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1 Introduction

Interval analysis [8][12] has been for than 30 years for control [14] or for state es-
timation [13][9]. A classical state estimation problem in a bounded-error context
[19] can be formalized has follows ẋ(t) = f (x(t)),u(t)) (evolution equation)

g(x(ti)) ∈ [y](ti) (observation constraint)
x(0) ∈ X0 (initial state)

(1)

where x is the unknown state vector, y an output measurement vector, u an
input measurement vector. It is known that for all t, u(t) ∈ [u] and y(t) ∈ [y].

Often, the observation constraint may also appear in the following implicit
form

g(x(ti),y(ti)) = 0,y(ti) ∈ [y](ti). (2)

Example. Assume that we have a robot at position (x1, x2) with a heading
x3. It measures a landmark located at (4, 5). The corresponding measurement
vector is composed of the distance y1 and the bearing y2. In such a case, we
have

g(x,y) =

(
x1 + y1 · cos (x3 + y2)− 4
x2 + y1 · sin (x3 + y2)− 5

)
as illustrated by Figure 1. If now, the robot only measures the distance to the
landmark, we get

g(x, y) = (x1 − 4)
2
+ (x2 − 5)

2 − y2.

In the more general case, the observation function is uncertain or more pre-
cisely, it depends on some parameters that may be uncertain. The observation
constraint can be written as

g(x(ti),y(ti),m(ti)) = 0,y(ti) ∈ [y](ti),m(ti) ∈ [m](ti). (3)

In a localization context, the parameter vector m(ti) corresponds to a landmark
the position of which is known with some bounded uncertainties.
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Figure 1: The landmark m is seen by the robot.

In some situations, the data are not associated. The observation constraint
has the form

g(x(ti),y(ti),m(ti)) = 0
m(ti) ∈ [m1] ∨ . . . ∨m(ti) ∈ [m`]

(4)

or equivalently
g(x(ti),y(ti),m(ti)) = 0

m(ti) ∈M = {[m1], . . . , [m`]}

It means that we do not know which is the right parameter vector associated to
the observation constraint.

In this paper, we consider a state estimation problem in the case where we
have to solve the data association problem [18]. This problem can be formalized
by the following state equations:

ẋ(t) = f (x(t)),u(t)) (evolution equation)
g(x(ti),y(ti),m(ti)) = 0 (observation constraint)
y(ti) ∈ [y](ti),m(ti) ∈M

x(0) ∈ X0 (initial state)

(5)

The set M is is assumed to be known. The membership constraint ∃m(t) ∈ M
highlights the requirement of solving the so-called data association problem
which aims at finding which point of M is associated with the measurement
vector y. If M is composed with finite number of isolated points. Our problem
copes with the initial localization problem on a field of point landmarks that
are indistinguishable [6]. All measurements have the same aspect and cannot be
associated directly with a particular point of the map. This problem frequently
arises when acoustic sensors are used to detect underwater environmental fea-
tures [3]. This is illustrated by Figure 2 where rocks can be used as marks.
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Figure 2: The robot (yellow) sees with its sonar some rocks at the bottom of
the seafloor. Now, it is not able to make the difference between one rock and an
other. This sonar image has been collected by the robot Daurade (DGA-TN,
Shom, Brest) equipped with a Klein 5000.

In this paper, we propose an interval-based method [10] to solve the local-
ization problem efficiently. [2] [7]. We will assume that all marks m are inside
a set M which is made with small boxes as represented in Figure 5.

2 Problem

As an application, we consider a robot moving on a plane, the motion of which
is described by the state equation

ẋ(t) = f (x(t)),u(t)) =

 (
cos(ψ(.)) − sin(ψ(.))
sin(ψ(.)) cos(ψ(.))

)
· v(.)

ω(.)

 . (6)

The state vector is x = (px, py, ψ), where p = (px, py) is its position and ψ
is its heading. The input vector is u = (vx, vy, ω), where v = (vx, vy) is the
horizontal speed of the vehicle in its own frame, measured for instance with
a Doppler Velocity Log (DVL) (in case of an underwater robot), and ω(.) is
angular velocity measured by gyroscopes.

For some times ti ∈ T, the robot collects the range-bearing vector y (ti) =
(ρ(ti), ϕ(ti))

T to a landmark m(ti) = (mx(ti),my(ti))
T which belongs to the

map M, composed of a collection of georeferenced points. This leads to the
following constraint

g (x(ti),y(ti),m(ti)) = 0 (7)

with
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Figure 3: Each rock is assumed to belong to a small box which is georeferenced

g(x(ti),y(ti),m(ti)) =

(
px(ti)
py(ti)

)
+ρ(ti)·

(
cos(ψ(ti) + ϕ(ti))
sin(ψ(ti) + ϕ(ti)

)
−
(
mx(ti)
my(ti)

)
.

(8)
The localization problem is thus described by the following set of equations:

ẋ(t) = f (x(t)),u(t))
g(x(ti),y(ti),m(ti)) = 0
y(ti) ∈ [y](ti),m(ti) ∈M

x(0) ∈ X0

(9)

where the trajectory x(.), and the landmark associated to the measurements
taken at time ti both need to be estimated. This set of equations can decom-
posed into: 

(i) ẋ(.) = f(x(.),u(.))
(ii) m(ti) ∈M
(iii) ai = m(ti)− p(ti)
(iv) αi = ψ(ti) + ϕ(ti)

(v) ai = ρ ·
(

cosα(ti)
sinα(ti)

) (10)

where a contractor [15] can be defined for each constraint. In particular, the
contractor C d

dt
[16] is used to contract the tube [x](.) with respect to (i). The

map M can be depicted by a subpaving, or by an image, for which a contractor
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Figure 4: Map contractor. This operator does not remove any significant rock

such as the one used in [17] can be used. For any box [x] ∈ IR2, this contrac-
tor returns the smallest box which contains all landmarks included in [x], as
illustrated by Figure 4. This contractor which does not exist in the literature is
given in the next section. The constraint (v) corresponds to the polar constraint
where the minimal contractor [1] can be used.

3 Constellation contractor

This section proposes a new contractor, named the constellation contractor,
which will allow us to solve the data association problem. Consider a constel-
lation of ` points M = {m1, . . . ,m`} of Rd, and a box [x] ,we want to compute
the smallest box C ([x]) which contains M ∩ [x], or equivalently

C ([x]) =
⊔
i

[x] ∩ {mi}.

where t returns the smallest enclosing the union of its arguments.
The operator C corresponds to the constellation contractor. Since we will

have many different boxes [x] whereas the constellation is fixed, a preprocessing
step has to be done. This step will allows us to have a logarithmic complexity
for the contractor with respect to `.

Preprocessing step. We build a balanced binary tree corresponding to a
R-tree [4]. The R-tree has be following properties.

• (i) To each node β of the tree is associated a box �β containing at least
one point of the constellation M and such that C (�β) = �β. It means
that � (β) is the enveloping box of all points of M it contains.

• (ii) If β is the root, M ⊂ �β.

• (iii) If β1, β2 are sons of β then (�β1 ∩M) ∪ (�β2 ∩M) = (�β ∩M).
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Algorithm 1 C ([x] , β)
C ([x] , β)

1 If �β ⊂ [x] return �β
2 If �β ∩ [x] = ∅ return ∅
4 Return (C ([x] , left_son (β))) t (C ([x] , right_son (β)))

• (iv) If β1, β2 are are brothers then �β1 ∩�β2 = ∅. When this property is
satisfied, the R-tree is called a R* tree. This property is not restrictive in
our context since we assume that themi are completely known beforehand.

• (v) The tree is balanced with respect to the space. This means that the
bisection direction for the branching of the node β is decided with respect
to the largest width of � (β).

• (vi) The tree is balanced with respect to the constellation. It means that
bisection position of β is decided with respect to the median in order to
minimize the difference |card (�β1 ∩M)− card (�β2 ∩M)| .

These properties are illustrated by Figure 5 in the case where the constellation
has ` = 10 points (represented by the tiny blue boxes). The root of the tree is
β0 which has two sons β1, β2. Note that |card (�β1 ∩M)− card (�β2 ∩M)| = 1
which corresponds to the minimum that can be obtained. The corresponding
bisection is obtained from the median. The node β2 has two sons β3, β4. The
node β5 is a leaf of the tree and �β5 corresponds to a single point of the
constellation M.

Figure 5: An R-tree is created first to get an efficient contractor

Once constructed, the R-tree allows a logarithmic complexity with respect
to ` for the constellation contractor. The corresponding algorithm is as follows.
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The algorithm is illustrated by Figure 6. First, since �β0 6⊂ [x], we explore
the two sons of β0. Since �β1 ⊂ [x] and �β2 6⊂ [x], we will only explore the
branch corresponding to β2. Again, since �β3 ⊂ [x] and �β4 6⊂ [x], we only
explore β4. Finally, the exploration of the tree corresponds to the following
algebraic calculus:

C ([x] , β) = [M ∩�β0 ∩ [x]]
= �β1 t [M ∩�β2 ∩ [x]]
= �β1 t�β3 t [M ∩�β4 ∩ [x]]
= �β1 t�β3 t [M ∩�β5 ∩ [x]]
= �β1 t�β3 t�β5.

Figure 6: The resulting contractor has a logarithmic complexity

4 Test-case

Consider an AUV starting its mission with a huge position uncertainty. This
can happen during a dive in deep water [11] or when, for discretion purpose, a
long-range transit phase, underwater, is required to reach the working area.

For operational reasons, no external positioning system, such as acoustics
beacons or USBL, are deployed. We assume that a part of the mission area has
been previously mapped during a previous survey and this area is large enough
to be reached by the AUV. The corresponding map M describing this area is
modeled by a set of 280 point landmarks.

Our robot performs a small mission pattern as depicted in Figure 7. It senses
its environment using a forward-looking sonar oriented toward the seabed, the
scope of which is represented by the blue pie. Every three seconds, it is able
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to measure the distance and bearing between its pose to some landmarks which
range between 10 and 70 meters. The positions of the detected landmarks are
depicted by green dots. The 90 red segments represent the measurements. Note
that only a small number of mapped landmarks have been detected.

Only the 2D position of the robot and its heading need to be estimated since
other state variables (roll, pitch, and altitude, depth) are directly measured.

Assumptions. For simplicity, we consider that fact that only landmarks
inside the sonar pie are seen by the AUV is not taken into account by the
method. Moreover, in an underwater context, the detected landmarks cannot
be distinguished from the others, since for instance, two different rocks can
have generally the same aspect and dimension in the sonar image. Moreover,
the landmark detection process is sensitive on change in the point of view of the
sensor, some landmarks of the map cannot be seen during the survey. Thus, no
reliable data associations based on the shape of the landmarks can be assumed.
Moreover successive measurements corresponding to the same landmark could
be associated by the sonar tracking system. Again, we consider this matching
as non reliable and will not be used for the localization.
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Figure 7: The simulated environment for initial localization. The trajectory of
the AUV is depicted by the blue lines. Its starting point is drawn by the red
dot. The map is composed of 230 landmarks represented by black dots.

This example aims at providing a practical illustration of how the constraint
propagation methods can be used to:

1. find the trajectory the vehicle

2. solve the data association problem without any combinatorial explosion.
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data description uncertainty unit
ψ(0) initial heading [−10, 10] deg
v(t) linear speed [−0.05, 0.05]×2 m.s−1

ω(t) angular velocity [−0.001, 0.001] deg.s−1

ρ(t) range ρ(t) · [−0.01, 0.01] m
ψ(t) azimuth [−1, 1] deg

Table 1: Uncertainties on data used for the application.

Once these two issues are solved, any classical localization method, such as an
EKF [5], can be used to get a more accurate estimate of the trajectory. The filter
is initialized with a reliable starting point and only updated with observations
which are correctly associated.

5 Results

Given [x(0)], . . . , [x(kmax)] a set of boxes that enclose the state vector of the
robot. All are initialized to R2 × [−π, π]. The initial heading is assumed to be
known with an accuracy of ±10 degrees. Table 1 shows bounds used to quantify
error on sensor readings. The map M is composed of 280 landmarks, and 90
observations have been done during the whole mission.

Figure 10 shows the final trajectory obtained after 12 iterations in less than
1 minute on i7-5600U CPU@2.60GHz.

In Table 2, for each iteration, the times needed to contract the whole trajec-
tory are given. This time is constant at each iteration. During the constraint
propagation process, the thinner the trajectory is, the smaller the number of
landmarks contained in [m](ti) is, and vice versa. As an indicator, columns 3
(resp. 4) of Table 2 shows the minimal (resp. maximal) number of landmarks
included [m](ti) among all measurements. The last column corresponds to the
number of correct association, i.e, when [m](ti) contains a single landmark.
Figure 8 shows diameters of boxes along the trajectory for different iteration
which illustrates the constraint propagation process. The constraint propaga-
tion methods is shown to be powerful in situations involving a huge number of
possible data association. In comparison, existing method often meet difficulty
when both the initial position and the data associations are unknown.
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