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Abstract

The use of adhesively bonded joints in industrial structures requires reliable

tools for the estimation of the failure load. The necessary and sufficient condi-

tion to predict the strength of such joints involves the implementation of a

coupled stress and energetic criteria. However, its application necessitates the

identification of the stress distribution along the adhesive layer, which has

been approximated in this paper by a previously published closed‐form solu-

tion. This analysis along with finite element modelling results are compared

with experimental data issued from a double‐notched sample tested with the

Arcan fixture at various load ratios. The results show good agreement; the

use of the closed‐form solution permitted to predict the failure load more rap-

idly and in a conservative manner compared with the experimental results. The

application of the methodology is also extended to a wider range of joint geom-

etries by means of spatial interpolation using the Kriging model.
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a, crack length; a*, internal length to solve the coupled criterion; A, matrix of the semivariogram; Ainc, dimensionless parameter for energetic criterion

resolution; b, width of the Arcan substrate; B, semivariogram vector of the unknown point; E, Young modulus; Eeq, equivalent modulus for plane

strain hypothesis; F fail,, failure load of the bonded structure; Gc, critical energy released rate; GC
I , critical energy released rate in mode I; GC

II ,

critical energy released rate in mode II; Ginc, incremental energy released rate for FEA application; GSA, incremental energy released rate for

semianalytical application; h, distance between two points for Kriging estimation; h1, height of the Arcan substrate; HPlate, height of the plate for

the application section 3; kstruct, dimensionless parameter for stress criterion resolution; L, length of the Arcan substrate; L
e
, remaining bonded

length for semianalytical application; Lc, characteristic length of the bonded structure; Lnotch, notch length of the sample; Lrc, bondline length;

LSubin f, length the lower plate for the application section 3; L1plate, length the plate 1 for the application section 3; L2plate, length the plate 2 for the

application section 3; m, number of known points; Mij, moment for the sandwich model; Nij, normal force for the sandwich model; ND, normal

displacement; NF, normal force; p, height under the beak of the Arcan substrate; Pi, known points for Kriging estimation; Pu, unknown points for

Kriging estimation; ro, ratio of multiaxiality; Sc, maximum shear stress; Sp, standard error deviation; t, bondline thickness; tadh, bondline thickness

for the application section 3; text, thickness of the adherent for the application section 3; Tij, tangential force for the sandwich model; TD,

tangential displacement; TF, tangential force; W, weighting vector of the unknown point; Wi, weighting of the known points; WT, transpose vector

W; ZN, maximum normal stress; ε, strain applied to the bonded structure; εcrit, critical strain of the bonded structure; λ, Langrangian operator; ν,

Poisson ratio; oN, normal component of stress; ostruct, structural stress distribution in the adhesive layer; oT, tangential component of stress; ∑ F ,

sum of the force due to the applied strain; φ, angle of testing of the Arcan device; γ, semivariogram

1



1 | INTRODUCTION

Adhesive bonding technology presents several assets com-

pared with classical assembling solutions (eg, riveted,

bolted, and welded) such as mass reduction, modularity,

and the possibility of joining dissimilar materials. The

determination of the strength of adhesively bonded struc-

tures is difficult because of the singular stress field at the

extremities of the adhesive layer. This stress field mostly

depends on the material properties and on the geometry

of the bond.1 Some authors propose closed‐form solutions

of this stress distribution,2 which could be used to predict

the failure load. However, the applicability of these solu-

tions is often limited to uniaxial loads. It is obvious that

for the case of multiaxial loading the stress field along

the adhesive layer changes significantly, especially near

the singular points. In order to overcome this problem,

some other authors propose analytical tools based on

experimental test results.3 An example of software to facil-

itate the design of adhesively bonded structures can be

found in Dragoni et al.4 In addition, Castagnetti et al5 pro-

posed the use of finite element modelling by tied mesh

method and obtained good results for some complex

bonded structures. Some other strategies exist, such as

the point stress method,6,7 which are based on material

strength. However, they require an important amount of

experimental work to be performed. On the other hand,

energetic methods based on fracture mechanics necessi-

tate the existence of a precrack in the structure, which is

difficult to take into account during the preliminary design

phase.8 Yet, there is a lack of efficient design tools, as all

methods mentioned before are very difficult to be applied

for the case of complex geometrical bonded structures.

As it has been shown in Leguillon,9 the combination of

both stress and energetic criteria forms the necessary and

sufficient condition to predict failure of an adhesively

bonded joint. Similar techniques to predict damage initia-

tion and propagation like the cohesive zone model

(CZM)10 also exist; yet these last solutions greatly increase

the computational cost and cannot be used in a

predimensional phase. All previous methodologies con-

sider the behaviour of the adhesive as linear elastic.

Recently, the mathematic behaviour law of a ductile adhe-

sive has been integrated to describe the fracture using

CZM,11 which showed that in this case the fracture tough-

ness GC is independent of the mode ratio. In the same

study, the identification of the parameters of the constitu-

tive response of the cohesive elements has been performed

according to classical fracture mechanics tests.12

Based on the previous discussions, it is obvious that

the design of an adhesively bonded joint is a very complex

process. This process can be facilitated when identifying

the best concepts among several solutions at the

predesign phase. The minimization of the time of this

early stage in order to obtain an optimal structure is of

great industrial interest. Hence, the use here of complex

finite element modelling is inappropriate. The aim of this

paper is to propose a tool to be used at the predesign

phase of adhesive joints capable to predict the failure load

quickly. This tool should be conservative compared with

the failure load measured experimentally, capable to pre-

dict the tendency when changing the load state and/or

the thickness of the adhesive layer, etc, not limited by

uniaxial loads and applicable to a wide range geometrical

structures. In order to achieve these targets, the coupled

stress‐energetic criterion9,13,14 has been chosen. One of

the advantages of this criterion is the small experimental

campaign required in order to obtain an estimation of the

strength of the bonded joint. However, the identification

of the stress distribution along the adhesive layer is

needed. This can be achieved by means of finite element

analysis (FEA)15; yet at an increased computational time

due to the very fine mesh needed to obtain a proper eval-

uation of the stress field. Therefore, a sandwich‐type

model16,17 is used here. Although these methods have

already been published and tested before, their applicabil-

ity has been demonstrated until now only to classical

joint geometries like the single or the double lap joints.

In addition, very few data can be found in literature

concerning the comparison between experimental and

numerical predictions of the previous models.

The first section of this article presents the coupled cri-

terion and shows how it has been implemented with the

sandwich‐typemodel (semianalytical approach). An exten-

sion of the applicability of this approach to general three‐

dimensional (3D) structures is also proposed based on spa-

tial interpolation by means of the Kriging method,18which

is briefly described at the end of the second section. In the

third section, FEA and semianalytical predictions are

compared with experimental data issued from a double‐

notched sample tested with the Arcan fixture at various

load ratios (tension, shear, and tension/shear). For the case

of complex 3D structures, a parametric study would be use-

ful to identify the proper configuration. However, this kind

of study would require a huge amount of computational

points and should be repetitive. Therefore, in the last part

of the article, the application of the surrogated model to

dimension a 3D geometry of an adhesive joint using a

limited number of calculated points is illustrated.

2 | METHOD

2.1 | Coupled stress‐energetic criterion

The application of the coupled stress‐energetic criterion

requires first a condition for crack onset. For this reason,
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a quadratic criterion is used here, which mathematically

can be expressed as13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σN xð Þ
ZN

� �2

þ σT xð Þ
SC

� �2
s

≥ 1; (1)

where σN and σT are the actual normal and tangential

components of the nominal stress, respectively, ZN and

SC are their corresponding maximums, and x describes

the distance from the singular point.

In the general case where the bonded structure is sub-

mitted to biaxial loading, the stress state can be described

by Equation 2, where only the positive part 〈σN (x)〉+ of

the normal stress is taken into account; the compression

stresses are supposed to maintain the crack closed.13 The

quantity rσ defined in Equation 3 is called ratio of

multiaxiality.

σstruct xð Þ ¼ σN xð Þh iþ þ σT xð Þ (2)

rσ xð Þ ¼ σN xð Þ
σstruct xð Þ (3)

Introducing Equations 2 and 3 in (1) permits to write

σstruct xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rσ xð Þ
ZN

� �2

þ 1−rσ xð Þ
SC

� �2
s

≥ 1: (4)

In order to solve the coupled criterion, it is convenient to

introduce a dimensionless variable kstruct(x) to characterize

the stress field in the adhesive layer. Therefore, σstruct(x)

can be written as13

σstruct xð Þ ¼ kstruct xð Þ·Eeq·ε; (5)

where ε is the strain applied to the structure and

Eeq = E/(1 − v2) is an equivalent modulus of the adhesive

under plane strain hypothesis. It is obvious that the stress

criterion expressed by Equations 4 and 5 is fulfilled for an

internal length x = aσ (Figure 1A).

As it was discussed in the introduction part, the nec-

essary and sufficient condition to predict the failure of

adhesively bonded joints needs also the determination

of an energetic criterion to describe crack propagation.

It is well known from the fracture mechanics theory that

crack propagation takes place once the potential energy

introduced in a solid medium becomes grater or equal

to GC. Mathematically, for the case of adhesives, this prin-

ciple can be expressed as

Ginc að Þ ¼ −

Wp að Þ −Wp 0ð Þ
ΔS

≥ GC að Þ; (6)

where the cracked surface is denoted as ΔS, and Wp(0)

and Wp(a) are the global potential energies of the struc-

ture at the initial 0 and cracked a states, respectively. It

must be mentioned here that the crack propagation is

simulated by several linear elastic calculations for incre-

mental values of the crack length. Therefore, Ginc is used

in Equation 6 to account for the incremental strain

energy release rate. The energy criterion is fulfilled for a

certain value of the crack length a = aen (Figure 1B).

Similarly to the stress criterion, a dimensionless

parameter Ainc(a) can be introduced to describe the evo-

lution of Ginc. This parameter will also be used later on

to solve the coupled criterion. Thus, Ginc can also be

expressed as13

Ginc að Þ ¼ Ainc að Þ : Eeq
: ε2 : t ≥ GC að Þ; (7)

where t is the adhesive joint thickness.

According to Equations 5 and 7, a schematic represen-

tation of the evolutions of the stress and the energy

release rate as a function of the distance from the singular

point is shown in the following figure.

The solution of the coupled criterion assumes that

fracture initiates once both the stress and energetic crite-

rions are satisfied simultaneously for an internal length

a*. If the geometry is modelled with finite elements, a lin-

ear elastic simulation with no crack permits to calculate

kstruct(x). On the other hand, several linear elastic calcula-

tions for different values of the crack length are needed to

compute Ainc(a). At the critical point where x = a = a*,

the applied strain ε predicted by both the stress and ener-

getic criteria is also the same. Therefore, by combining

Equations 4, 5, and 7, a* is the solution of the following

equation:

FIGURE 1 Evolutions of A, the stress

and B, the energy release rate as a

function of the distance from the singular

point, showing also the characteristic

value of the internal length where each of

the criterions are fulfilled [Colour figure

can be viewed at wileyonlinelibrary.com]
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LC a*
� �

t
¼ Ainc a*

� �

kstruct a*ð Þ½ �2
; (8)

where LC a*
� �

¼ Eeq
: GC a*

� � rσ a*ð Þ
ZN

� �2

þ 1−rσ a*ð Þ
SC

� �2:

" #
:

The quantity LC has length units and can be consid-

ered as a characteristic length of the joint. Finally, after

reading in the finite element model the sum of the forces

applied on the structure∑F , the failure load F fail. is sim-

ply computed by means of the equation below9,15:

F fail: ¼ ∑ F : εcrit; (9)

where εcrit is the critical strain computed from either the

stress or the energetic criterions at x = a = a*.

2.2 | Implementation of the coupled
criterion

In the present work, two ways of implementing the

coupled criterion are examined. The first method makes

use of the FEA as described in Leguillon9 and Carrere

et al13 and the second one of an analytical model in

order to minimize the computational cost. The analytical

model chosen here is the sandwich‐type model initially

developed by Bigwood and Cromcombe16 and modified

later on by Weißgraeber et al,17 where the stresses and

strains in the substrates are described according to the

first order shear deformation theory. The section forces

required in this closed‐form solution are evaluated from

the global structure as shown in Figure 2. The extremi-

ties of the joint are named with i,j indexes, where

i = 1 corresponds to the upper and i = 2 to the lower

adherent; the second index j denotes the left (j = 1)

and right (j = 2) sides of the joint. In Figure 2C, Nij,

Tij, and Mij represent the normal, tangential, and bend-

ing moment components of the sections forces,

respectively.

Once the section forces are measured from a poorly

meshed FEA model as shown in Figure 2, the stress distri-

bution inside the adhesive and at the adhesive/substrate

interface is determined according to the analytical model

of Weißgraeber.17 Afterwards, the stress‐based criterion is

applied as discussed in Section 2.1. However, the applica-

tion of the energy‐based criterion with the semianalytical

approach is more complicated. First, the crack propaga-

tion is considered as equivalent to a reduction of the

bonded length, as presented in Figure 3.

The stress distribution is given by the sandwich‐type

model17,19 for the remaining bonded length denoted as

eL ¼ Lrc − a. Based on the maximum values of the normal

and shear stresses (σmax and τmax, respectively) extracted

for eL , the energy release rate GSA(a) is computed accord-

ing to the following equation14,20:

GSA að Þ ¼ t

2Ea

: σmax
2 þ t

2Ga

: τmax
2
; (10)

where Ea and Ga represent the Young's and Shear modu-

lus of the adhesive, respectively. Then, Ginc(a) is

FIGURE 2 Schematization of the semianalytical approach from A, the global three‐dimensional (3D) structure, B, reduced to a two‐

dimensional (2D) finite element analysis (FEA) model, and C, extraction of the section forces to use with the Weißgraeber17 model

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Simulation of the crack propagation with the

semianalytical approach [Colour figure can be viewed at

wileyonlinelibrary.com]
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calculated by integrating GSA(a) along the considered

crack length a as shown in Equation 11, and the dimen-

sionless coefficient Ainc(a) can be extracted by means of

Equation 7 as explained before in Section 2.1.

Ginc að Þ ¼ 1

a
∫
a

0

GSA að Þda; 0 ≤ a ≤ a* (11)

It must be mentioned here that the FEA method can give

access to the evolution of the mode ratio during crack

propagation.13 However, this is not possible with the

semianalytical approach; in this case, the mode ratio is

supposed constant. Therefore, in Equation 7, GC að Þ ¼ GC
I

or GC
II (the fracture toughness under pure mode I or II

load, respectively) according to the loading and crack

propagation modes.

2.3 | Surrogated model

As it was discussed in Section 1, in case of complex 3D

joint geometries, the consideration of the influence of

certain parameters (eg, length and/or width of the adhe-

sive layer, thickness of the adhesive and/or the sub-

strates, etc) in the failure load of the structure is

indispensable during the design phase, mainly when

performing optimization loops. This would require a

parametric study and the methodology previously pre-

sented would have to be applied for a huge amount of

points. It is obvious that this is impossible to realize in

an industrial environment. In such cases, it is compulsory

to estimate the behaviour of the overall structure using a

limited number of known points.18,21 This can be

achieved by means of spatial interpolation using an

appropriate statistical tool. In the present paper, the

Kriging model22 is chosen, and it will be briefly presented

in this section.

Let f be the mathematic image of an entire response

surface constructed by Pi (i = 1 to m) points lying on

the x‐y plane (Pi = (x, y)). The main idea is to estimate

the form of the function f on a certain number of points

Pu (Pu ≠ Pi) from the known values of f in Pi, using the

following equation:

f Puð Þ ¼ ∑
m

i¼1

W i· f Pið Þ: (12)

Therefore, the problem consists of determining the appro-

priate weight values Wi on each of the environmental

points Pi. According to the Kriging method, these values

of Wi are chosen based on the distance of the points Pi
from the point Pu where f is to be defined, as it is

explained in Bachoc.23 At first, the semivariogram γ(h)

is calculated, which in its general form for a number of

points n(h) separated by a distance h = |xi − yi| can be

expressed by the following equation:

γ hð Þ ¼ 1

2·n hð Þ ∑
n hð Þ

i¼1

xi−yið Þ2: (12)

Adjusting an analytical function for γ(h) by means of the

least squares method permits to completely characterize

the semivariance as a function of the distance between

the environmental points. The correct choice of this func-

tion is the key issue of the Kriging method. An extended

discussion on the different types of variogrammes and of

their behaviour can be found in other studies.23,24

The last step consists of calculating the weights Wi of

Equation 12. Here, several solutions can be found in liter-

ature; for the needs of the present study, the most com-

mon one called ordinary Kriging is used.23 According to

ordinary Kriging, the set of weights Wi should guarantee

that the value of the estimated function of the

semivariogram calculated using the target point Pu will

rely on the curve defined in the previous step by means

of the least squares method. In Equation 13, the m

semivariances associated at each one of the m known

points Pi are represented by the lines of matrix A; these

values are computed based on the distance between these

points. The lines of vector B correspond to the values of

the semivariogram at the target point Pu, which are calcu-

lated by means of the analytical function of γ. Therefore,

the set of weights Wi is the solution of a system of m + 1

linear equations with m + 1 unknown variables,23 which

can be solved simply by inversing matrix A. In order to

obtain a non‐biassed solution, the sum of the weights

Wi has to be equal to 1. This adds a supplementary degree

of freedom in the problem, which is taken into account

by means of the Langrangian operator λ in the last line

of vector W in Equation 13, and is used to minimize the

error of the solution.23

A·W ¼ B;

where A ¼

γ h11ð Þ γ h12ð Þ

γ h21ð Þ γ h22ð Þ

⋯ γ h1mð Þ 1

⋯ γ h2mð Þ 1

⋮ ⋮

γ hm1ð Þ γ hm2ð Þ

1 1

⋱ ⋮ ⋮

⋯ γ hmmð Þ 1

⋯ 1 0

2
666666664

3
777777775

;

W ¼

W 1

W 2

⋮

Wm

λ

2
6666664

3
7777775
and B ¼

γ h1uð Þ
γ h2uð Þ

⋮

γ hmuð Þ

1

2
6666664

3
7777775

:

(13)
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The Kriging method can also provide the variance of

the estimation. This is described by the squared standard

error deviation Sp at each one of the computed points of

the response surface, which can be obtained by means

of Equation 14. Therefore, the probability that the real

solution is in the confidence interval of f (Pu) ± Sp is

68%, at f (Pu) ± 2Sp is 95%, etc, (see Bachoc23):

S2p ¼ WT
:B: (14)

The aim is to compute the response surface by only using

a few points in the range of the studied parameter.

According to other studies,18,25 the implementation of

the Kriging method is composed of four stages described

in the following list:

• Stage 1: Normalization of the studied parameter

range, in order to obtain a set of values in the [−1,

+1] interval. This step, is only used to make parame-

ters discretization easier. In the end, this normalized

range is converted to the real parameter range;

• Stage 2: Realization of a number of computations to

determine the model response on a certain number

of points. These calculations are inevitable; yet,

regarding the computational cost, this stage is the

most expensive one.

• Stage 3: Interpolation according to the Kriging

method on a certain number of points where the

response of the model is unknown, in order to obtain

the response surface;

• Stage 4: Estimation of the reliability of the response

surface obtained in stage 3, by computing the stan-

dard error deviation of the solution using Equation 14.

3 | APPLICATIONS

3.1 | Experimental validation on a
double‐notched specimen

3.1.1 | Materials and bonding procedure

In order to test the methodology previously presented,

a bi‐component adhesive (Loctite Hysol EA 9395 commer-

cialized by Henkel) was preferred due to its strong fragile

behaviour.26,27 This is essential since the coupled criterion

does not take into account material non‐linearity, which is

very pronounced for the case of ductile adhesives. The

resin and the crosslinking agent were mixed at a ratio of

100:17 g, as also recommended in the datasheet of the

adhesive, by means of a speed‐mixer machine (DAC

150.1 FV‐K) in order to obtain a homogenous mixture.

The adherents were made from 2017A aluminium alloy;

they were cleaned prior to bonding by immersion into

pure 99% acetone for 2 hours and then dried in an oven

at 120°C for 1 hour. The surfaces of the substrates to be

bonded were prepared mechanically by grinding with

SiC paper (grade 180). Any final remaining due to this pro-

cedure were simply wiped off by means of pure 99% ace-

tone. The thickness of the joint was set at 0.4 mm. The

adhesive was applied on both substrates manually with a

spatula at ambient conditions (20°C and 50% of relative

humidity). In order to guarantee proper alignment and

good repeatability of the thickness at a tolerance of

±0.05 mm, a special system similar to the one shown pre-

viously in Badulescu et al28 was used to perform the bond.

The assembled specimens were cured at 76°C for

90 minutes. The experiments were performed using a uni-

versal tensile machine. The samples were tested under dis-

placement control, at a loading rate of 0.5 mm/min also at

ambient conditions (20°C and 50% of relative humidity).

Table 1 shows the mechanical properties of the adherents

and the adhesive; the failure stresses ZN and SC are esti-

mated from the average failure stresses.28,29

3.1.2 | Arcan device

The experiments were performed by means of the modi-

fied Arcan fixture,30 which was chosen due to its ability

to generate different load states on the adhesive layer as

it will be explained below. Figure 4A shows the geometry

of the substrates (see Table 2); the holes were drilled in

order to facilitate the mounting of the specimen on the

Arcan device. The presence of beaks strongly reduces

stress concentration at the front and back sides of the

joint.30,31 Therefore, crack initiation and propagation is

expected to occur from the extremities of the adhesive

layer. A schematization of the final geometry of the bonded

specimen is given later on in Figure 6. A general overview

of the modified Arcan set‐up that was used to perform the

tests with a specimen fixed on it, is given in Figure 4B. The

TABLE 1 Mechanical properties of the adherents and the adhesive

Modulus, GPa Poisson Ratio GC Mode I, J/m2 GC Mode II, J/m2
ZN, MPa SC, MPa

Hysol© EA 9395 5.0 0.35 191.0 ± 7.2

(Jumel et al26)

130 < GC < 275

(Salem et al27)

26.1 ± 4.3 46.7 ± 8.2

Aluminium 2017 70.0 0.33 / / / /

/, Gc mode I, II and the parameter Zn and Sc are not used for the aluminium adherent.

6



connection with the tensile machine is achieved via the

loading pins. According to Figure 4B, the x‐axis points

towards the direction of the adhesive layer and the y‐axis

towards the out‐of‐plane direction. Hence, the modified

Arcan fixture permits to vary the angle φ between the y‐

axis and the loading axis from 0° (pure out‐of‐plane ten-

sion) to 90° (pure in‐plane shear) and 135° (combined

out‐of‐plane compression/in‐plane shear), with a step of

22.5°. As it was previously discussed, in the method of

implementation of the coupled criterion that was adopted

in the present study, only tensile and shear loads are con-

sidered to allow crack propagation. Therefore, three values

of the angle φ were tested: 0°, 45°, and 90°.

3.1.3 | Double‐notched sample

The Arcan substrates that are used to identify the behav-

iour law of an adhesive have a special geometry to reduce

the edge effects (beaks30 in Figure 5). However, as it was

previously discussed, adhesively bonded structures used

in industry strongly suffer from stress concentrations at

the extremities of the joint. In addition, the application of

the coupled criterion requires a stress singular point to

simulate crack initiation and propagation. Therefore, dur-

ing the preparation of the Arcan specimens, two notches of

5 mm of length were created at each one of the extremities

of the joint, thus resulting to the so called double‐notched

specimen (DNS) geometry. A schematic representation of

the DNS geometry is given in the following figure.

Three tests per each phase angle (0°, 45°, and 90°)

were performed. The measured force‐displacement curves

are presented in Figure 6. The normal force (NF) vs the

normal displacement (ND) is plotted at 0°; at 90°, the tan-

gential force (TF) vs the tangential displacement (TD) is

shown. The normal and tangential directions are named

with respect to the adhesive layer. It is obvious that for

the case of 45°, the NF and TF components used in the

graphs correspond to the experimentally measured force

multiplied by
ffiffi
2

p .
2
. At all phase angles, the components

of the displacement were determined by digital image

correlation using the Aramis GOM 4M system, which

allows to measure the relative displacement between the

two substrates close to the adhesive layer. The results

show that the adhesive has a brittle behaviour at 0°, with

the breaking force being slightly above 10 kN. Similar

behaviour for both the normal and the tangential compo-

nents of the displacement has also been measured at 45°,

with the failure load being slightly below 10 kN. The

FIGURE 4 Modified Arcan device: A,

Geometry of the substrates. B, General

overview of the set‐up with the mounted

specimen [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 2 Characteristic dimensions of the substrates

Dimension, mm

L 50

h1 15

b 9.5

p 0.2

FIGURE 5 Double‐notched sample

[Colour figure can be viewed at

wileyonlinelibrary.com]
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shear test puts in evidence a non‐linear behaviour of the

adhesive joint; the force at rupture was measured here

between 15 and 25 kN.

3.2 | Numerical

The experimental values of the NF as a function of TF at

failure for the 3 phase angles tested are plotted in

Figure 9. The predictions of the failure load by means of

the coupled criterion applied with finite elements and

with the semianalytical approach are also added in the

graph. All results are presented using the mean

value ± the standard deviation.

Looking at the results in Figure 7, it can be concluded

that the FEA predictions are in good agreement with

the experimental measurements. Concerning the

semianalytical approach, the estimation of the failure

load is conservative compared with the experimental

data; this difference could be partially attributed to the

mode ratio which is supposed constant in this case as it

was discussed in Section 2.2. It is obvious that this is

not true for the total duration of each test. For instance,

low levelled mode II and mode I components of the load

are also introduced during the tensile and shear tests,

respectively, due to the deformation of the substrates;

these components cannot be taken into account with

the semianalytical approach. In addition, the stress

distribution along the adhesive layer obtained from the

closed‐form model presents a high difference with the

one obtained by FEA. An example is given in Figure 8

for the case of 0° phase angle: the normal stress

FIGURE 6 Force/displacement curves at (A) 0°, (B) 90°, (C) 45°, NF vs ND, and (D) 45°, TF vs TD. ND, normal displacement; NF, normal

force; TD, tangential displacement; TF, tangential force

FIGURE 7 Comparison of the experimental failure load and the

numerical prediction. FEA, finite element analysis; NF, normal

force; TF, tangential force [Colour figure can be viewed at

wileyonlinelibrary.com]
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distribution given by the sandwich‐type model of

Weißgraeber17 compared with FEA is overestimated at

the extremities and underestimated at the centre of the

bond line, for both the middle of the adhesive layer thick-

ness and the adhesive/substrate interface (Figure 8A,C,

respectively). On the other hand, the tangential stress

predicted by the Weißgraeber model17 is zero for the

two previous cases (Figure 8B,D), which is not the case

at the two extremities of the adhesive layer when examin-

ing the tangential stress field given by the FEA model at

the interface of the joint (Figure 8D). Besides these differ-

ences, the conservative predictions of the semianalytical

approach show the reliability of the use of this methodol-

ogy in the predimensional phase of adhesively bonded

structures. In addition, the tendency in the evolution of

the failure load is also respected, as it is shown by the

graph in Figure 7. It must be mentioned here that the

semianalytical approach reduced the computational cost

by a ratio of 750 compared with the FEA model as it is

presented in Figure 9. This is due to the fact that in this

case no fine mesh is required around the singular area

and/or along the thickness of the adhesive layer (as also

discussed in the previous sessions).

Even though the aim of the paper is to propose a tool

based on a closed‐form solution to estimate the failure load

of adhesively bonded joints in order to avoid numerical

modelling of the structure, it is convenient here to make

a brief discussion on the influence of the mesh size in

the predictions of the failure load of the coupled criterion

when FEA is used. Therefore, Figure 10A,B presents the

evolutions of the failure load and the internal length a*,

respectively, as a function of the number of elements along

the adhesive layer thickness, calculated after application

of the coupled criterion by means of FEA for the 0° phase

angle. The graphs show a clear influence of the mesh size:

FIGURE 9 Comparison of the computational cost between finite

element analysis (FEA) and semianalytical approach [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 8 Stress distribution along the adhesive layer for the DNS Arcan specimen loaded at 0°: A and B, Mid‐thickness of the bond line.

C and D, Adhesive/substrate interface [Colour figure can be viewed at wileyonlinelibrary.com]
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a* converges to 1.78 mm after using 20 elements or more.

On the other hand, the failure load converges to the value

of 10.35 kN for a number of elements equal to 40 or higher.

It must be mentioned here that the response of the coupled

criterion by means of numerical modelling of the bonded

structure has been the subject of other research teams

too in the past, mainly for the case of the single lap joint

(SLJ) geometry.13,14,32,33 The authors in Carrere et al13

and Moradi et al32 recommended 40 elements along the

adhesive thickness in order for convergence to be

achieved. Similar conclusions were observed when also

studying the SLJ in the present research too, which are

not presented here in order to avoid unnecessary repeti-

tions. Therefore, according to all these results, 40 elements

were used along the adhesive layer thickness for the FEA

of the Arcan tests to predict the failure load at all the phase

angles examined experimentally in this study.

3.3 | Response surface of the failure load
of a bonded structure

Design is an iterative process; each loop tends to converge

towards the final configuration. The previous section pre-

sented a solution able to decrease the computational cost

for a single loop. As presented for the DNS sample, an

asymptotic stress field due to the edge effects exists at

the extremities of the bond line. However, the global

geometry of the structure can also have an impact on

the stress distribution (see Table 3). Therefore, a paramet-

ric study is compulsory to determine the best configura-

tion. This section presents a method to build efficiently

a response surface by means of spatial interpolation using

the Kriging model.18

A bonded plateau representative of an industrial

application has been chosen for the demonstration

(Figure 11). Both adherents are supposed of aluminium

alloy, and the upper part of the structure is submitted to

a unit load along the y‐direction. The influence of the

thickness of the upper adherent (text) and of the bonded

length (Lrc) on the failure load of this assembly have been

investigated (Table 3).

For a certain number of points in the range area of the

studied parameters, the section forces are estimated on a

poorly mesh FEA model of the bonded structure (as

discussed in the previous sessions), and the failure load

is determined with the same methodology as described

above for DNS Arcan specimen. The results obtained

with this method are represented with the black spots in

Figure 12, and the response surface is estimated accord-

ing to the Kriging method (coloured surface, Figure 12A).

The error associated to the response surface is pre-

sented in Figure 12B. The maximal error is observed at

the (red) area where the density of calculated points is

the lowest. It is obvious that the quality of the response

surface is directly related to the number of the starting

(black) points. In order to justify the amount of calculated

points used to construct the response surface, several

techniques can be found in literature.24 The best solution

would be to calculate all the points of the response sur-

face and compare with the Kriging method predictions.

However, this requires a huge amount of computations

to be performed. Another solution would be to calculate

FIGURE 10 Influence of the mesh size on A, the failure load and B, the internal length determined by the coupled criterion after

numerical modelling of an Arcan specimen loaded at 0° [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Characteristic values of the dimensions of the bonded

plateau

Dimension, mm

L1Plate 50

L2Plate 50

LSub_inf 15

HPlate 15

tadh 15

text 5‐10

Lrc 9‐25
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some additional starting points, build a new response sur-

face and compare with the previous one. Unfortunately,

the computational cost of this second solution is also very

high. Therefore, the strategy chosen in this study is the

Leave‐and‐Out method34 (Figure 13). Basically, the first

response surface is obtained with a certain number of

starting points; then a second one is obtained with a

reduced amount of starting points. The interpolated

values (response surfaces) are compared and the process

is repeated until the error of the estimation is minimized.

Figure 14 shows the comparison between the computed

(starting) points obtained from the coupled stress‐energy

criterion and those obtained from the spatial interpola-

tion when using the Leave‐and‐Out method. It is obvious

that by increasing the number of points involved in the

identification process, the spatial correlation error will

decrease. However, in terms of the computational cost,

the Leave‐and‐Out techniques provide information on

the quality of the interpolation.

The interpolated surface tends to overestimate the low

failure load values and underestimate the higher ones

(see Figure 14B,C), which is difficult to observe for a

low amount of starting points (Figure 14A). In addition,

by increasing the amount of starting points the response

surface adjusts well with the computed points (as

expected). In the present case, the target is to obtain the

optimal values for the thickness text and the length Lrc
(Figure 11; Table 3), in order for the bonded structure

to have the best resistance to the external load. Looking

at Figure 14, the response surface obtained from the 20

FIGURE 12 A, Response surface obtained with Kriging method. B, The associated error [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 13 Illustration of the Leave‐

and‐Out technique34 to assess the

reliability of the interpolated response

surface [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 11 Schematization of the bonded structure and simplification in two‐dimensional (2D) in order to perform the optimization loop.

FEA, finite element analysis [Colour figure can be viewed at wileyonlinelibrary.com]
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starting points is expected to have the most reliable

results. According to the response surface, the best result

for the bonded joint of Figure 11 has been obtained for

Lrc = 25 mm and text = 5 mm. This type of application

of the Kriging method is interesting for the predesign

phase of adhesively bonded structures, since it reduces

considerably the computational time of the virtual design

loops required to obtain the optimal solution.

4 | CONCLUSIONS AND
PERSPECTIVES

In this paper, a strategy to predict the strength of an adhe-

sively bonded structure is proposed. The methodology

uses intrinsic values for the properties of the adhesive

such as the failure stress and the fracture toughness under

pure mode I and II loads. These properties are inserted in

a coupled stress—energetic criterion, which forms the

necessary and sufficient condition to predict the strength

of an adhesive joint. Crack onset is based on the predic-

tions of a quadratic stress criterion. Crack propagation is

modelled according to the Linear Elastic fracture mechan-

ics theory. Failure occurs once both the stress and ener-

getic criterions are fulfilled at a certain distance from

the singular point called internal length. In order to avoid

very fine meshes and reduce the computational cost, a

previously published closed‐form solution is used to rep-

resent the asymptotic stress field along the adhesive layer.

The predictions of the failure load of this semianalytical

approach were found conservative compared with the

experimental results and the finite element calculations

for the case of a double‐notched Arcan specimen at all

load ratios examined. In addition, the tendency of the evo-

lution of the failure load as a function of the mode ratio

could also be described. Moreover, it has been shown that

the semianalytical approach reduced the computation

time by a factor of 750 compared with FEA. The applica-

tion of the methodology has also been extended to 3D

structures by means of spatial interpolation using the

Kriging model. Finally, an optimization method for the

critical geometric quantities of an adhesively bonded

structure is proposed, based on the quality of the interpo-

lation as calculated by the Leave‐and‐Out technique. All

these solutions should be useful for researchers and/or

engineers at the predesign phase of adhesive joints.

As a first perspective to the current work, it can be

mentioned the prediction and comparison with experi-

mental data of the failure loads of adhesive joints submit-

ted to complex load states (combinations of tension,

shear, torsion, and compression loads). Furthermore, the

validity of the strategy presented here should also be

extended for ductile (eg, crush‐optimized) adhesives too,

by taking into account their non‐linear behaviour. In addi-

tion, it is of great interest to examine the applicability of the

methodology on axisymmetric (eg, tubular) joints, since

such types of geometries are more and more used in real

industrial applications. Finally, it would be also important

to look at the possibility of taking into account the friction

between the crack faces when under pure shear load, as

this has been identified in the past as one of the main

sources for higher mode II fracture energies. Some of these

aspects are currently being under investigation.
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