabrics. They pointed out the major factors contributing to the compaction behavior according 

to the reinforcement architecture, such as nesting, which was particularly dominant for woven fabrics 

but negligible for continuous strand mats.  

2.2.  Influence of loading type and saturation 

The mechanical behavior of the preform is also dependent on the loading type. Correia et al. [6] 

identified different behaviors between compaction and decompaction of fiber reinforcements. 

Furthermore, they highlighted differences in fabric properties, according to whether experiments were 

carried out in dry or wet conditions. As an example, fiber friction coefficient is reduced by the 

lubrication effect in wet conditions, leading to a higher preform compaction degree at the same applied 

pressure as in dry conditions. Yenilmez and Sozer [7] reproduced and distinguished, in the same 

characterization experiment using a special set-up, fabric dry loading and fabric unloading once 

impregnated, to investigate fabric behavior during both the pre-filling and filling stages of VI process. 

Saunders et al. [8] analyzed the effect of saturation on the preform behavior, by testing three different 

resin viscosities on several woven fabrics. No significant differences were detected between the 

compaction data associated with the different resins, which indicated that the resin viscosity had 

probably no effect on the mechanical behavior of the preform in compaction. As experiments were not 

conducted for unloading cases, the conclusion cannot apply to the reinforcement mechanical behavior 

in decompaction. 

2.3.  Viscoelastic effects 

In the literature, most of researchers assumed a time-independent relationship between compaction 

pressure and local fiber volume fraction, considering an instantaneous response of the preform when 

the applied pressure varies. Some authors, though, proposed a time-dependent model displaying a 

viscoelastic constitutive behavior for the preform. Saunders et al. [9] suggested that a time-

independent relationship was only appropriate to describe the constitutive response of dry compaction 

(which does not exhibit dependence on the strain rate), and that it was not suitable in the case of wet 

hysteresis experiments which revealed viscoelasticity effects. The same authors [8-9] highlighted the 

influence of strain rate, which was proved to affect the wet plain weave compaction behavior. As the 

strain rate increased, a greater compaction pressure was needed to reach the same fiber volume 

fraction, suggesting that a part of the applied pressure was used to remove the resin. They interpreted 

that viscoelastic characteristics of wet compaction were mainly due to the resin flow and they 

developed a viscoelastic model which considered elastic and viscoelastic effects from the fiber 

preform, and also viscous effects from resin. Bickerton et al. [10] also investigated the apparent 

viscoelasticity of three dry common LCM reinforcements submitted to strain-rate dependent and 

hysteresis experiments. They observed that the stress could be generally expressed as a function of 

strain, strain rate and time, as formulated in Yenilmez et al. [11], where the authors described the 

behavior of a woven fabric during all stages of VI process by testing several viscoelastic models. 

3.  Materials and experimental procedures 

Two sets of experiments were carried out: fabric decompaction characterization experiments and 

fabric impregnation experiments by VI process. The decompaction constitutive law of the impregnated 

preform derived from the characterization experiments will serve as an input in the subsequent 

numerical model.  



 

 

 

 

 

 

3.1.  Materials  

3.1.1.  Fabrics. Two types of fiberglass fabrics with different architectures were tested:  a random mat 

and a twill weave fabric, whose main characteristics are presented in Table 1. The same number of 

plies was retained for both experiments, whatever the fabric considered. Each fabric was selected in 

such a way that both preforms display the same thickness when compacted with the same pressure of 

0.09 MPa. Therefore, their behavior in decompaction should be compared easily. 

 

Table 1. Fabric properties. 

 Random mat Twill weave 

Fabric reference Unifilo® 450 1500 S3 
Supplier Vetrotex Chomarat 
Fabric pattern Random 3/3 oblique pattern 
Fiber type E-glass E-glass 
Areal weight (g.m

-2
) 450 1500 

Average ply thickness (mm) 2.40 ± 0.08 1.80 ± 0.07 
Width and length plies for compaction test (mm x mm) 80 x 80 80 x 80 
Width and length plies for infusion test (mm x mm) 150 x 300 150 x 300 
Number of plies for both experiments 4 3 
Average thickness of dry preform compacted at 0.09 MPa 

(mm) 

2.81 ± 0.01 2.80 ± 0.08 

Average fiber volume fraction of dry preform compacted 

at 0.09 MPa 

0.24 ± 0.01 0.62 ± 0.02 

 

3.1.2.  Liquids used to impregnation of fabrics. Instead of synthetic resins classically used for VI 

process, two different mineral oils were chosen here so as to better evaluate the influence of viscosity 

on fiber lubrication and avoid resin polymerization during characterization and impregnation 

experiments: a low viscosity oil and a medium viscosity oil, whose viscosities are respectively in the 

range of 0.060-0.070 Pa.s and 0.250-0.350 Pa.s at room temperature (~ 20°C). 

3.2.  Fabric deformation characterization experiments 

Fabric deformation characterization tests were performed on a universal testing machine 

(Zwick 1474). The experimental set-up in dry conditions consisted in two compression platens 

between which the dry preform was laid. In the case of wet experiments, the set-up was completed 

with a perforated compression platen, on which the preform was laid, allowing for the outflow of 

excess oil which was collected into a receptacle placed below. Two plastic films were put above and 

below the preform in order to ensure oil flow only from the side (Figure 1). The tested preforms were 

initially impregnated ply by ply using a syringe. In all compaction test cases listed in Table 2, the same 

loading pattern was used, namely a compressive loading at the chosen strain rate until the compaction 

state under 0.09 MPa, then a waiting period of 10 min in the compacted state and finally an unloading 

step until the fully decompacted state at the same strain rate as before. Each characterization 

experiment was performed three times so as to check repeatability. 

 

 



 

 

 

 

 

 

 

Figure 1. Set-up for characterization experiments on fabrics in wet conditions. 

 

 

Table 2. Compaction experiment conditions. 

 Fabric type Saturation state Viscosity 

(Pa.s) 

Strain rate 

(mm.min
-1

) 

Compaction 1 Random mat Dry - 0.2 

Compaction 2 

Compaction 3 

Compaction 4 

Compaction 5 

Compaction 6 

Compaction 7 

Compaction 8 

Compaction 9 

Compaction 10 

Compaction 11 

Compaction 12 

Random mat 

Random mat 

Random mat 

Random mat 

Random mat 

Twill weave 

Twill weave 

Twill weave 

Twill weave 

Twill weave 

Twill weave 

Dry 

Wet 

Wet 

Wet 

Wet 

Dry 

Dry 

Wet 

Wet 

Wet 

Wet 

- 

0.300  

0.300  

0.070 

0.070 

- 

- 

0.300 

0.300 

0.070 

0.070 

1.0 

0.2 

1.0 

0.2 

1 

0.2 

1 

0.2 

1 

0.2 

1 

 

3.3.  VI process experiments 

The experimental set-up for the infusion tests is shown in Figure 2. The test bench consisted in a 

special set-up, whose bottom was a PMMA platen with five aligned holes to insert pressure 

transducers and two other holes for an oil inlet and an air outlet. The preform, composed of several 

plies (Table 1), was laid on the bottom platen. A thick distribution medium was placed between the oil 

inlet and preform, and also between the air outlet and the preform, in order to ensure a straight oil flow 

front and avoid pressure losses. The oil inlet was connected by pipes to the oil pot and the air outlet to 

a vacuum pump. Valves on the inlet and outlet pipes allowed to control the start time of the preform 

compaction and oil impregnation. A vacuum bag was laid on the preform and the mold was closed by 

a sealing tape positioned between the bottom platen and the vacuum bag. One pressure transducer 

(sensor 0) measured the oil pressure just before the tip of the preform and the other ones were placed 

respectively at 20 mm (sensor 1), 60 mm (sensor 2), 95 mm (sensor 3) and 135 mm (sensor 4) from 

the tip of the preform. Four vertical displacement sensors, supported by a metallic structure, were put 

in contact with the top surface of the mold, i.e. the vacuum bag, and were positioned at the same 

planar locations as the pressure transducers. Three VI experiments were carried out, whose 

characteristics (oil viscosity and filling time) are listed in Table 3. Both types of fabric were tested 



 

 

 

 

 

 

with the two different oils, but only the data listed in Table 3 were recorded, because the impregnation 

of random mat was too fast to obtain meaningful measurement data with the low viscosity oil. Thus, 

the twill weave fabric has been tested using both low and medium viscosity oils, whereas the random 

mat was tested only with the medium viscosity oil. For all experiments, vacuum pressure was -0.09 

MPa, which was equivalent to a compaction pressure of 0.09 MPa on the top surface of the preform. 

Vacuum was applied during 10 min so as to obtain a stable and homogenous compaction of the 

preform.  

  

 

Figure 2. Test bench of vacuum infusion experiments. 

 

 

Table 3. Vacuum infusion experiment conditions. 

 Fabric type Oil viscosity  

(Pa.s) 

Filling time  

(s) 

Infusion 1 Random mat 0.264 63 

Infusion 2 Twill weave 0.249 853 

Infusion 3 Twill weave 0.070 229 

 

4.  Results and discussion 

Owing to the non-uniformity in fiber structure of fabrics, each set of characterization experiment was 

conducted at least three times. In each case, the average value of h/hcompacted is depicted vs. the 

compaction pressure, where h is the current thickness measured instantaneously in response to the 

compaction pressure and hcompacted is the thickness of the specimen measured just before decompaction. 

Only the decompaction stage of fabrics will be studied in the sequel. 

Experimental results for random mat characterization are shown in Erreur ! Source du renvoi 

introuvable., for all values of saturation and strain rate.  All the curves present a very similar 

tendency. At strain rates of 1 mm.min
-1 

and 0.2 mm.min
-1

, the random mat shows the same 

decompaction behavior, regardless of saturation, which means that viscosity, in the considered range, 

has no significant impact on the decompaction behavior.  

 



 

 

 

 

 

 

 

Figure 3. Decompaction test results for random mat  

with strain rates of 0.2 mm.min
-1

 and 1 mm.min
-1 

for all the 

saturation cases. 

 

The same conclusion can be drawn for experimental results concerning twill weave fabric 

characterization presented in Erreur ! Source du renvoi introuvable.. No significant effect of strain 

rate or viscosity appears to affect the mechanical behavior during the decompaction of the twill weave 

fabric in the chosen ranges. 

 

 

Figure 4. Decompaction test results for twill weave fabric 

with strain rates of 0.2 mm.min
-1

 and 1 mm.min
-1 

for all the 

saturation cases. 

 

Comparison between Erreur ! Source du renvoi introuvable. and Erreur ! Source du renvoi 

introuvable. reveals however that the two fabrics (with different architectures) exhibit a different 

behavior in decompaction even if both fiberglass fabrics were unusually compacted to the same 



 

 

 

 

 

 

thickness (see Table 1). The final thickness of the specimens were 6.45 mm for random mat and 

3.65 mm for twill weave fabric at the end of the tests, which shows that fabric type architecture 

strongly influences the mechanical response in decompaction. 

The characterization of both fabrics is not affected by any change in strain rate and saturation, at 

least in the considered ranges of infusion experimental conditions. Then, the average mechanical 

behavior of random mat and twill weave fabric in decompaction can be compared with the results of 

infusion experiments, namely the thickness and pressure values measured during infusion experiments 

by sensor 1 (Figure 5 andFigure 6).   

 

 

Figure 5. Comparison between the average mechanical behavior of 

random mat specimens obtained by characterization experiments and 

the mechanical behavior of random mat measured during 

impregnation tests. 

 

For random mat, infusion experimental conditions correspond to the ranges of viscosities and strain 

rates employed during its characterization, i.e. the preform was impregnated with a medium viscosity 

oil (µ=0.264 Pa.s) and the average strain rate was 0.6 mm.min
-1

at sensor 1. The behavior of the 

preform measured at sensor 1 did not reach the fully decompacted state, due to the rapidity of oil 

impregnation into the random mat preform (the filling stage is only 63 s). However, the resin pressure 

reached the value of 0.07 MPa, equivalent to the compaction pressure of 0.2 MPa. Characterization 

results depicted in Figure 5 are consequently focused until this compaction pressure. These results 

reveal a good agreement with the decompaction behavior observed during infusion tests. Thus, a time-

independent constitutive law seems to be appropriate for random mat and may be characterized by 

simple decompaction tests in the average conditions of viscosity and strain rate observed during the 

mold filling stage of VI process. 

On the contrary, comparison between characterization tests and infusion experiments on twill 

weave fabric (Figure 6) shows strong discrepancies between both infusion tests (Infusion 2 and 

Infusion 3) and the average mechanical behavior provided by the compression testing machine. A 

constitutive law derived from characterization tests does not seem to be representative of the real 

behavior occurring during the impregnation of the twill weave fabric, even in experimental conditions 

close to infusion conditions. In addition, a higher viscosity appears to affect even more the mechanical 

behavior during infusion. As it has been shown (see Erreur ! Source du renvoi introuvable.) that 



 

 

 

 

 

 

neither the viscosity nor the strain rate in the considered ranges have any effect on the mechanical 

behavior, the differences in fabric behavior are probably induced by another phenomenon. For 

example, the long filling time, which could result in some relaxation during the filling stage, may be 

responsible for this disagreement. Thus, it is not finally relevant to consider only a time-independent 

model to represent the mechanical behavior of twill weave fabric during infusion. 

 

 

 

Figure 6. Comparison between the average mechanical behavior of 

twill weave fabric specimens obtained by characterization 

experiments and the mechanical behavior of twill weave fabric 

measured during impregnation tests. 

 

5.  Conclusion 

The comparison between two fiberglass fabric types, a random mat and a twill weave fabric, whose 

thickness is the same in dry conditions and compacted at 0.09 MPa, demonstrated that the mechanical 

behavior in decompaction is highly influenced by the fabric architecture. Characterization of the 

decompaction behavior of these two fabrics using a universal testing machine, with two strain rates 

and two different viscosities, has highlighted that strain rate and viscosity had no particular effect on 

the response of the preform in decompaction, at least in the tested ranges of strain rate and viscosity. 

To identify the constitutive law of preforms undergoing transverse deformations in VI process, it 

seems therefore not necessary to reproduce strictly the same conditions of saturation and strain rate. 

However, the comparison between these constitutive behaviors identified through characterization 

experiments and the fabric response occurring during infusion experiments shows that only the 

experiments performed on random mat appear to be representative of the real fabric behavior during 

impregnation, whereas the twill weave infusion experiments reveal some differences in terms of 

thickness, when compared to characterization experiments, which are not due to lubrication or strain 

rate effects.  

These observations were confirmed by numerical simulations, where the constitutive law of the 

average fabric behavior was implemented into a numerical model so as to simulate infusion 

experiments. Oil pressure gradient and preform thickness profile (Δh) were calculated numerically and 

compared to experimental values. These results are presented with respect to t*, which is equivalent to 



 

 

 

 

 

 

the ratio between current time and final filling time for an accurate comparison of thicknesses and 

pressures, regardless of time lag. The first case study was the impregnation of random mat (Figure 7), 

whose experimental filling time was 63 s and numerical filling time was 67 s; whereas the second case 

study was the impregnation of twill weave fabric (Figure 8), which presented an experimental filling 

time of 853 s and a numerical one of 766 s. 

 

 

 

Figure 7. Comparison between experimental and numerical results of thickness and pressure  

for random mat impregnation (µ=0.264 Pa.s) 

 

 



 

 

 

 

 

 

 

 

 
 

Figure 8. Comparison between experimental and numerical results of thickness and pressure  

for twill weave fabric impregnation (µ=0.249 Pa.s) 

 

As expected, numerical results obtained for random mat are close to corresponding experimental 

results, whereas the discrepancies observed for the twill weave fabric confirm that the constitutive law 

implemented into the numerical model is not sufficient to reproduce the real behavior of such a fabric 



 

 

 

 

 

 

during infusion. The calculated pressures of twill weave fabric are slightly lower than the experimental 

ones in particular for sensors 3 and 4, whereas sensors 1 and 2 lead to a good agreement. However, the 

analysis of experimental curves of the first two sensors highlights a time lag between the resin 

pressure rise and the preform thickness increase. It means that viscoelastic effects may occur during 

impregnation of the twill weave fabric, which are not directly due to viscosity or strain rate effects, as 

analyzed in Erreur ! Source du renvoi introuvable.. The long filling time in that case may induce 

some relaxation during the process, increasing thus the deformation of the preform. Therefore, 

considering viscoelastic effects in the numerical model could improve the prediction of the mechanical 

behavior occurring during VI process, in particular for fabrics with low permeability. 
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