
How to Efficiently Compute Ranges Over a
Difference Between Boxes, With Applications to

Underwater Localization
Luc Jaulin

Bureau D214, ENSTA-Bretagne
2, rue François Verny 29806

Brest, Cedex 9 France
luc.jaulin@ensta-bretagne.fr

Martine Ceberio, Olga Kosheleva and Vladik Kreinovich
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

mceberio@utep.edu, olgak@utep.edu, vladik@utep.edu

Abstract—When using underwater autonomous vehicles, it
is important to localize them. Underwater localization is very
approximate. As a result, instead of a single location x, we get
a set X of possible locations of a vehicle. Based on this set of
possible locations, we need to find the range of possible values of
the corresponding objective function f(x). For missions on the
ocean floor, it is beneficial to take into account that the vehicle
is in the water, i.e., that the location of this vehicle is not in a
set X ′ describing the under-floor matter. Thus, the actual set of
possible locations of a vehicle is a difference set X −X ′. So, it
is important to find the ranges of different functions over such
difference sets. In this paper, we propose an effective algorithm
for solving this problem.

I. UNDERWATER LOCALIZATION: A PRACTICAL PROBLEM
WHERE THERE IS A NEED TO COMPUTE THE RANGE OVER

A DIFFERENCE BETWEEN SETS

Underwater engineering is important:
• Underwater exploration of minerals is becoming more

and more important for or civilization.
• Underwater cables are a crucial part of the global infor-

mation infrastructure.
• Underwater food resources constitute an important part

of our ration.
• Underwater geological studies are needed to better predict

underwater earthquakes and resulting tsunamis, etc.

In all these cases, human exploration is difficult, so more and
more attention is paid to autonomous devices.

Underwater localization is important but difficult. For these
devices to adequately fulfil their missions, it is important to
know the device’s location as exactly as possible. Such a
localization, however, is not easy:

• This location cannot be easily determined by measuring
the forces produced by the device’e engine, since strong
currents also affect the position of a device.

• On the surface, location can be very accurately provided
by the GPS sensors, sensors that relay on the propaga-
tion of electromagnetic waves. However, electromagnetic
waves only propagate to the very surface of the ocean.

So, to locate an underwater device, we need to rely on other
means. For example:

• we can use sound propagation, or
• we can use gyroscopes.

The resulting localization is not perfect:

• Due to the inhomogeneity of the ocean, sound waves do
not follow the straight lines. As a result, corresponding
measurements are not very accurate.

• Gyroscopes provide very accurate description of accelera-
tion. However, when we integrate twice to transform these
accelerations into coordinates, small measurement errors
accumulate. Hence, the resulting coordinate estimates are
also not very accurate.

Need for set-valued and fuzzy uncertainty. In all these cases,
instead of a single location x = (x1, x2, x3), we get a region
X of possible locations.

In the ideal case, when we know the exact accuracy of each
measuring instrument, we get a crisp set X; see, e.g., [2], [3],
[4], [6], [9], [14], [15], [16], [17], [18].

In practice, experts can only provide fuzzy bounds on the
measurement error – e.g., they can say that:

• the measurement error is most probably not more that 10
meters, but

• with high confidence, the measurement error usually does
not exceed 5 meters.

A natural way to describe such natural-language estimates in
precise computer-understandable terms is to us techniques that
ere specifically designed for this purpose – namely, techniques
of fuzzy logic; see, e.g., [1], [7], [11], [13], [19].

In this case, the region X is a fuzzy set, i.e., a function that
assigns, to each possible location x, the degree X(x) to which,
based on the known information, this is a possible location of
our underwater vehicle.

Need to find the range of a function. Underwater au-
tonomous vehicles have missions. Because of this, we are
not just interested in finding the coordinates of the vehicle,



we want to be able to gauge how this location affects the
corresponding mission.

For example, if we want the vehicle to repair an underwater
cable, we need to know how far is the vehicle from the cable:

• if it is close, we can start the mission,
• if there is a possibility that the vehicle is not sufficiently

close, we need to activate the vehicle’s engine to bring it
closer to the cable’s location.

If the mission is to correct some mineral deposits, then we
can compare:

• the information about the current location of the vehicle
with

• the known map of the deposits
to decide where to move the vehicle so as to extract the largest
amount of the desired mineral deposits on this particular
mission.

In all these applications, we have an objective function f(x)
depending on the vehicle’s location:

• it can be the distance between the location x and the
location of the cable;

• it can be the amount of mineral deposits that we can
extract in the vicinity of the location x, etc.

We do not know the exact location x, we only know the region
X . Thus, instead of the exact value of the objective function
f(x), we have a range f(X) of the function f(x) on this
region.

When the region X is a crisp set, the range is simply the
set of all possible values of f(x) when x ∈ X , i.e.,

f(X)
def
= {f(x) : x ∈ X}.

When the region X is a fuzzy set, we need to take into
account not only which locations x are possible and which
are not, but also the degrees to which different locations are
possible.

In such situations, fuzzy data processing can be (and
is) reduced to set-valued data processing. The value y of
the objective function is possible with a certain degree of
confidence α is there exists a location x:

• which is possible with at least this degree of confidence
(i.e., for which X(x) ≥ α) and

• for which f(x) = y.
Thus, the range Y (α) of all the value of f(x) which are
possible with degree at least α can be found as the range
of the function f(x) on a crisp set

X(α)
def
= {x : X(x) ≥ α}.

Thus, form the computational viewpoint,
• the corresponding fuzzy range-estimation problem can be

reduced to
• solving several crisp range-estimation problems.

In view of this reduction, in this paper, we consider algorithms
for solving the corresponding crisp problem.

Need to consider ranges over differences between sets. As
we have mentioned earlier, underwater localizations are not
very accurate. As a result, the corresponding region X is rather
big.

In many missions, the vehicle operates close to the ocean
floor. For such missions, we can decrease the size of the
corresponding region by taking into account that the vehicle is
in the water. Indeed, in many locations, we have a good map
of the materials below the ocean:

• Such maps – supplemented by the corresponding geo-
physical information – are often available, especially
when the vehicle’s mission involves mineral extraction.

• Such maps are also unusually available in the vicinity of
underwater cables: when engineers select a location for
the cable, they want to make sure that the cable is not
above a highly seismic zone, where frequent earthquakes
will disrupt the communications.

A simple example can illustrate the fact that such an additional
information decreases the size of the region – and thus, makes
the vehicle location more accurate. Indeed, suppose that the
vehicle is located on a flat floor, and we know the measurement
accuracy ε.

• Based on the measured location x̃, the only thing that
e can conclude based on this measurement result is that
the actual location x of the vehicle is within distance ε
from x̃. In other words, the corresponding region X of
possible locations is a ball (sometimes called sphere) of
radius ε with center at the point x̃.

• If the location x̃ is exactly on the ocean floor, then the
fact that the vehicle is in the water means that we only
need to consider locations above the floor. In other words,
instead of the whole ball X , we now have only a half of
the original ball.

In general, if we know:
• a set X of possible locations obtained from measure-

ments, and
• a set X ′ describing the region below the ocean floor,

then we can conclude that the location x of the vehicle is:
• in the set X , but
• not in the set X ′.

In other words, the set of possible locations of the underwater
vehicle is the difference set

X −X ′ def
= {x : x ∈ X &x ̸∈ X ′}.

Thus, it is important to find the range of the objective function
over a different between two sets.

II. FROM SETS TO BOXES: WHY NEW METHODS ARE
NEEDED

The existing methods of computing the range over a set are
based on reducing set to boxes.

Interval computations: a brief reminder. Specifically, as
the main tool, these methods use the methods of interval
computations (see, e.g., [5], [10], [12]), i.e., methods that



estimate the range of a given function f(x) = f(x1, . . . , xn)
over a box

[x1, x1]× . . .× [xn, xn].

Interval computations is NP-hard, hence results are usually
approximate. It should be emphasized that the problem of
estimating a range of a function over a box is, in general,
NP-hard – even for quadratic functions; see, e., [8].

This means, that, unless P=NP (which most computer sci-
entists believe to be impossible), we cannot have a feasible al-
gorithm that always computes the exact range. In other words,
every feasible algorithm computes only an approximation to
the desired range.

How to improve the estimates. In general:
• the smaller the box,
• the more accurate is the corresponding estimate.

So, if our estimate is too crude, one way to improve the
estimate is to:

• divide the box X into several sub-boxes:

X = X1 ∪ . . . ∪Xm;

• estimate the range of the function f(x) on each of these
sub-boxes, and then

• take the union of the resulting estimates:

f(X) = f(X1) ∪ . . . ∪ f(Xm).

The last step is straightforward: each range f(Xi) is an interval
[y

i
, yi]. Thus, the union f(X) = [y, y] of these sets is also an

interval, in which:
• the lower endpoint of the union is the smallest of the

corresponding lower endpoints, and
• the upper endpoint of the union is the largest of the

corresponding upper endpoints:

f(X) = [min(y
1
, . . . , y

m
),max(y1, . . . , ym)].

Boxes are usually disjoint. As we have mentioned, the
larger the boxes, the less accurate the estimation. One way
to decrease the size of the boxes is to make sure that they are
disjoint, i.e., to be more precise, they only intersect by their
faces. Indeed:

• if the two boxes intersect,
• then we can decrease one of these boxes – by deleting

common area – and still cover the whole area X .

Reduction to boxes. The above idea also helps to compute
the range of a function over an arbitrary set. Namely, we can
do the following (see, e.g., [5]):

• first, we approximate the set X by a union of several
boxes X1, . . . , Xm:

X ⊆ X1 ∪ . . . ∪Xm;

• then, we use interval techniques to find the ranges

f(X1), . . . , f(Xm)

of the function f(x) over all these boxes,
• and, finally,we compute the union of these ranges:

f(X) = f(X1) ∪ . . . ∪ f(Xm).

So how do we deal with set difference? From this viewpoint:
• if we know that the actual set of possible values is the

set difference between two sets X −X ′,
• what practitioners usually do is approximate the set

difference by a union of boxes.

Problem: naive approach can lead to an unfeasible number
of boxes. The problem with this approach is that if we do
it naively, we end up with exponentially many boxes - and
thus, with the exponential (hence non-feasible) time needed
to process all these boxes.

Let us illustrate this problem on a simple example. Let X
be a cube

[−2, 2]× . . .× [−2, 2],

and let X ′ be a cube formed by middle halves of all the
corresponding intervals:

X ′ = [−1, 1]× . . .× [−1, 1].

To make the resulting computation most accurate, let us
represent the set difference X − X ′ as a union of disjoint
boxes.

The original configuration (X,X ′):
• is invariant with respect to arbitrary permutations of the

variables;
• it is also invariant with respect to changing each variable

xi to −xi.
It is therefore reasonable to look for a division into sub-boxes
which is also invariant with respect to all these transforma-
tions.

The endpoints of the intervals forming the new sub-boxes
should coincide with the borders of one of the original interval,
i.e., should be equal to one of these 4 values:

• to −2,
• to −1,
• to 1, or
• to 2.
Let us show that in this case, all these intervals must be the

smallest possible, i.e., must be of the type:
• [−2,−1],
• [−1, 1], or
• [1, 2].

Indeed, suppose that [−2, 1] (or any interval containing
[−2, 1]) is one of these intervals. Then, the corresponding sub-
box has the form

[−2, 1]× . . .



• If the next interval is [−2,−1] (or any interval containing
[−2,−1]), then the sub-box has the form

[−2, 1]× [−2,−1]× . . .

By permutation, we should also have a sub-box

[−2,−1]× [−2, 1]× . . . ,

but these two sub-boxes have a non-empty intersection

[−2,−1]× [−2,−1]× . . . ,

and we assumed that the sub-boxes are disjoint.
• If the next interval is [−1, 1] (or anything containing

[−1, 1]), then the sub-box has the form

[−2, 1]× [−1, 1]× . . .

By permutation, we should also have a sub-box

[−1, 1]× [−2, 1]× . . . ,

but these two sub-boxes have a non-empty intersection

[−1, 1]× [−1, 1]× . . . ,

and we assumed that the sub-boxes are disjoint.
• Finally, if the next interval is [1, 2] (or any interval

containing [1, 2]), then the sub-box has the form

[−2, 1]× [1, 2]× . . .

By using invariance with respect to changing the sign of
x2, we conclude that we have a sub-box

[−2,−1]× [−2, 1]× . . . ,

and we already know that this is impossible.
Similarly, if [−1, 2] (or any interval containing [−1, 2]) is one
of these intervals, then, due to the invariance with respect to
changing sign, we would conclude that [−2, 1] is also one of
the possible intervals – and we have just shown that this is
not possible.

Thus, all intervals have the form [−2,−1], [−1, 1], or [1, 2].
One can show that in this case, we have 3n−1 boxes: indeed,

• by dividing each of n sides into 3 parts, we get 3n

possible sub-boxes;
• here, X ′ is one of these sub-boxes, so only 3n − 1 sub-

boxes remain.
For large n, we get exponentially many sub-boxes, which is
not feasible.

Comment.
• Of course, when n = 3, the value 3n−1 is simply 26, not

that much. So, in principle, if we have one underwater
device, we can still use this approach.

• However, for complex underwater tasks, it is often im-
portant to have several vehicles acting as a single swarm.
In this case, the objective function f(x) depends on the
locations of all these vehicles – i.e., for v vehicles, on 3v
coordinates. Often, the objective function depends also on

the vehicle’s velocities, so we have 6v parameters. Here,
36v − 1 can becomes very large very fast.

What we do in this paper. In this paper, we propose an
efficient algorithm for computing the differences.

III. ANALYSIS OF THE PROBLEM: REDUCING DIFFERENCE
BETWEEN SETS TO DIFFERENT BETWEEN BOXES

What we want: a reminder. We assume that both sets X and
X ′ are already represented as unions of boxes:

X = X1 ∪ . . . ∪Xm,

and
X ′ = X1 ∪ . . . ∪X ′

m′ .

We want to represent the set difference X −X ′ as a union of
boxes.

Reducing the problem to difference between boxes. By
definition of the set union, the fact that the actual location
x belongs to the union X = X1 ∪ . . . ∪Xm means that:

• either the location x belongs to the first set X1,
• or the location x belongs to the second set X2,
• . . .
• or the location x belongs to the last set Xm.

Taking into account that the location x cannot belong to the
set X ′, we conclude that:

• either the location x belongs to the difference X1 −X ′,
• or the location x belongs to the difference X2 −X ′,
• . . .
• or the location x belongs to the difference Xm −X ′.

In other words,

X −X ′ = (X1 −X ′) ∪ . . . ∪ (Xm −X ′).

So, to describe the set difference X−X” as a union of boxes,
it is sufficient to do the following:

• first, we represent each of the differences

X1 −X ′, . . . , Xm −X ′

as a union of boxes,
• then, we take the union of such unions.

From this viewpoint, the problem of representing the set
difference X − X ′ can be reduced to the the case when the
first set X is a box, i.e., to computing the difference

X − (X ′
1 ∪ . . . ∪X ′

m′)

between boxes.

Comment. It is worth mentioning that if the original boxes
X1, . . . , Xm were disjoint, then the corresponding differences

X1 −X ′, . . . , Xm −X ′

are disjoint too. Thus, we do not lose anything by making this
reduction.

Reducing to the case when X ′ is a single box. Usually,
while the set X ′ may consist of many boxes:



• for each box Xi,
• there are only a few boxes X ′

j that has non-empty
intersection with Xi and are, therefore, needed to take
into account when computing the set difference.

Thus, for each box Xi, we can safely assume that the set X ′

consists of a few boxes, i.e., that m′ is small. Thus, we can
compute the difference

X −X ′ = X − (X ′
1 ∪ . . . ∪X ′

m′)

as follows:
• first, we describe the difference X − X ′

1 as a union of
boxes,

• then, for each of the resulting boxes, we represent its
difference with X ′

2 as a union of boxes, . . . ,
• finally, for each of the resulting boxes, we represent its

difference with Xm′ as a union of boxes.
In view of this reduction, it is sufficient to represent the
difference between the two boxes X and X ′ as a union of
boxes.

Reformulating the difference between boxes in terms of
inequalities. For a box

X = [x1, x1]× . . .× [xn, xn],

the condition that the location x = (x1, . . . , xn) belongs to
the box X means that:

• x1 ≤ x1 ≤ x1, and
• x2 ≤ x2 ≤ x2, and
• . . . , and
• xn ≤ xn ≤ xn.

Similarly, for the box

X ′ = [x′
1, x

′
1]× . . .× [x′

n, x
′
n],

the condition the location x = (x1, . . . , xn) belongs to the
box X ′ would mean that:

• x′
1 ≤ x1 ≤ x′

1, and
• x′

2 ≤ x2 ≤ x′
2, and

• . . . , and
• x′

n ≤ xn ≤ x′
n.

Thus, the condition that the location x does not belong to the
set X ′ means that at least one of the following n coordinate
conditions are satisfied:

• the first condition is that either x1 < x′
1 or x′

1 < x1,
• the second condition is that either x2 < x′

2 or x′
n < xn,

• . . .
• the last condition is that either xn < x′

n or x′
n < xn.

Towards the algorithm. So, if x ∈ X and x1 < x′
1, i.e., if

x1 ∈ [x1, x
′
1], then the location x belongs to the difference

X −X ′.

(Of course, if x′
1 ≤ x1, this condition is never satisfied.)

All such locations x correspond to the box

[x1, x
′
1]× [x2, x2]× . . .× [xn, xn].

Thus, this box is a part of the set difference X −X ′.
Similarly, if x ∈ X and x1 > x′

1, i.e., if x1 ∈ [x′
1, x1], then

the location x belongs to the difference X −X ′. (Of course,
if x1 ≤ x′

1, this condition is never satisfied.)
All such locations x correspond to the box

[x′
1, x1]× [x2, x2]× . . .× [xn, xn].

Thus, this box is a part of the set difference X −X ′.
In the following, if we want to have disjoint sub-boxes, it

is sufficient to consider the remaining part of the set X , i.e.,
the part corresponding to

x1 ∈ [max(x1, x
′
1),min(x2, x

′
1)].

After that, we can similarly consider possible values of x2,
etc.

Thus, we arrive at the following algorithm.

IV. NEW ALGORITHM: DESCRIPTION, ADVANTAGE, AND
EXAMPLE

What is given: boxes

X = [x1, x1]× . . .× [xn, xn]

and
X ′ = [x′

1, x
′
1]× . . .× [x′

n, x
′
n].

What we want. We want to represent the set difference X−X ′

as a union of boxes.

Algorithm. For each i from 1 to n, let us compute the values

ℓi
def
= max(xi, x

′
i)

and
ui

def
= min(xi, x

′
i).

Then, we represent the difference X −X ′ as the union of the
following 2n boxes (some of which may be empty):

• n boxes

[ℓ1, u1]×. . .×[ℓi−1, ui−1]×[xi, x
′
i]×[xi+1, xi+1×. . .×[xn, xn]

corresponding to i = 1, . . . , n, and
• n boxes

[ℓ1, u1]×. . .×[ℓi−1, ui−1]×[x′
i, xi]×[xi+1, xi+1×. . .×[xn, xn]

corresponding to i = 1, . . . , n.

Advantage. This algorithm generates at most 2n boxes. In this
sense, it is clearly more efficient than the above-mentioned
traditional approach, which may lead to an unfeasible number
of boxes.

Example. Let us trace our algorithm on the above example,
when

X = [−2, 2]× . . .× [−2, 2]

and
X ′ = [−1, 1]× . . .× [−1, 1].



In this case, for each i, we have

[ℓi, ui] = [max(−2,−1),min(1, 2)] = [−1, 1].

Thus, our algorithm represents the difference X −X ′ as the
union of the following two sequence of boxes:

• the first sequence consists of the boxes

[−2,−1]× [−2, 2]× . . .× [−2, 2],

[−1, 1]× [−2,−1]× [−2, 2]× . . .× [−2, 2],

[−1, 1]× [−1, 1]× [−2,−1]× [−2, 2]× . . .× [−2, 2],

. . .

[−1, 1]× . . .× [−1, 1]× [−2,−1]× [−2, 2],

[−1, 1]× . . .× [−1, 1]× [−2,−1];

• the second sequence consists of the boxes

[1, 2]× [−2, 2]× . . .× [−2, 2],

[−1, 1]× [1, 2]× [−2, 2]× . . .× [−2, 2],

[−1, 1]× [−1, 1]× [1, 2]× [−2, 2]× . . .× [−2, 2],

. . .

[−1, 1]× . . .× [−1, 1]× [1, 2]× [−2, 2],

[−1, 1]× . . .× [−1, 1]× [1, 2].

Comment. It it worth mentioning that our algorithm is not
invariant with respect to permutations. Depending on which
coordinate we start with, we get, in general, different descrip-
tions of the set difference as a union of boxes. This is a price
that we pay for efficiency, since, as we have mentioned earlier:

• if we require invariance,
• then we end up with exponentially many boxes.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation grant HRD-1242122.

REFERENCES

[1] R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathe-
matics: A Historical Perspective, Oxford University Press, New York,
2017.

[2] Q. Brefort, L. Jaulin, M. Ceberio, and V. Kreinovich, “If we take into
account that constraints are soft, then processing constraints becomes
algorithmically solvable”, Proceedings of the IEEE Symposium on Com-
putational Intelligence for Engineering Solutions CIES’2014, Orlando,
Florida, December 9–12, 2014, pp. 1–10.

[3] Q. Brefort, L. Jaulin, M. Ceberio, and V. Kreinovich, “Towards fast
and reliable localization of an underwater object: an interval approach”,
Journal of Uncertain Systems, 2015, Vol. 9, No. 2, pp. 95–102.

[4] L. Jaulin and B. Descrochers, “Robust localisation using separators”,
Proceedings of the Seventh International Workshop on Constraints
Programming and Decision Making CoProd’2014, Würzburg, Germany,
September 21, 2014.

[5] L. Jaulin, M. Kiefer, O. Dicrit, and E. Walter, Applied Interval Analysis,
Springer, London, 2001.

[6] L. Jaulin, E. Walter, O. Lévêque, and D. Meixzel, “Set inversion of χ-
algorithms, with applications to guaranteed tobot location”, Mathematics
and Computers in Simulation, 2000, Vol. 52, No. 3–4, pp. 197–210.

[7] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[8] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Com-
plexity and Feasibility of Data Processing and Interval Computations,
Kluwer, Dordrecht, 1998.

[9] O. Lévêque, L. Jaulin, D. Deizel, and E. Walter, “Vehicle location from
inaccurate telemetric data: a set inversion approach”, Proceesings of the
5th IFAC Symposium on Robot Control SY.RO.CO’97, Nantes, France,
1997, Vol. 1, pp. 179–186.

[10] G. Mayer, Interval Analysis and Automatic Result Verification,
de Gruyter, Berlin, 2017.

[11] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and
New Directions, Springer, Cham, Switzerland, 2017.

[12] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM, Philadelphia, 2009.

[13] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman
and Hall/CRC, Boca Raton, Florida, 2006.

[14] S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and
Practice, Springer Verlag, Berlin, 2005.

[15] J. Sliwka, L. Jaulin, M. Ceberio, and V. Kreinovich, “Processing interval
sensor data in the presence of outliers, with potential applications to lo-
calizing underwater robots”, Proceedings of the 2011 IEEE International
Conference on Systems, Man, and Cybernetics SMC’2011, Anchorage,
Alaska, October 9–12, 2011, pp. 2330–2337.

[16] A. Welte, L. Jaulin, M. Ceberio, and V. Kreinovich, “Robust data
processing in the presence of uncertainty and outliers: case of lo-
calization problems”, Proceedings of the IEEE Series of Symposia in
Computational Intelligence SSCI’2016, Athens, Greece, December 6–9,
2016.

[17] A. Welte, L. Jaulin, M. Ceberio, and V. Kreinovich, “Avoiding fake
boundaries in set interval computing”, Journal of Uncertain Systems,
2017, Vol. 11, No. 2, pp. 137–148.

[18] A. Welte, L. Jaulin, M. Ceberio, and V. Kreinovich, “Computability of
the avoidance set and of the set-valued identification problem”, Journal
of Uncertain Systems, 2017, Vol. 11, No. 2, pp. 129–136.

[19] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8,
pp. 338–353.


