
HAL Id: hal-02003732
https://ensta-bretagne.hal.science/hal-02003732v1

Submitted on 28 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric calibration of very large microphone arrays in
mismatched free field

Charles Vanwynsberghe, Pascal Challande, François Ollivier, Jacques
Marchal, Régis Marchiano

To cite this version:
Charles Vanwynsberghe, Pascal Challande, François Ollivier, Jacques Marchal, Régis Marchiano. Ge-
ometric calibration of very large microphone arrays in mismatched free field. Journal of the Acoustical
Society of America, 2019, 145 (1), pp.215-227. �10.1121/1.5083829�. �hal-02003732�

https://ensta-bretagne.hal.science/hal-02003732v1
https://hal.archives-ouvertes.fr


Geometric calibration of very large microphone arrays in mismatched Free Field

Charles Vanwynsberghe,1 Pascal Challande,2 François Ollivier,2 Jacques Marchal,2 and

Régis Marchiano2

1)Lab-STICC UMR 6285, CNRS, ENSTA Bretagne, 2 rue François Verny, 29200 Brest,
Francea
2Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, 4 place Jussieu,
75005 Paris, France

Large microphone arrays are an efficient means for source localization thanks to a wide
aperture and a great number of sensors. When such arrays are deployed in situ, accurate
geometric calibration becomes essential to obtain the microphone positions. In free field,
the classic procedures rely onmeasured Times OfArrival (TOA) or TimeDifferences of Ar-
rival (TDOA) between the microphones and several controlled sources. However free field
model mismatches, such as reflectors, generate outliers which severely deteriorate the po-
sitioning accuracy. This paper introduces a unified framework for robust calibration using
TOA or TDOA, by exploiting an outlier-aware noise model. Thanks to the largeness of the
array, the existing outliers are sparse and can be identified by a Lasso regression. From this,
three iterative robust solversa are proposed: (i) for TOA by Robust Multi Dimensional Un-
folding, a particular variation of Robust Multi Dimensional Scaling (ii) for TDOA by data
predenoising based on sparse and low-rank matrix decomposition, and (iii) for TDOA by
jointly identifying the outliers and the geometry. The relevance of outlier-aware approaches
is asserted by numerical and experimental tests. Compared with the baseline least-square
approaches, the proposed robust solvers significantly improve the positioning accuracy in
a free field mismatched by reflectors.

Copyright 2019 Acoustical Society of America. This article may be downloaded for personal use only.
Any other use requires prior permission of the author and the Acoustical Society of America. The following
article appeared in The Journal of the Acoustical Society of America 145, 215 and may be found at https:
//asa.scitation.org/doi/full/10.1121/1.5083829.

a Python code available online at https://github.com/cvanwynsberghe.
a)charles.vanwynsberghe@ensta-bretagne.fr
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I. INTRODUCTION

Amicrophone array is a classical tool to solve a source localization problem. The latter consists
in finding the origin and amplitude of the sources which produce the measured sound field. In ad-
dition to conclusions from antenna theory (Williams, 1999), it is experimentally well-known that
increasing both the aperture (Sachar et al., 2001) and the number of microphones (Weinstein et al.,
2007) improve the global performances of localization. Thanks to the outcome of microphones
based on the technology called Microelectromechanical Systems (MEMS), developing a large mi-
crophone array with several hundreds of microphones becomes easier and low-cost compared with
older technologies (Hafizovic et al., 2012; Koyano et al., 2016; Vanwynsberghe et al., 2015). At
the same time, original multichannel processing methods anticipate and rely on the use of a great
number of sensors: three examples are dereverberation (Chardon et al., 2015), source separation
(FitzGerald et al., 2016) and monitoring (Lai et al., 2013). However for most applications, the po-
sition of the sensors must be known with a sufficient accuracy (Chen et al., 2015; Himawan et al.,
2008).

If a large array is to be deployed in situ, the use of conventional measurement methods (eg with
a laser-based system), to identify the array shape would imply a process all the more tedious as
the number of sensors increases or the array extends. Since our purpose is to deploy hundreds of
microphones over tens of meters, an efficient alternative process is required that should be fast and
easy to implement. The process described in the paper answers these needs. It requires a limited
number of acoustic experiments and provides the precise overall geometry of very large arrays.

Positioning sensors classically relies on the measurement of Time of Arrivals (TOA) or Time
Differences of Arrival (TDOA). Both have been used for the geometric calibration of microphone
arrays in Free Field. Performing this inverse problem needs to find both sensor and source positions.
An overall review of geometric calibration was done in (Plinge et al., 2016), and a more specific
one on T(D)OA approaches by Wang et al. (Wang et al., 2016, tab. 1). The strategy to choose
depends on the available setup:

• the sources are known and synchronously recorded with the microphones. This setup is the
most convenient and allows to measure TOAs by cross correlation between source and sensor
signals;

• the hardware or setup prohibits the synchronous access to source signals. Thus, only cross
correlations between microphone signals are available, which give access to TDOAs.
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In both cases, the geometric inversion can be written as a non-linear problem in the least square
form. It is solvable by an iterative algorithm (Gaubitch et al., 2013; Hennecke and Fink, 2011;
Ono et al., 2009), with the risk of a convergence in a local minimum depending on the initial guess
of the geometry. To overcome this drawback, an explicit closed-form solution can be computed
(Crocco et al., 2012; Le et al., 2016), with certain specific conditions on the setup to be respected.

A. Related works

In free field experiments, the literature exhibits several in situ validations with a great number
of microphones, by TOA (from 128 (Khanal et al., 2013) up to 448 (Sachar et al., 2005)) or TDOA
(121 (Le et al., 2016)). All of them evidence that the estimation accuracy increases as the number
of sensors and sources increases. At first sight, these approaches fit naturally well for an application
to very large arrays.

A Free Field model is generally an oversimplified assumption to describe real environments.
It is mismatched by the presence of diffusors, refractors, and more importantly reflectors such as
walls, ceiling and floor. Thus a multi-path propagation from source to sensors exists, and affects
T(D)OA measurements that supposedly determines the direct path. If the measured path includes
one or more reflections, it can lead to a strongly biased value of T(D)OA from the measured cross
correlations (Perrodin et al., 2012), as it is depicted in figure 1. In the present context, we define
the measured T(D)OA as an outlier if it comes from a multipath rather than the direct propagation
to the sensors. However, a straightforward least-square approach of geometric calibration intrinsi-
cally supposes that noise follows a normal distribution (Hennecke and Fink, 2011), so it is highly
sensitive to outlying observations.

To alleviate this limitation, several solutions propose to bring robustness by RANdom SAmple
Consensus (RANSAC) (Batstone et al., 2016; Burgess et al., 2015; Hennecke et al., 2009; Zhayida
et al., 2014). It identifies inliers by an iterative scheme:

1. one subset of observations is randomly selected. Since the geometric inversion by T(D)OA
is easily overdetermined with a sufficient number of sources and sensors, it still remains
solvable with a subset of minimal cardinality. A first estimation of positions is given by a
closed-form solution;

2. second, the unselected observations are iteratively included in the subset if they fit well with
the estimated model from step 1. In the end we obtain the consensus set corresponding to
inliers of the first estimation.
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Steps 1 and 2 are repeated several times, and the preferred solution corresponds to the one with
the consensus set of highest cardinality. Despite this method being efficient, it is based on a ran-
dom subset sampling. The probability to obtain a consensus without outlier is a function of the
number of trials (steps 1 and 2), the number of outliers, and the cardinality of the dataset (Fischler
and Bolles, 1981); it converges to 1 with an infinity of iterations. Consequently, the RANSAC
complexity increases as the number of sensors to locate is great.

B. Our contribution

This paper proposes a computationally efficient method to tackle robustness with very large
arrays. As mentioned previously, RANSAC has no upper bound on the number of iterations which
fully guarantees a geometric calibration without outlier. Rather, we propose to replace the inlier
subset selection based on random sampling, by an identification of the outliers amplitudes through
a convex optimization.

To do so, the key point is to rely on an outlier-aware noise model, and suppose that the out-
lying subset is sparse. The related error amplitudes are considered as a second unknown matrix
to be estimated, jointly with positions. Then a simple alternating optimization procedure can suc-
cessively (a) compute the position matrix based on observations exempt from outlying errors, and
(b) estimate the error amplitude matrix from the residuals, with a shrinkage operation enforcing
sparsity. Pioneer studies on outlier-aware procedure were applied for robust linear regression (She
and Owen, 2012), rank reduction by Robust Principal Component Analysis (RPCA) (Candès et al.,
2011), and interesting variants of low-rank and sparse decomposition of matrices applied to video
processing (Bouwmans et al., 2017). It was used in Robust MultiDimensional Scaling (RMDS),
in order to retrieve point positions from spurious distances between these points (Forero and Gi-
annakis, 2012). RMDS has been applied to the geometric calibration of large microphone arrays
(Vanwynsberghe et al., 2016). Indeed, in diffuse field the measure of coherence gives access to
pairwise distance between microphones. However mismatch on diffuseness occurs in reverberant
rooms: below the Schroeder cutoff frequency, the diffuse model becomes no more valid because
the density of room modes is too weak (Taghizadeh et al., 2014). Mismatch leads to outliers in
observed distances (Taghizadeh et al., 2015; Vanwynsberghe et al., 2016), and need to be removed
through an automatic process to obtain the array geometry. That study evidenced the efficiency of
an outlier-aware approach dedicated to large arrays. The present paper extends this previous work,
and focuses on the case of a mismatched free field. In this way, the two papers together aim at
proposing a unified outlier-aware framework of geometric calibration. Because of the alternating
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minimization scheme, the solvers are iterative, and require an initialization with a first guess of the
array geometry to reconstruct.

This paper is organized as follows. First, section II defines the problem and notations. Section
III deals with the TOA problem as a specific case of MDS called MultiDimensional Unfolding
(MDU) (DokmaniÄĞ et al., 2015), in which only distances from source to sensor points are known;
as a result the Robust MDU (RMDU) is proposed, and derived from RMDS (Forero and Giannakis,
2012). Section IV focuses on TDOA calibration, where two strategies are considered. The first one
(sec. IVA) relies on a low-rank and sparse decomposition of noisy TDOA observations (Velasco
et al., 2016). Then the low-rank part is the denoised data, which can be used with any TDOA
calibration method from the state of the art. The second strategy (sec. IVB) proposes a joint
iterative estimation of positions and outlier matrices; to our knowledge no such algorithm has been
proposed in the literature. In section V, the robustness of the proposed methods are analyzed
through Monte Carlo simulations, and compared to least-square baseline methods. Finally, section
V presents a real experiment with a large-aperture array of 256 microphones. The results validate
the interest of the proposed robust algorithms, and outperform iterative least-square methods in
presence of free field model mismatches. The code for all the described algorithms is available
online at https://github.com/cvanwynsberghe.

II. PROBLEM SETUP

A. Notations and setup

We consider the geometric problem in a 3-dimensional space. The array is made of M mi-
crophones, whose coordinates are given by the vectors x1, x2, ..., xM , or by the matrix X =
[

x1, ..., xM
]

∈ ℝ3×M . One at a time, I fixed sources successively produce a signal at positions
s1, s2, ..., sI , also written with the matrix S =

[

s1, ..., sI
]

∈ ℝ3×I . Finally let dim = ‖si − xm‖ the
distance between the i-th source and the m-th microphone.

Notational convention throughout the paper uses lower (upper) bold letters for column vectors

(matrices). .T is the transposition operator, ‖.‖F the Frobenius norm, and [.|.] (resp.
⎡

⎢

⎢

⎢

⎣

.

.

⎤

⎥

⎥

⎥

⎦

) is hor-

izontal (resp. vertical) matrix concatenation. Ã refers to the estimation of the matrix A obtained
by a solver. Finally, diag(v) denotes the diagonal matrix whose diagonal is the vector v, and 1M×N

(0M×N ) theM ×N matrix filled with ones (zeros).
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FIG. 1. The measured cross correlation reveals the direct (green) and indirect (orange) paths, the ground
being the significant reflector in the field. The peaks (red dot) appearing at indirect paths are a source of
outliers. Data from experiment in sec. VI. (a) TOA case; (b) TDOA case. (Color online)

B. Use of cross correlation and impact of reflectors

The measured TOAs are denoted �im which is the argument of the maximum peak of the cross
correlation between source i and sensor m. In order to reduce the impact of reverberation, the
Generalized Cross Correlation (GCC) is favored. It is a weighted inverse Fourier transform of the
cross spectral density Cim, that is:

rPHAT(�) = ∫
ℝ

	 (f )Cim(f ) e |2�f� df (1)

where	 is a weighting function. One usual choice is the PHAse Tranformwindow (PHAT) (Knapp
and Carter, 1976): it whitens the amplitude to preserve an identical contribution of all the compo-
nents of the signal spectrum, ie 	 (f ) = 1

|

|

Cim(f )||
. If the minimal and maximal frequencies of the

emitted source are known, 	 (f ) should equal 0 outside the interval, otherwise incoherent noise
contributes as much as the reference signal, and degrades SNR. Experiment shows that a chirp is
an efficient choice for geometric calibration, thanks to its high signal to noise rate (Khanal et al.,
2013; Sachar et al., 2005). Note that the TDOAs obtained from the i-th source emission (denoted
�imn) are measured in the same fashion, by replacing Cim with the cross spectral density between
sensors Cmn in GCC-PHAT formula (1).
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Fig. 1 illustrates a result from real data, provided from the experiments described in sec. V.
Here the path from the ground reflection appears in TOAs as a second delayed peak (orange) 2 ms
after the direct path (green). If the second peak has the highest amplitude it leads to an outlying
observation, with 68 cm of bias. The same situation appears with TDOA measurements. However
false detection is not trivial since 4 path combinations exist with one reflector. In Fig. 1b, the peak
corresponding to the direct path is the second one, yet the order depends on the relative positions
of sensors and reflector. Moreover, the dataset cardinality is a function ofM : MI for {�im} set,
andM(M − 1)I∕2 ≈M2I∕2 for {�imn}. So with a very large array with hundreds of sensors, the
amount of data grows so fast that it makes visual checking unrealistic, even with TOAs.

III. OUTLIER-AWARE TOA GEOMETRIC CALIBRATION

In a least square approach, estimating the microphone positions is done by minimizing the resid-
ual between the observations �im and a theoretical TOA:

(X̃, S̃) = argmin
X,S

I
∑

i=1

M
∑

m=1
[�im − tim(X,S)]2 (2)

where tim is the modeled TOA between microphone m and source i

tim(X,S) =
dim
c0

=
‖si − xm‖

c0
, (3)

and c0 is the known constant sound speed. Although X̃ is the estimation of interest, problem (2)
also computes S̃ since sensors are located in relation to the sources. This least square approach
corresponds to the maximum likelihood with observations modeled as �im = tim + �im (Biswas
and Thrun, 2004). Kuang et al showed that the TOA calibration problem in three dimensions is
well-defined if I ≥ 4, M ≥ 4 and I +M ≥ 10 (Kuang et al., 2013), so with a very large array
the problem is widely overdetermined. In this paper, the algorithm from Khanal et al. (Khanal
et al., 2013) is chosen as the iterative baseline method. It is, to our knowledge, the only iterative
approach experimentally validated with large arrays.

A. Robust Multi Dimensional Unfolding: a specfic case of RMDS

The maximum likelihood problem (2) is sensitive to outliers because of the chosen noise model.
Indeed, normal distribution rather characterizes small and homogeneous amplitudes of noise. Typ-
ically, it is consistent to depict errors due to the finite sampling of cross correlations, which approx-
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imates the values of �im as multiples of the sampling period. But errors with large amplitude due
to reflections, as depicted in sec II B, severely exceed the extent of the chosen normal distribution.

Rather, the noise model is extended with a supplementary term:

�im = tim + �im + oim (4)

where oim has an arbitrary amplitude so that it can absorb the outlying errors. Let O ∈ ℝI×M

be the matrix with elements oim. This matrix is unknown, but is sparse if the number of outlying
observations is much smaller than IM . In this way, the whole problem can be rewritten as

(X̃, S̃, Õ) = argmin
X,S,O

fTOA(X,S,O) (5)

with
fTOA(X,S,O) =

I
∑

i=1

M
∑

m=1
[�im − tim(X,S) − oim]2 + �‖O‖1

=
I
∑

i=1

M
∑

m=1
[�im − tim(X,S) − oim]2 + �

I
∑

i=1

M
∑

m=1
|oim|

(6)

and � a regularization parameter. This cost function is a combination of

• the term of residuals between observed and estimated values, discarded from errors oim. Thus
it consistently comes back to a least square approach exempt from outliers;

• a regularized term of l1-norm on matrix O that promotes its sparsity. Ideally the sparsest
representation is obtained by a constraint with a l0 norm on O, which refers the number
of nonzero elements in the matrix. But it involves a combinatorial problem, making the
algorithm intractable in high dimension. Rather, a representation with l1-norm leads to a
closest convex relaxation replacing the l0-norm, which still preserves sparsity but making
problem solvable in polynomial time. For more details, see (Zhang et al., 2015, sec. III).
Convex relaxation on O written in the form as equation (6) is called Lasso.

Problem (5) can be seen as a specific case of MDS since c0�im are distances, linking points from
the source subset to the sensor subset, but inner distances from each subset are unknown. This case
is known as MDU, see (DokmaniÄĞ et al., 2015, fig. 4). An outlier-aware MDS was proposed in
(Forero and Giannakis, 2012) with the same structure as problem (5). Based on this effort, the next
section proposes the Robust MDU (RMDU), suitable for TOA geometric calibration.
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B. Update rules and algorithm

Forero et al propose to minimize the non-linear cost function fTOA by alternating minimiza-
tion (Forero and Giannakis, 2012), so that updates on O and (X,S) are independent. It relies
on the Majorization-Minimization (MM) technique. The update sequence proves to make a non-
increasing residual fTOA(X(k),S(k),O(k)) as iteration k increases (Forero and Giannakis, 2012). MM
relies on the minimization of a surrogate function which approximates fTOA and holds 3 proper-
ties: (a) it majors fTOA, (b) it is tangent to fTOA at the current iteration point (X(k),S(k),O(k)), and
(c) it is quadratic as a function of parameters to update. Point (c) makes MM particularly easy
to implement in the algorithm since the updates correspond to the condition where the surrogate
derivatives are null. For thorough details on MM procedure, see (Sun et al., 2017). The expression
of the surrogate in the general case is derived in (Forero and Giannakis, 2012). Here, the resulting
update rules for the RMDU case at iteration k are described so as to obtain (X(k+1),S(k+1),O(k+1)).

The first step solves the sparse problem nested in a formulation named Least Absolute Shrinkage
and Selection Operator (Lasso) (Tibshirani, 1996). As shown in equation (6) fTOA can be split as
a sum of the IM Lasso subproblems argminoim(�im − tim(X(k),S(k)) − oim)2 + �|oim|. As shown in
(Zibulevsky and Elad, 2010), the minimizer of these subproblems are given by a proximal operation
called soft-thresholding on the elements (�im−tim(X(k),S(k)). Thus, the first updateO(k+1) is achieved
element-wise as:

o(k+1)im = S�
(

�im − tim(X(k),S(k))
) (7)

where element-wise operator S� shrinks all the components ofO with amplitude smaller than �∕2
by

�(u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u − �∕2 for u > �∕2
0 for u ∈ [−�∕2; �∕2]

u + �∕2 for u < −�∕2

(8)

As expected, a stronger regularization (� increasing) favors a higher sparsity of O(k+1).
The update of the geometric variables is done simultaneously, and for convenience we define

Z ∈ ℝ3×(M+I) that contains all unknown positions asZ = [X|S]. In this way,Z(k+1) is the minimizer
of the quadratic surrogate function from the MM procedure in RMDS. Demonstrated in (Forero
and Giannakis, 2012), it writes:

Z(k+1) = Z(k)L1(O(k+1),Z(k))L† (9)
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TABLE I. RMDU for Robust TOA geometric calibration

Require: {�im}, Z(0) =
[

X(0)
|S(0)

], �, �
for k = 0, 1, 2,… do

Compute O(k+1) via eq. (7)
Compute Z(k+1) =

[

X(k+1)
|S(k+1)

] via eqs. (9)-(12)
if ‖X(k+1)−X(k)

‖F
‖X(k)

‖F
< � then

break
end if

end for

return (X̃, S̃, Õ) = (X(k+1),S(k+1),O(k+1))

This relation is closely related to the Guttman transform used in Smacof (de Leeuw andMair, 2009)
for regular MDS. To adapt this update for the MDU case, one should consider fTOA as the initial
RMDS cost function associated to Z, weighted such that the inner distances from the source and
sensor subsets are discarded (ie to 0), keeping only the distances linking the two subsets (weighted
to 1). In this case, matrix L1(O,Z) writes

L1(O,Z) = diag

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

A(O,Z)T1I×1

A(O,Z)1M×1

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

+

⎡

⎢

⎢

⎢

⎣

0M×M A(O,Z)T

A(O,Z) 0I×I

⎤

⎥

⎥

⎥

⎦

(10)

with A(O,Z) ∈ ℝI×M the matrix filled with entries
[A(O,Z=[X|S])]im =

�im − oim
tim(X,S)

if �im > oim and tim(X,S) > 0

= 0 otherwise
(11)

Finally, L† is the Moore-Penrose pseudo inverse of the (M + I) × (M + I) matrix L :

L =
M
∑

m=1

I
∑

i=1
(em − eM+i)(em − eM+i)T (12)

with en ∈ ℝ(M+I)×1 the column vector filled with 1 at n-th element, and zeros elsewhere.
RMDU is summarized in algorithm I. Since it is iterative, it needs a first guess of the geom-

etry matrices (X(0),S(0)
). The choice of this initial condition has an important impact due to the

numerous local minima in fTOA. Sensitivity to first guess was studied for classic MDS in (Borg
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and Mair, 2017), and will be analyzed for RMDU by simulations in section V. Finally, algorithm I
iterates until a sufficient convergence of the solution. Since the sensor positions are the unknowns
of interest, the convergence criterion computes the relative difference between the two last updates
of X, and the algorithm stops when this criterion goes below the threshold �.

IV. OUTLIER-AWARE TDOA GEOMETRIC CALIBRATION

This section deals with the second feasible approach of microphone localization. The experi-
mental conditions are supposed to be identical to those in the previous section, except that only the
signals from microphones are known. In practice, such an approach becomes interesting when the
signal feeding the sources cannot be synchronously measured together with the sensor signals. In
this way any source of opportunity from the ambient sound, such as people speeches or a wireless
speakers, can be used (Zhayida et al., 2014).

Let timn be the theoretical TDOA between microphones m and n related to source i:

timn(X,S) = tim(X,S) − tin(X,S) (13)
=

‖si − xm‖ − ‖si − xn‖
c0

(14)

This relation is true for a phased array. With asynchronous arrays, internal delays exist on each
channel, and addM extra unknowns. In the state of the art, authors generally consider ad hoc (ie
asynchronous) arrays (Gaubitch et al., 2013), but it is out of the scope of the present paper. As it
becomes a fundamental hypothesis for the next proposed method, this paper focuses only on very
large phased arrays, with no internal delays.

Similar to the formulation in equation (2), the least-square problem of TDOA geometric writes

(X̃, S̃) = argmin
X,S

I
∑

i=1

M
∑

m,n=1
[�inm − tinm(X,S)]2 (15)

In order to bring robustness, the two proposed calibration methods commonly rely on the same
outlier-aware noise model of TDOA, in a same fashion as equation (4). Indeed, it writes:

�inm = tinm(X,S) + �inm + oinm (16)

where �inm follows a centered distribution with a small standard deviation, and oinm denotes the
unknown outlier term of high amplitude.
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A. First approach: TDOA predenoising based on rank constraint

In this section, we propose a first approach which runs through two steps:

1. the measured TDOA set {�imn} is processed through a predenoising algorithm in order to
discard outliers. As a matter of fact, we will see that denoising occurs on each of the I
subsets related to each calibration source: {�1mn},… , {�imn},… , {�Imn};

2. second step solves geometric calibration with any state of the art algorithm, since identifica-
tion of outliers and of geometry are separated.

For the i-th measured subset {�imn} the noise model from equation (16) is rewritten in the matrix
form:

 i = Ti + Ei +Oi (17)

whose entries are [ i]mn = �imn, [Ti]mn = timn, [Ei]mn = �imn and [Oi]mn = oimn. These four
matrices belong to the set of M × M skew-symmetric hollow matrices, noted AM

ℎ . Velasco et
al. demonstrated that the model from equation (17) leads to a structured decomposition (Velasco
et al., 2016). Indeed,Oi is a sparse matrix and Ti is such that rank(Ti) = 2. With a large array, it is
low-rank sinceM ≫ 2. Note that, at this stage, the hypothesis of synchronous channels is crucial
to guarantee this theoretical rank.

Note that the Robust Component Analysis (RPCA) exploits the similar low-rank + sparse struc-
ture of a matrix: although the resolution algorithms are different (Bouwmans and Zahzah, 2014;
Candès et al., 2011; Huang et al., 2012), RPCA is used to recover a low-rank matrix Ti from data
 i as it is done with regular PCA. Yet it is still efficient if a sparse matrix noise Oi is inherently
added in the data measurement.

In the present case, finding the decomposition is obtained by the following program:

(T̃i, Õi) = argmin
Ti∈AMℎ ,Oi∈AMℎ

‖

‖

Ti +Oi −  i
‖

‖

2
F

s.t. ‖Oi‖0 < 2K and rank(Ti) = 2
(18)

where K is the sparsity of Oi such that 2K ≪ M2. Generally RPCA aims at finding an approxi-
mation of  i in a reduced dimension, with no accurate knowledge of the rank value. Conversely,
it is given in the problem (18) as a known constraint. Zhou et al. (Zhou and Tao, 2011) show that
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a solution is given by alternated projections, minimizing problem (18) splits into two steps:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

T(k+1)
i = argmin

Ti∈AMℎ

‖

‖

‖

Ti +O(k)
i −  i

‖

‖

‖

2

F
s.t. rank(Ti) = 2

O(k+1)
i = argmin

Oi∈AMℎ

‖

‖

‖

T(k+1)
i +Oi −  i

‖

‖

‖

2

F
s.t.‖Oi‖0 < 2K

(19)

If a projection onto the subset of TDOAs matrices exists (giving T(k+1)
i update), then the alternated

projection framework given in (Lewis and Schreier, 2013) converges to a local minimum (Zhou
and Tao, 2011). Velasco et al. (Velasco et al., 2016) prove that the first low-rank update is given
by:

T(k+1)
i =

(

 i −O(k)
i

)

1M×M + 1M×M

(

 i −O(k)
i

)

M
(20)

Afterwards O(k+1)
i is computed by projection onto the 2K-sparse matrix manifold:

O(k+1)
i = 2K

(

 i − T(k+1)
i

)

(21)

2K(A) being the hard-thresholding operator such that:

[

2K(A)
]

mn =

⎧

⎪

⎨

⎪

⎩

[A]mn for the 2K entries in A with highest amplitude
0 elsewhere

(22)

This update is also proposed in the TDOA denoising algorithm by Velasco et al. (Velasco et al.,
2016). Thus, it needs a careful choice of the cardinality K for each of the I outlier matrices Oi.
However K is difficult to guess in practice: it directly depends on the reflectors in the experiment
field – eg their number, position and impedance. Moreover, a measured matrix  i contains the
residual noise Ei in all entries. So for any value K , hard-thresholding on O(k)

i always results in a
matrix with 2K non-null entries at convergence. Indeed, if K is higher than the optimal value, the
noise entries in Ei with the highest amplitude leak into Oi, as revealed by Zhou et al (Zhou and
Tao, 2013). Consequently it becomes difficult to make a good empirical choice of this parameter
with real data.
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1. Relaxation and update rules

Rather, based on (Zhou and Tao, 2013) we propose to transform the problem (18) with a cardi-
nality constraint by a relaxation using l1-norm penalty:

(T̃i, Õi) = argmin
Ti∈AMℎ ,Oi∈AMℎ

‖

‖

Ti +Oi −  i
‖

‖

2
F + �‖Oi‖1

s.t. rank(Ti) = 2
(23)

so the cost function is reduced to a Lasso problem with rank constraint. The key point is to change
the proximal mapping onto the sparse matrix set, by using � (soft-thresholding) rather than 2K

(hard-thresholding). Indeed, parameter � sets the amplitude bound between residuals and outlying
errors. It automatically sets the K-sparsity of Oi, and thus prevents leakage from Ei. Besides,
tuning � is easier than K in practice, since it can be empirically determined, eg with a L-curve
(Vanwynsberghe et al., 2016). This modification results in a new update of O(k+1)

i

o(k+1)imn = �
(

�imn − t
(k+1)
imn

)

(24)

with � as defined in equation (8). Note that this relaxed program does not change the low-rank
update T(k+1)

i , given by equation (20).

2. Final algorithm

Predenoising requires to run algorithm II for each of the I matrices  i. The denoised estimations
T̃i are then stacked together, and form a set of IM2 values, which can be the input to any known
TDOA geometric calibration. The overall approach is summarized in algorithm III. Although that
point seems appealing, the whole approach consists of a processing chain with I + 1 independent
algorithms. Besides, a good empirical choice of regularization in predenoising would require the
tuning of I parameters �. It may become a tedious task with a lot of calibration sources, even
though we experimentally notice that one choice of � for all remains efficient – cf sec. V.

It evidences the interest of proposing a unified approach. To that end, the next section proposes
the second outlier-aware TDOA calibration procedure, by jointly estimating the outliers and geom-
etry in one go: rather than chaining I +1 algorithms which separately give the matrices Õi and X̃,
we will see that one algorithm can nest all estimations in a unique alternating minimization.
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TABLE II. TDOA denoising by matrix decomposition

Require: �, �, Initialize O(0)
i to zero and T(0)

i =  i

for k = 0, 1, 2,… do

Compute T(k+1)
i via (20)

Compute O(k+1)
i by soft-thresholding via (24)

if ‖T(k+1)
i −T(k)

i ‖

2
F

‖T(k)
i ‖

2
F

< � then

break
end if

end for

return (T̃i, Õi) = (T(k+1)
i ,O(k+1)

i )

TABLE III. TDOA geometric calibration – first approach

Require:  1,… ,  i,… ,  I

for i = 1,… , I do

Apply algorithm II with input  i, and get T̃i
end for

With denoised input T̃1… , T̃I , apply one TDOA geometric calibration
return X̃

B. Second approach: identifying geometry and outliers at the same time

In this section, the problem formulation is inspired by RMDU: it puts the three unknowns
(X,S,O) into the same cost function. Like equation (6) we write a Lasso problem fitting with
the model (16) as:

(X̃, S̃, Õ) = argmin
X,S,O

fTDOA(X,S,O) (25)
where

fTDOA(X,S,O) =
I
∑

i=1

M
∑

m,n=1
[�inm − tinm(X,S) − oinm]2 + �

I
∑

i=1

M
∑

m,n=1
|oinm| (26)

and O becomes a tensor that contains all TDOAs matrices: O =
[

O1,… ,Oi,… ,OI
]. Unlike

previous section, all the outliers are included in the same cost function. Hence the sparsity structure
of tensor O is jointly controlled through one same regularization.
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As in (Forero and Giannakis, 2012), function fTDOA can be iteratively minimized by splitting in
two sub-problems:

(X(k+1),S(k+1)) = argmin
X,S

fTDOA(X(k),S(k),O(k)) (27)
O(k+1) = argmin

O
fTDOA(X(k+1),S(k+1),O(k)) (28)

In this way, deriving the updates becomes simpler: the first step of one iteration minimizes the
least-square term in fTDOA through an MM approach. Such updates have been derived by Ono et
al. (Ono et al., 2009) for the least-square case without outlier noise model. Based on their solution,
we now start to solve each of the two sub-problems (27) and (28).

1. Update rules

We recall that the MM technique minimizes the non-convex function fTDOA by iteratively build-
ing a quadratic substitute function gTDOA. It should follow 3 properties: (a) majoring fTDOA, ie
gTDOA ≥ fTDOA, (b) being tangent to fTDOA at the current point (X(k),S(k),O(k)), (c) being quadratic
for all geometric vectors xm and si. Ono et al. show that surrogate

gTDOA(X,S,�, �, e) =
I
∑

i=1

M
∑

m,n=1
‖si − xm − eim�imn‖2 + ‖si − xn − ein�imn‖2 (29)

matches conditions (a), (b) and (c). The auxiliary tensors �, � respectively contain variables �imn,
�imn, and e contain vectors eim and ein. The tangency condition (b) holds if these three tensors are
such that:

eim =
s(k)i − x(k)m
‖s(k)i − x(k)m ‖

, ein =
s(k)i − x(k)n
‖s(k)i − x(k)n ‖

(30)

and
�imn = ‖s(k)i − x(k)m ‖ +

c0
2
�imn , �imn = ‖s(k)i − x(k)n ‖ −

c0
2
�imn (31)

where �imn denotes the residual term in function fTDOA, at indexes (i, m, n) of the sum. At the k-th
iteration it writes:

�imn = �imn − timn(X(k),S(k)) − o(k)imn (32)

At this stage, this term is augmented with oinm to hold the majoring property (a) of the surrogate.
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Finally, finding the minimum of gTDOA is trivial since the quadratic function is minimal where
all partial derivatives )gTDOA

)xn
and )gTDOA

)si
vanish. Then it can be proved that:

x(k+1)n = 1
I

(

I
∑

i=1
s(k)i − 1

M
ein

M
∑

m=1
�imn

)

(33)

s(k+1)i = 1
M

(

M
∑

m=1
x(k)m + 1

M
eim

M
∑

n=1
�imn

)

(34)

These updates are used to obtain the pair (X(k+1),S(k+1)). Lastly, the second stage is the solution
of the Lasso sub-problem, and is obtained via a soft-thresholding of the difference between the
measured and theoretical TDOAs

o(k+1)imn = S�
(

�imn − timn(X(k+1),S(k+1))
) (35)

as it was employed in the previous proposed algorithms.

2. Final algorithm

The update sequence is described in algorithm IV named R-Ono. At each iteration the cost
function is non-increasing since

fTDOA(X(k),S(k),O(k)) = gTDOA(X(k),S(k),�, �, e) (36)
≥ gTDOA(X(k+1),S(k+1),�, �, e) (37)
≥ fTDOA(X(k+1),S(k+1),O(k)) (38)
≥ fTDOA(X(k+1),S(k+1),O(k+1)) (39)

where (37) and (39) respectively hold because of (27) and (28); steps (36) and (38) remain valid
because of the tangency and majorization of fTDOA by surrogate gTDOA. Given the fact that the
sequence of values fTDOA(X(k),S(k),O(k)) is non-increasing, and that fTDOA is bounded below, the
cost function value guarantees to converge. For further proofs of the convergence of the sequence of
updates (X(k),S(k),O(k)), see (Sun et al., 2017, sec II). For consistency, we keep the same stopping
criterion as used previously, by analyzing convergence of the estimation X̃.

As a result, one may conceive R-Ono as an augmentation of method in (Ono et al., 2009) with
the noise model (17), in the same way as RMDS (Forero and Giannakis, 2012) augments Smacof
(de Leeuw and Mair, 2009). Indeed, by discarding all oimn variables, R-Ono boils down to the
original algorithm.
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TABLE IV. approach 2 (R-Ono): proposed robust geometric calibration by TDOA

Require:
{

�inm
}, X(0), S(0), �, �

Initialize tensor O(0) = 0I×M×M

for k = 0, 1, 2,… do

Compute auxiliary tensors e, �, � via eqs. (30)-(32)
Update X(k+1) via eq. (33)
Update S(k+1) via eq. (34)
Update O(k+1) via eq. (35)
if ‖X(k+1)−X(k)

‖

2
F

‖X(k+1)
‖

2
F

< � then

break
end if

end for

return (X̃, S̃, Õ) = (X(k+1),S(k+1),O(k+1))

V. NUMERICAL VALIDATION OF PROPOSED METHODS

This first experimental study investigates the validity and limitations of the 3 proposed methods.
Two baseline methods are chosen for the comparative study: FrSM (Khanal et al., 2013) for TOA,
and Ono (Ono et al., 2009) for TDOA. Two aspects are considered. First performance is assessed
for different quantities of outliers in the data. Second, because of the iterative nature of all the
algorithms, the impact of inaccurate first guess (X(0),S(0)) is analyzed to evaluate the sensitivity to
local minima.

A. Monte-Carlo simulation

We consider the geometrical setup given in Fig. 4b with I = 24 sources andM = 256 sensors,
from which the theoretical T(D)OAs are calculated. The dataset is successively contaminated by
0, 1, 3, 5, 8 and 11% of outliers. They are generated by computing the path reflected by the ground.
The initial guesses (X(0),S(0)) are calculated by summing a random error to ground truth positions.
This error follows a centered normal distribution of standard deviation going from 0 to 1 m, with
a 10 cm step.
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A Monte Carlo (MC) experiment is achieved by simulating 500 realizations per configuration.
Each realization generates a new set of contaminated data: for TOAs, we randomly pick (i, m)
index pairs from reflected path. Likewise, (i, m, n) are randomly chosen for TDOAs but reflection
combinations potentially lead to 3 spurious peaks – cf. Fig. 1b. Again, we randomly draw �imn
from one of these 3 feasible values.

Finally, although the complexity of the TDOA algorithms (IM2) remains tractable for one
process, we need to reduceM to 64 for theMC simulation. One every four microphones is selected
to keep the large aperture. The algorithm parameters are the following: the convergence criterion
is similar for all methods, and is set at � = 10−6; the FrSM gradient step is � = 1.0; the soft
regularization parameter is fixed at � = 6 × 10−5 s for RDMU, and � = 1.2 × 10−5 s for the two
TDOA methods (predenoising and R-Ono).

B. Results

The efficiency is analyzed by estimating the error between X̃ and the ground truth. The methods
only determine the relative positions of the microphones and sources, so an optimal rotation and
translation are first calculated to align the estimated geometry upon the ground truth one. The
optimal transformation is obtained by solving the so called Orthogonal Procrustes problem (Gower
and Dijksterhuis, 2004, chap. 4), thanks to the Kabsch algorithm (Kabsch, 1976).

In Fig. 2, the averages of each 500MC series are plotted according to the initial guess error (gray
scale) and outlier density. It reveals a particular difference in the initial guess between the TOA
and TDOA families. Indeed, its impact is negligible on FrSM but significantly appears in RMDU
beyond 60 cm of standard deviation error. However the impact from spurious data in FrSM is
clearly prominent since the calibration error regularly increases up to 34 cm with 11 % of outliers
in TOAs. On the other hand, the TDOAsmethods show a significant disparity, thus minimization is
particularly sensitive to the non-convexity of cost function fTDOA, with or without the outlier-aware
noise model. Still, for standard deviations smaller than 40 cm in Fig. 2b, the calibration errors are
also notably reduced with robust methods. With 11 % of outliers, the baseline algorithm obtains
5.9 cm of calibration error, whereas predenoising and R-Ono respectively reach 1.6 cm and 1.8 cm.

In order to analyze the homogeneity in robustness, MC results are plotted with boxplots in Fig.
3. They still show the calibration errors, but only as a function of the number of outliers. To focus
on tendencies due to the effect of spurious measurements, each boxplot contains the 2000 tests
with the initial guess errors between 10 and 40 cm. For TOA, comparing FrSM and RMDU in Fig.
3a evidences a higher dispersion of RMDU. The presence of calibration errors beyond whiskers
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FIG. 2. Monte-Carlo simulations: average calibration error on X̃ on 500 realizations for each bar. 0-11%
of outliers simulated from ground reflection with the geometry setup in Fig. 4b. Standard deviation error
on initial guess (X(0),S(0)) goes from 0 to 1 m (gray scale). (a) TOA methods; (b) TDOA methods. (Color
online)

("+" signs) shows that the robust approach sometimes fail to identify spurious data. Compared
to 2000 realizations, such situation is seldom below 3% of outliers, but becomes more and more
significant above. At 11%, the greatest error reaches 5.3 cm, nevertheless note that the worst cases
with RMDU remain inferior to the best case with FrSM. As a result, RMDU is always the more
efficient approach.

For TDOA in Fig. 3b, the trends also depict the constant increase of error with the pure least-
square minimization (Ono baseline), up to 5.9 cm for 11 %. Conversely, the two proposed outlier-
aware methods keep a stable performance whatever the percentage is: with a predenoising the
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FIG. 3. Monte-Carlo simulations: boxplots of calibration errors on X̃. 0-11% of outliers simulated from
ground reflection with the geometry setup in Fig. 4b. Green arrows indicates the average, black mid-box
segments the median, and blue box contains second and third quartiles. Whiskers represent the extreme
quartiles, but their maximal size is thresholded to 1.5 times the related box size; realizations beyond this
threshold are plotted with + sign. (a) TOA methods; (b) TDOA methods. Each box-and-whisker contains
2000 realizations, with error on initial guess going from 10 to 40 cm. (Color online)

average on 2000 realizations (green arrow) is 1.6 cm, slightly under the 1.8 cm average with R-
Ono.

Globally, the numerical experiments reveal clear trends. First, TDOA approaches are more sen-
sitive to the initial condition than TOA ones, so it should be considered depending on the reliability
of the first guess. For that reason, one should favor the TOA approach if it is feasible in practice.
Second, the MC simulation statistically validates the robustness of the three proposed methods
(RMDU, predenoising and R-Ono), since all outperform the least-square iterative approaches. In
spite of initial guess sensitivity, TDOA methods prove to keep more steady than TOA one when
the number of spurious data varies.

VI. RESULTS IN A REAL EXPERIMENT

This section compares all the proposed geometric calibration algorithms in a real experiment
with a very large array of microphones. To do so, a phased array of 256 MEMS microphones is
set up outside, as shown in Fig. 4. It uses the Megamicros acquisition system whose hardware
is described in (Vanwynsberghe et al., 2015). This outdoor experiment initially aims at achieving
vehicle pass-by tests by use of acoustic imaging (Leiba et al., 2017). Due to the different vehicle
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(a)
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4.5 m

19.6 m
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FIG. 4. Experimental setup: Megamicros microphone array with 256 elements. (a) view of the outdoor
experiment field; (b) geometry layout: microphones (black) and sources (orange) . (Color online)

sizes and speeds, the microphones are distributed on 19.6m×2.25m. Here the test track is assumed
to be the most intrusive reflector.

One after the other, each of the 24 sources successively emit an exponential chirp signal from
150 Hz to 12 kHz during 10 s. Depicted in Fig. 4b, their positions surround the array but also
vary in height from 20 cm to 2.3 m so that it spans the 3D space. Both sources and microphones
signal are synchronously acquired by the Megamicros system. GCC-PHATs are computed from
time series sampled at 50 kHz. The cross power densities are obtained by the Welch method with
blocks of 10240 samples, ie by averaging 48 blocks of 0.2 s. Examples of GCC-PHATs in this
experiment are given in Fig. 1, and evidence erroneous estimated T(D)OAs because of the ground
reflections.

The three outlier-aware calibration methods are similarly regularized by the soft parameter �;
the latter is empirically chosen by the L-curve ‖O‖0(�). The procedure is thoroughly described
in (Vanwynsberghe et al., 2016, sec.v-C.) for the LRMDS algorithm, in a geometric calibration in
diffuse field. For the present experiment, the L-curves are plotted in Fig. 5, and the chosen value
is located at the knee. As depicted, we select � = 8.83 × 10−5 s (↔ 3.0 cm for c0 = 340 m.s−1) for
TOA (RMDU), and � = 7.6 × 10−4 s (↔ 26 cm) for TDOA (predenoising & R-Ono).
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FIG. 5. Geometric calibration in the real experiment: choice of the regularization parameter � by L-curve,
for (a) RMDU with TOAs and (b) R-Ono with TDOAs. (Color online)

The array consists of 32 bars of 8 microphones, fixed on a rectangular frame. The structure
extent is such that inherent playmakes the knowledge of ground truthX unfeasible with amillimeter
accuracy. However the relative positions of the 8 microphones on each bar are precisely known.
As a matter of fact, we evaluate the calibration error by a Procrustes analysis per bar. That is, m-th
error �m = ‖xm − x̃m‖ is computed after aligning the corresponding microphone’s bar upon the
theoretical geometry. The Kabsch method (Kabsch, 1976) is classically used to align shapes in the
Procrustes analysis.

The performances of the methods are compared in Fig. 6. The 256 errors �m are plotted by a
histogram, with the root mean square error (RMSE) in red and the mean average error (MAE) in
green. First it reveals that the outlier-aware model enables to outperform the baseline methods. It
reduces the MAE from 4.8 cm to 1.4 cm in the TOA approach. The error decreases as well with
the TDOA methods, going from 5.5 cm to 4.8 cm (predenoising) and 3.1 cm (R-Ono). Unlike MC
experiments, R-Ono seems more efficient than TDOA denoising. Beyond the average performance
indicated by the MAE metric, the RMSE as well as the histogram bars unveil a significant error
variance from the baseline methods, whereas RMDU shows the best result, followed by R-Ono.

Globally TOA approaches outperform TDOA ones here. According to MC simulations, both
are mainly differentiated by their sensitivity to accuracy on initial positions (X(0),S(0)). To our
knowledge, that cause justifies the difference of accuracy, and makes RMDU the most efficient
method.

Consequently the three proposed methods improve the estimation in this real experiment. The
results reveal the importance of using a robust approach of geometric calibration. Indeed, one
may suggest that the Free Field hypothesis in this outdoor place is mainly mismatched by ground
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FIG. 6. A comparison of all algorithms for the geometric calibration of 256 microphones with 24 sources
in situ (cf. Fig. 4). Histogram of 256 errors per microphone between ground truth and estimated positions.
(Color online)

reflection – and also because of the array structure. Still, in this relatively convenient setting,
baseline methods rapidly seem inappropriate for very large arrays.

VII. CONCLUSION

This paper deals with the two geometric calibration approaches based on cross correlation: by
TOA or TDOA. It focuses on the well-known limit of Free Field assumption. A real environment
induces different mismatches like diffraction, and more importantly reflections from stiff surfaces.
The latter generates outliers in measured T(D)OAs, thus estimating microphone positions becomes
challenging. Indeed experiments show that baseline methods fail to retrieve the geometry of large
arrays, ie with a great number of sensors and a large aperture.

To tackle robustness, we explore a unified outlier-aware approach by an extended noise model,
and integrate it to design 3 iterative algorithms: one for TOA and two for TDOA. The sparsity
assumption of strongly biased T(D)OAs regularizes problems by Lasso. The solution results in
finding both unknowns: geometry and outlier amplitudes. Simulated and real experiments validate
the efficiency of the proposed methods, since the estimated microphone positions are significantly
more accurate compared with baseline methods.
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The second motivation of this paper was to seek a unified framework: it associates simple but
efficient models of geometry and noise. In future works, it could be interesting to implement
and compare RANSAC methods (Batstone et al., 2016; Zhayida et al., 2014). In particular, we
speculate a compromise between robustness and time complexity with very large array (M ≫ 1),
since RANSAC is computationally more expensive. Finally, the methods could be analyzed in
more complex configurations, for instance an indoor environment set up (with walls, ceiling and
furniture), or a deployment of a larger array with more sensors.
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