
HAL Id: hal-01867575
https://ensta-bretagne.hal.science/hal-01867575v1

Submitted on 4 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tight slalom control for sailboat robots
Maël Le Gallic, Joris Tillet, Luc Jaulin, Fabrice Le Bars

To cite this version:
Maël Le Gallic, Joris Tillet, Luc Jaulin, Fabrice Le Bars. Tight slalom control for sailboat robots.
International Robotic Sailing Conference (IRSC) , Aug 2018, Southampton, United Kingdom. �hal-
01867575�

https://ensta-bretagne.hal.science/hal-01867575v1
https://hal.archives-ouvertes.fr


Tight slalom control for sailboat robots

Maël Le Gallic, Joris Tillet, Luc Jaulin, Fabrice Le Bars

Lab-STICC, ENSTA Bretagne, Brest, France

Abstract. Existing controllers for sailboat robots are usually developed
for speed performances and for long straight lines. In this context, the ac-
curacy is not the main concern. In this paper, we consider the tight slalom
problem which requires accuracy. We propose a feedback-linearization based
method combined with a vector field approach to control the sailboat. Some
simulations show that the robot is able to perform the slalom without missing
any gate.

1 Introduction

We consider a mobile robot described by the state equations [5]{
ẋ = f(x,u)
p = g(x)

(1)

with an input vector u = (u1, . . . , um), a state vector x = (x1, . . . , xn) and
a pose vector p = (p1, . . . , pm+1) with n ≥ m + 1. The goal of this paper is
to show we can follow a chosen vector field in the p space [8][12][13], using
a feedback-linearization based method. It means that we can control m + 1
state variables and not only m of them, as given by the theory [4]. This
is due to the fact that we perform a path following instead of a trajectory
tracking where the time is involved. In practice, the vector p corresponds to
the position of the center of the robot and may be of dimension 2 (if m = 1)
or 3 (if m = 2). This is consistent with the fact that we need one actuator to
control the direction of a 2D vehicle such as a car or a boat and two actuators
for a 3D vehicle such as a plane.

The approach we propose is to find a controller so that the vector ṗ be
collinear (instead of equal) to the required field. This is illustrated in this
paper in the case where the mobile robot is a sailboat [10][2][9]. The input
u is scalar (i.e., m = 1) and corresponds to the rudder. Moreover, we will
show that this approach is particularly adapted to sailboats where the speed
is hardly controllable [11][14].

1



2 Method

In order to facilitate the understanding of our approach, we will deal with a
Dubins car, which is much simpler than a sailboat. The extension to other
type of mobile robots is straightforward.

2.1 Line following for a Dubins car

To introduce our approach, we consider a robot (here a Dubins car) moving
on a plane and described by the following state equations:

ẋ1 = cos x3
ẋ2 = sin x3
ẋ3 = u

(2)

where x3 is the heading of the robot and p = (x1, x2) are the coordinates of
its center. The state vector is given by x = (x1, x2, x3).

Let us choose as the control output the variable

y = x3 + atanx2. (3)

and let us find a classical feedback linearization based controller [6] such that
the output y (which can be interpreted as an error) converges to 0. In such a
case, we will have x3+atanx2 = 0 and the robot will perform a line following.
Differentiating (3) we have

ẏ = ẋ3 +
ẋ2

1 + x22
= u+

sinx3
1 + x22

. (4)

Since u occurs in (4), the relative degree of the system is 1. We may thus
choose a first order equation for the error y, such as

ẏ + y = 0, (5)

We then choose u to have this error equation satisfied. From (4) and (5), we
get:

u = −y − sinx3
1+x22

= −x3 − atanx2 − sinx3
1+x22

(6)

Note that we do not have any singularity. As illustrated by the simulation
depicted on Figure 1, the associated vector field makes the car attracted by
the line x2 = 0.

2



Figure 1: Precise line following

Remark. For more robustness with respect to small uncertainties, a
sliding mode effect could be added. It suffices to take for required error

y = x3 + atan (x2 + α · sign (x2)) ,

where α is a small positive coefficient, e.g., α = 0.1. In such a case, the robot
will go to the line in a finite time (and not asymptotically, as previously).
Moreover, it will remains exactly on the line even if some small uncertainties
occur.

2.2 Generalization

We want our robot to follow the fieldψ(p), more precisely, we want thatψ(p)
and ṗ point toward the same direction. This condition can be translated into
the form ϕ (ψ(p), ṗ) = 0, where ϕ is a collinearity function which satisfies

ϕ (r, s) = 0⇔ ∃λ > 0, λr = s. (7)

Typically, this function corresponds to one angle (the heading) if m = 1 and
two angles (heading, elevation) for m = 2. Note that the function ϕ cannot
be expressed with a determinant since r, s should not point toward opposite
directions. We define the output

y = ϕ (ψ(p), ṗ) = ϕ

(
ψ(g (x)),

∂g

∂x
(x) · f (x,u)

)
. (8)

Since y ∈ Rm, we can apply a feedback linearization method and we get
y → 0. This means that the robot will follows the required field. Note that
we have no control on the speed, which is not our main concern in this paper.

3



2D case. Consider for instance the case where m = 1. We have

ψ(p) =

(
ψ1 (p)
ψ2 (p)

)
. (9)

We take as an output y, the angle between the actual heading vector ṗ =
∂g
∂x

(x) · f (x,u) and the desired heading vector given by ψ(p). Denote by
θ (x) the argument of the vector ṗ. We have

y
(8)
= = angle

(
ψ(g (x)), ∂g

∂x
(x) · f (x,u)

)
= angle

(
ψ(g (x)),

(
cos θ
sin θ

))
= sawtooth(θ−atan2(ψ2(g (x))︸ ︷︷ ︸

b

,ψ1(g (x))︸ ︷︷ ︸
a

))

(10)

The sawtooth function is given by:

sawtooth(θ̃) = 2atan
(

tan θ̃
2

)
= mod(θ̃ + π, 2π)− π (11)

As illustrated by Figure 2, the function corresponds to an error in heading.
The interest in taking an error θ̃ filtered by the sawtooth function is to avoid
the problem of the 2kπ modulus: we would like a 2kπ to be considered
non-zero.

Figure 2: Sawtooth function used to avoid the jumps in the heading control

We have

ẏ = θ̇ − (− b

a2 + b2︸ ︷︷ ︸
∂atan2(b,a)

∂a

· ȧ+
a

a2 + b2︸ ︷︷ ︸
∂atan2(b,a)

∂b

· ḃ)

= u+ b·ȧ−a·ḃ
a2+b2

,

(12)

if we assume that the input u corresponds to the desired angular velocity. We
propose a feedback linearization based control based on the required equation

4



ẏ = −y. We have

u
(12)
= ẏ − (b·ȧ−a·ḃ)

a2+b2

= −y − (b·ȧ−a·ḃ)
a2+b2

(since ẏ = −y)
(10)
= − (sawtooth(θ − atan2(b, a))− (b·ȧ−a·ḃ)

a2+b2
.

(13)

We thus have the guarantee that after some time, the error angle y is 0 and
that we follow exactly the vector field.

2.3 Dubins car following the Van der Pol cycle

We would like our Dubins car to follow a path corresponding to the limit
cycle of the Van der Pol equation:

ψ(p) =

(
p2

− (0.01 p21 − 1) p2 − p1

)
. (14)

Take g (x) = (x1, x2)
T which means that we want to build the paths in the

(x1, x2)-space. We have

ψ(g (x)) =

(
x2

− (0.01 x21 − 1)x2 − x1

)
(15)

and

∂g

∂x
(x) · f (x,u) =

(
1 0 0
0 1 0

)
·

 cosx3
sinx3
u

 (16)

Thus
a = x2
b = −(0.01 x21 − 1)x2 − x1
θ = x3

(17)

and

ȧ = sinx3
ḃ = − (0.01 · 2x1ẋ1)x2 − (0.01 x21 − 1) ẋ2 − ẋ1

= −0.02 · x1x2 cosx3 − (0.01 x21 − 1) sinx3 − cosx3

(18)

From (13), we get that final controller is

u = −sawtooth
(
x3 − atan2

(
−
(
x21
100
− 1
)
x2 − x1, x2

))
+

((
x21
100

−1

)
x2+x1

)
·sinx3+x2·

(
x1x2 cos x3

50
+

(
x21
100

−1

)
sinx3+cosx3

)
x22+

((
x21
100

−1

)
x2+x1

)2

(19)

5



Figure 3: Dubins describing accurately the Van der Pol cycle

The behavior of the control law is illustrated by Figure 3. The car is very
close to the true limit cycle, which is not the case if we consider a classical
linear controller. Indeed, the controller anticipates the fact that the required
trajectory have to take into account the curvature of the vector field.

3 Application to the slalom problem

We consider the following model which corresponds to a simplified version of
the sailboat model given in [7]. The state equations are

ẋ1 = v cos θ
ẋ2 = v sin θ

θ̇ = −ρ2v sin 2u1
v̇ = ρ3 ‖wap‖ sin (δs − ψap) sin δs − ρ1v2
σ = cosψap + cosu2

δs =

{
π + ψap if σ ≤ 0

−sign (sinψap) · u2 otherwise

wap =

(
−a sin (θ)− v
−a cos (θ)

)
ψap = angle wap

(20)

where ρ1 = 0.003, ρ2 = 0.2, ρ3 = 3. In this equation u1, u2 correspond to
the tuning of the rudder and the sail, respectively. We would like our robot

6



to follow a path which makes a tight slalom through doors that have to be
passed. We assume that we have a Cartesian equation for our path. For
instance, we consider that the path is described by

e (p) = 10 sin
(p1

10

)
− p2 = 0 (21)

where e (p) corresponds to an error. This path corresponds to a path that
should be possible for a normal sailboat robot for crosswind conditions. We
take a vector field which corresponds to a pole placement strategy. For
instance, we want the error satisfies ė = −0.1 e, so that it will converge to
zero in about 10 sec. Thus

cos
(p1

10

)
ṗ1 − ṗ2︸ ︷︷ ︸

ė(p)

= − 1

10

(
10 sin

(p1
10

)
− p2

)
︸ ︷︷ ︸

e(p)

(22)

We take ṗ1 = 1, to go to the right. As a consequence, we get the following
field:

ψ(p) =

(
ṗ1
ṗ2

)
=

(
1

cos
(
p1
10

)
+ 1

10

(
10 sin

(
p1
10

)
− p2

) ) (23)

which is attracted by the curve p2 = 10 sin
(
p1
10

)
.

We have

ψ(g (x)) =

(
1

cos
(
x1
10

)
+ 1

10

(
10 sin

(
x1
10

)
− x2

) ) (24)

and
∂g

∂x
(x) · f (x,u) =

(
cosx3
sinx3

)
. (25)

Thus
a = 1
b = cos

(
x1
10

)
+ sin

(
x1
10

)
− 1

10
x2

(26)

and
ȧ = 0

ḃ = −ẋ1 1
10

sin
(
x1
10

)
+ ẋ1

1
10

cos
(
x1
10

)
− 1

10
ẋ2

= 1
10

cosx3 ·
(
cos
(
x1
10

)
− sin

(
x1
10

))
− 1

10
sinx3.

(27)

From (13), we get that the desired angular velocity should be

ω̂ = − (sawtooth(θ − atan2(b, a))− (b·ȧ−a·ḃ)
a2+b2

. (28)

Now, since the true angular velocity is θ̇ = −ρ2v sin 2u1, we take

u1 = −1

2
arcsin

(
tanh

(
ω̂

ρ2v

))
. (29)

7



The saturation function tanh is needed since the rudder cannot respond to
any required ω̂. Indeed, if our controller ask to turn too fast for the boat,
ω̂
ρ2v

will be more than 1, and the rudder can only do its best. The behavior
of our controller is illustrated by Figure 4, where the sailboat has to slalom
tightly between doors. We can see that the trajectory follows exactly the
sine path (magenta).

The Python source codes associated to the simulation can be found at:

https://www.ensta-bretagne.fr/jaulin/slalompy.zip

w
in
d

Figure 4: The sailboat robot slaloms through the blue doors

4 Conclusion

In this paper, we have proposed a new controller for sailboat robots which
allows to take into account the curvature of the required field in order to
anticipate as much as possible the required trajectory. To our knowledge, this
is not considered by existing controllers [1] which are devoted to straight lines
[3]. It has been shown that the required vector field could be followed exactly.
This anticipation is crucial if we want to maneuver quickly and precisely as
needed when we want to avoid an obstacle. This has been illustrated on a
simulated test-case where a tight slalom is performed by a sailboat robot.

References

[1] F. Le Bars and L. Jaulin. An experimental validation of a robust con-
troller with the VAIMOS autonomous sailboat. In 5th International
Robotic Sailing Conference, pages 74–84, Cardiff, Wales, England, 2012.
Springer.

8

https://www.ensta-bretagne.fr/jaulin/slalompy.zip


[2] N.A. Cruz and J.C. Alves. Ocean sampling and surveillance using au-
tonomous sailboats. In International Robotic Sailing Conference, Aus-
tria, 2008.

[3] F. Le Bars F. PLumet, Y. Briere. Les voiliers robotisés. Les Techniques
de l’Ingénieur, 2018.

[4] A. Isidori. Nonlinear Control Systems: An Introduction, 3rd Ed.
Springer-Verlag, New-York, 1995.

[5] L. Jaulin. Automation for Robotics. ISTE editions, 2015.

[6] L. Jaulin. Mobile Robotics. ISTE editions, 2015.

[7] L. Jaulin and F. Le Bars. An Interval Approach for Stability Analysis;
Application to Sailboat Robotics. IEEE Transaction on Robotics, 27(5),
2012.

[8] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotics Research, 5(1):90–98, 1986.

[9] H. Klinck, R. Stelzer, K. Jafarmadar, and D. K. Mellinger. AAS En-
durance: An Autonomous Acoustic Sailboat for Marine Mammal Re-
search. In 2th International Robotic Sailing Conference, Matosinhos,
Portugal, 2009.

[10] P. H. Miller, M. Hamlet, and J. Rossman. Continuous improvements to
USNA sailbots for inshore racing. In 5th International Robotic Sailing
Conference, pages 49–60, Cardiff, Wales, England, 2012. Springer.

[11] T. Neumann and A. Schlaefer. Feasibility of basic visual navigation for
small sailboats. In 5th International Robotic Sailing Conference, pages
13–22, Cardiff, Wales, England, 2012. Springer.

[12] C. Petres, M. Romero Ramirez, and F. Plumet. Reactive Path Plan-
ning for Autonomous Sailboat. In IEEE International Conference on
Advanced Robotics, pages 1–6, 2011.

[13] S. Schmitt, F. Le Bars, L. Jaulin, and T. Latzel. Obstacle Avoidance
for an Autonomous Marine Robot - A Vector Field Approach. In 7th
International Robotic Sailing Conference, Irland, 2014. Springer.

[14] R. Stelzer, T. Proll, and R. John. Fuzzy Logic Control System for Au-
tonomous Sailboats. In in Proceedings of IEEE International Conference
on Fuzzy Systems, London, UK, 2007.

9


	Introduction
	Method
	Line following for a Dubins car
	Generalization
	Dubins car following the Van der Pol cycle

	Application to the slalom problem
	Conclusion

