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Abstract— In this work, two Gaussian Beam (GB) 
techniques were presented for investigating the radar cross 
section (RCS) of a cylinder with and without an aperture. 
Therefore, we have carried out experimental measurement of 
RCS of different PEC targets in the anechoic chamber. These 
measurements were used to validate the numerical results 
obtained using the GB approaches which are: Gaussian Beam 
Summation (GBS) and Gaussian Beam Launching (GBL). In 
the numerical simulation, the used GB techniques are firstly 
combined with the asymptotic Physical Theory of Diffraction 
(PTD) method. After that, the RCS results are evaluated with 
the Method of Moment (MoM) and also with the experimental 
measurements.  
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I. INTRODUCTION  

The modeling of electromagnetic scattering and Radar 
Cross Section (RCS) of the different targets presents a 
significant role in the radar object identification. Therefore, 
several numerical methods have been developed to model 
electromagnetic scattered fields by canonical and complex 
targets. The asymptotic methods such as Physical Optic 
(PO), Physical Theory of Diffraction (PTD), Geometrical 
Optics (GO), Geometrical Theory of Diffraction (GTD) and 
Equivalents Current Method (ECM) are considered as 
approximations of high frequencies [1], [2], [3]. The 
advantage of asymptotic methods lies to the speed of 
calculation time (take into account the complexity of the 
object). However, the critical points of some asymptotic 
methods are related to the transaction between highlighted 
and shadowed region and the caustic problem. To overcome 
this problem, others asymptotic techniques based on GB 
have been developed. Among them, Gaussian Beam 
Summation (GBS) and Gaussian Beam Launching (GBL) 
methods [4]-[13]. These (GBS, GBL) methods are used in 
this work to estimate the RCS of a modified canonical target. 

The GBL technique has been introduced and applied in 
the research published by H. T. Chou [4]. In this method, 
when a radar target is illuminated by a GB, is firstly 
necessary to decompose the radiated field into a plane wave 
spectrum then summing the contribution of the radiations of 
all the beams interacting with the target. 

The GBS as an asymptotic approach for computing high-
frequency wave fields was developed by V. Cerveny and 
M.M. Popov [9]-[12]. The summation of GB allows solving 
some limitations of the asymptotic ray methods such as the 

problems related to the evaluation of wave field in singular 
areas and the resolution of the caustics problem [4]-[13]. 

In the works of P. O. Leye et al [6], the GBS and GBL 
methods were applied in the simulation of RCS of a metallic 
flat plate. These methods are also compared only with PO 
and MoM methods. However, this paper presents a new 
investigation on the Gaussian techniques GBS and GBL.  
Moreover, we will extend the application of the Gaussian 
techniques (GBS, GBL) in the estimation of radiated field by 
various targets (cylinder with an aperture, shell cylinder). In 
addition, the obtained RCS results have been compared with 
the others numerical methods and also with the experimental 
measurements realized in an anechoic chamber. 

This paper is organized as follows: Section II shows the 
general mathematical formulation of the GBL and GBS 
methods. Section III describes the measuring devices. 
Section IV, illustrates the numerical and experimental results 
of RSC of different radar targets (hollow cylinder with an 
aperture, shell cylinder). The final section presents the 
conclusion and the future works. 

II. FORMULATION OF THE GAUSSIAN TECHNIQUES GBL AND 

GBS 

A. Theoretical formulation of GBL technique  
In [4] and [5], the GBL technique has been used in the 

analysis of fields radiated by parabolic, non-parabolic 
reflector antennas and quasi-optical multi-reflector systems. 
In the present work, the GBL was applied in the calculation 
of the RCS of canonical and modified targets.  

Fig. 1. Geometric configuration of a cylinder illuminated by incident 
Gaussian Beam (GB), width (2ω0). 

Consider a target (plate, disk, cylinder,…) illuminated by 
a Gaussian beam as shown in Fig.1, the GBL method is 
applied to calculate the radiation integral of the fields 
scattered by the target. For the considered Gaussian beam, 
the incident magnetic field is given by the following form 
[4], [6]: 

  ( ) ( ) �
�
�

�
�
�
�

�
��
�

�
��
�

�
++

+
+−

++
+

=
iii

ii
i

iii

ii
iii jbz

yxzjk
jbz

jbHrH
ρρ

ρ 22

.exp.0  (1) 

1



In (1), the distance between the waist the incident GB 
and each point on the illuminated surface is indicated by the 
parameter ρi, the position vector in the GB is defined by and 
bi =k.ω0

2/2, where k, ω0 are the wave number and the half 
beam-width respectively. The electric fields scattered from 
the target surface (�) illuminated by the incident field is 
given by the integration of the incident GB on the reflector 
surface (PO integral). This integral is written by (2): 
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Finally, by using equation (1) in (2) and determining the 
integral, we can calculate the scattered field by applying 
GBL formulation as in [4], [6].  

B. Theoretical formulation of GBS technique  
The physical principle of GBS technique consists in a 

compatible step assembly. Consider a homogeneous and 
isotropic medium and an electromagnetic wave propagating 
in this medium which is acting excited by a point source. In 
the GBS method, the total field at the receiver is a sum of the 
contributions of all the beams passing in the vicinity of the 
receiver (which is the same case for each observation point). 
For each considered ray, we determine a Gaussian beam 
propagating along the ray. Then we sum the contribution of 
each Gaussian beam to the receiver overall rays [11], [12] . 

Fig. 2. Geometric configuration and coordinate parameters for GBS 
formulation. 

Fig. 2 shows the ray-centered coordinate system (s, q1, 
q2) used to formulate (3) of the Gaussian beam amplitude 
u(s, q1, q2, t). This coordinate system is connected to any 
selected � radius. In addition to the geometric parameters, 
others assumptions are also used to establish the theoretical 
equation of GBS. In fact, we start by considering a 
homogeneous and isotropic medium an electromagnetic 
wave propagating (with a propagation velocity v) in this 
medium which is being excited by a point source. Then, we 
suppose that some wave process is described by the 
Helmholtz’s wave equation and the point source is 
positioned in the origin. After, we solve the Helmholtz’s 
equation in the neighborhood of rays. As function of the 
local coordinates and at the receiver point, the solution of the 
Helmholtz equation as a solitary GB is given by (3) [12], [6]:  
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In (3), v represents the propagation velocity; qT is the 
transpose of the q vector; the travel time from the source 
along the designated ray is represented by τ(s). The 
parameters Q and P are two-by-two matrix named “dynamic 
quantities” which are related by the “Dynamic Ray Tracing” 

(DRT) [10], [13]. These two parameters (Q and P) will be 
used in (3) to determine the final equation of the Gaussian 
beam amplitude u. 

In the case of homogenous media, by using the Q and P 
values in (1), we return to the representation of the amplitude 
u of the Gaussian beam in 3D [10], [6]: 
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Finally, to calculate the full amplitude (uGBS) at the 
receiver we must use an integral formulation as shown in (5). 
This integral will be calculated on all Gaussian beams 
described by their characteristic angle (called takeoff angle 
�) from the source: 

( ). 1 2, , .G BS s dq qu uϕ
γ

ϕ γ= Φ�
      (5) 

The integral function in (5) is the product of three terms. 
The first term denoted Φϕ  is the complex weight function 
which may differ from ray to ray, however, remains constant 
in each considered ray. The second term is the function u�(s, 
q1, q2) is the Gaussian beam related to the ray given by (4). 
Finally, the third term d� is expressed according to angle � 
by the equation (2π .sin(�).d�). The choice of the integration 
domain � is related to the function of the Gaussian beam u�(s, 
q1, q2) and to the central ray. In fact, the domain � is fixed on 
the central ray and delimits the Gaussian beams propagating 
in the neighbor of the central ray. On the other hand, the 
contribution of the Gaussian beams u�(s, q1, q2) is 
conditioned by the fact that outside the � domain do not 
contribute effectively to the wave field.  

The GBS integral (5), may be evaluated asymptotically 
using the saddle-point method. Thus, this result must 
coincide with the above ray asymptotic solution in regular 
region. This integral of GBS is simulated numerically and 
quadratically by a regular increment denoted ��k (6).  
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The integral formulation (2) and (5) of GBS and GBL 
techniques, respectively, can be used to calculate the 
scattered field in the case where the radar target is described 
by a set of triangular facets. In fact, to compute the scattered 
fields, the target geometries are modeled by triangular facets. 
The centers of these triangles become the positions of the 
bright points (as displayed in Fig. 3). Then, after the 
visibility test, the scattering field integral from each visible 
triangular is calculated by GBS and GBL techniques. On the 
other hand, the work in [6], [7] show that when the 
diffraction contributions are accounted, the GBS+GTD 
method gives an accurate qualitative representation of the 
RCS variation for all observation angles. Therefore, to 
consider the edge diffraction contribution, we have chosen to 
combine the GBS and GBL with the physical theory of 
diffraction (PTD) method [2]. In fact, PTD method is used to 
compute a diffraction part for each ray that hits the target 
surface in the vicinity of an edge and is calculated in the 
complex weight function in the integral (5). 
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Fig. 3. The mesh representation of a hollow cylinder with an aperture. 

III. DESCRIPTION OF THE MEASURING DEVICES

The evaluations of the numerical simulation results with 
experimental measurements have been done in anechoic 
chamber (8m × 5m × 5m) at the Lab-STICC, ENSTA 
Bretagne (Fig. 4). The characteristics of various 
measurements components system are: All walls are covered 
with absorbent material. A computer controls the Vectorial 
Network Analyzer (Anritsu 37347D) which operates in the 
frequency range from 40MHz to 20GHz and the positioning 
system. The NEWPORT positioning system with an angular 
resolution equal to 0.01° and an angle vary between -90° and 
90°. Finally, an elevation motor is used for the modification 
of the height position of the target.  

Fig. 4.  (a) Description of the experimental setup, (b) Metallic cylinder, (c) 
Metallic cylinder with an aperture. 

IV. NUMERICAL AND EXPERIMENTAL RESULTS: 
INVESTIGATION ON RCS OF A HOLLOW CYLINDER WITH AN 

APERTURE    

In this section, we present the results of RCS of a hollow 
circular cylinder (which is not covered at the end) with and 
without an aperture. As illustrated in Fig. 5, in the 
geometrical scattering configuration of the target, the 
incident angle �i equal 90° and the azimuth scattering angle 
ϕi vary from -90° to 90°. It is supposed that rotation is 
around to z-axis. This geometrical configuration allows 
giving the possibility to find the effect of the rectangular 
aperture at the center of the cylinder on the RCS variation. 

Fig. 5. Dimension and geometric configuration (monostatic) of a hollow 
circular right cylinder with an aperture: r = 15cm and h = 30cm, aperture 
(15 × 7.5) cm. 

Fig. 6 and Fig. 7 compare the measured and simulated 
monostatic RCS of a circular cylinder without and with an 
aperture respectively. The simulations are obtained by using 
the MoM method, the GBS and GBL techniques which are 
combined with PTD method (GBS+PTD, GBL+PTD).  

Fig. 6. Measured and simulated RCS of a circular cylinder: 10GHz, vv. 

In Fig. 6, it is observed that in the case of a circular shell 
cylinder, the RCS simulated using (GBS+PTD, GBL+PTD 
and MoM) is constant (4.5 dB) over the entire range of the 
scattering angle. This RCS curve is representative for the 
cylinder shape observed in the geometrical configuration 
presented in Fig. 5.  

In the case of a hollow circular cylinder with an aperture 
(Fig. 7 (a)), we can see that the curves of measured RCS and 
those simulated using GBS+PTD, GBL+PTD and MoM 
have the same general shape and are close in the scattering 
angular range outside the specular direction. However, it is 
observed a peak at 0° corresponding to simulated values of -
2.3 dB (GBS+PTD), -4 dB (GBL+PTD) -10 dB (MoM) and 
measured value of -13 dB. This peak decreases and reaches a 
minimum measured value of -16 dB, and a minimum values 
of {-17 dB (MoM), -16dB (Exp), -6 dB (GBL+PTD), -4 dB 
(GBS+PTD)} at the scattering angle of 2° and 4° 
respectively. These preliminary results show that the curves 
simulated using GBL+PTD are closer to the MoM method 
and the measurements than those obtained using GBS+PTD. 

Fig. 7. (a)Measured and simulated RCS of a hollow circular cylinder with 
an aperture, (b) RCS of a cylinder with and without an aperture. 

(a) 

(b) (c)

(a) 

(b) 
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The deviation between the RCS simulated using 
Gaussian model (GBS+PTD) and those realized by the MoM 
method and experimental data is explained by the fact that 
the Gaussian techniques GBS and GBL consider only a part 
of multiple interactions due to the presence of the rectangular 
aperture. These preliminary study results will be used in our 
future work as a basis for the development and extension of 
the validity region of the GBS and GBL techniques.        

In addition, the comparison between the RCS (measured 
and simulated) of a cylinder with and without an aperture is 
illustrated in Fig. 7 (b). From this comparison, we can see 
that the presence of the aperture reduce the values of the 
RCS particularly in the scattering angle range from 0° to 20°. 
This decreasing of RCS value may be due to the multiple 
interaction phenomenon caused by the rectangular cavity. 
The other phenomenon caused by the presence of the 
aperture is appeared on the RCS curves at the scattering 
angles 20 ° and 30 ° where we observe a curve peaks which 
due to the edge diffraction of the aperture.  

To obtain more information about the impact of the 
rectangular aperture on the scattered field, we have modeled 
the normalized RCS (NRCS) of a PEC cylinder (with and 
without aperture) in bistatic configuration. Fig. 8 illustrates 
the NRCS of a shell cylinder (b) and a cylinder with aperture 
(c) simulated as function of the scattering angles (θs, φs) and 
for one value of incident angles (θi, φi). These simulations 
have been done using the MoM method in FEKO software. 
The maximum difference between the NRCS appears in the 
range φs angle from 60° to 120° as Fig. 8 displayed.  

Fig. 8. (a) Geometrical parameters of the bistatic configuration, 
Normalized RCS of a shell metallic cylinder (b), and a hollow metallic 
cylinder with rectangular aperture (c) observed in bistatic configuration:  
θi = 90°, φi = 0°, θs= φs = [0:180°], f = 10GHz, MoM (FEKO). 

These results of investigation will be used as a base of 
development of GBS and GBL methods for the bistatic case 
(which is our current work). 

V. CONCLUSION AND FUTURE WORK  

In this paper, investigations and evaluations of the 
Gaussian techniques (GBS, GBL) were presented. For this, 
the theoretical formulation of GBL and GBS were 
established, and experimental measurements of RCS of 
different targets in anechoic chamber have been done.  

In the numerical simulations, the RCS of a cylinder with 
aperture and a shell cylinder is simulated using GBS+PTD, 

GBL+PTD and MoM methods. The obtained numerical 
results are also compared with the experimental 
measurement. This comparison demonstrated that the 
Gaussian techniques (GBS, GBL) represent well the field 
variation of the canonical target (shell cylinder). However, 
for the case of a hollow cylinder with an aperture, we have 
found a visible decrease in RCS values is observed in the 
normal incidence range which is due to the multiple 
interaction caused by the presence of the aperture. 
Nevertheless, the results using GBL+PTD are closer to the 
MoM method and the measurements than those realized 
using GBS+PTD. The development of the GBS and GBL 
methods by taking into account the full multiple interactions 
contribution as in the case of a hollow cylinder with an 
aperture observed in bistatic case is one of the perspectives 
of our work.  
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