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1 Introduction

A feature-based localization problem can be formalized as follows [11]

x(t) = £ (x(t)),u(t)) (evolution equation)
g(x(t),y(t)) e M (observation constraint) (1)
x(0) € Xq (initial state)

where x is the unknown state vector, y an exteroceptive measurement vector, u
a proprioceptive measurement vector. It is known that for all ¢, u(t) € [u] and
y(t) € [y]. The set M is a map which is assumed to be known. Equivalently,
the observation constraint can then be written as

Jm(t) € M, m(t) = g(x(t), y(t))-

If we take into account the uncertainty on y, we can say that the state vector
x(t) is consistent with the interval measurement [y] (¢) if

Im(t) € M, 3y(¢) € [y] (1), m(t) = g(x(1),y(t))-

The existential quantification 3m(¢) € M highlights the requirement of solving
the so-called data association problem which aims at finding which point of the
map is associated with the measurement vector y. If M is composed with finite
number of isolated points., our problem copes with the initial localization prob-
lem on a field of point landmarks that are indistinguishable. All measurements
have the same aspect and cannot be associated directly with a particular point
of the map. This problem frequently arises when acoustic sensors are used to
detect underwater environmental features [3].

In this paper, we propose an interval-based method [6] to solve the localiza-
tion problem efficiently [2] [5].



2 Problem

We consider a robot moving on a plane, the motion of which is described by the
state equation

sin(y(.))  cos(¢())
w(.)

The state vector is x = (pg,py, ), where p = (py,p,) is its position andy)
is its heading. The input vector is u = (v, vy, w), where v = (v, v,) is the
horizontal speed of the vehicle in its own frame, measured for instance with
a Doppler Velocity Log (DVL) (in case of an underwater robot), and w(.) is
angular velocity measured by gyroscopes.

For some times t; € T, the robot collects the range-bearing vector y (¢;) =
(p(ti), ()T to a landmark m(t;) = (my(t;), m,(¢;))T which belongs to the
map M, composed of a collection of georeferenced points. This leads to the
following constraint

cos(ip(.)  —sin(y() \
( ) ()

with

st v = () )+ (GGG ) @

The localization problem is thus described by the following set of equations:

cM (4)

where the trajectory x(.), and the landmark associated to the measurements
taken at time ¢; both need to be estimated. This set of equations can decom-
posed into:

where a contractor [8] can be defined for each constraint. In particular, the
contractor Ca [9] is used to contract the tube [x](.) with respect to (i). The
map M can be depicted by a subpaving, or by an image, for which a contractor
such as the one used in [10] can be used. For any box [x] € IR? , this contractor
returns the smallest box which contains all landmarks included in [x]. The
constraint (v) corresponds to the polar constraint where the minimal contractor
[1] can be used.



3 Test-case

Consider an AUV starting its mission with a huge position uncertainty. This
can happen during a dive in deep water [7] or when, for discretion purpose, a
long-range transit phase, underwater, is required to reach the working area.

For operational reasons, no external positioning system, such as acoustics
beacons or USBL, are deployed. We assume that a part of the mission area has
been previously mapped during a previous survey and this area is large enough
to be reached by the AUV. The corresponding map M describing this area is
modeled by a set of 280 point landmarks.

Our robot performs a small mission pattern as depicted in Figure 1. It senses
its environment using a forward-looking sonar oriented toward the seabed, the
scope of which is represented by the blue pie. Every three seconds, it is able
to measure the distance and bearing between its pose to some landmarks which
range between 10 and 70 meters. The positions of the detected landmarks are
depicted by green dots. The 90 red segments represent the measurements. Note
that only a small number of mapped landmarks have been detected.

Only the 2D position of the robot and its heading need to be estimated since
other state variables (roll, pitch, and altitude, depth) are directly measured.

Assumptions. For simplicity, we consider that fact that only landmarks
inside the sonar pie are seen by the AUV is not taken into account by the
method. Moreover, in an underwater context, the detected landmarks cannot
be distinguished from the others, since for instance, two different rocks can
have generally the same aspect and dimension in the sonar image. Moreover,
the landmark detection process is sensitive on change in the point of view of the
sensor, some landmarks of the map cannot be seen during the survey. Thus, no
reliable data associations based on the shape of the landmarks can be assumed.
Moreover successive measurements corresponding to the same landmark could
be associated by the sonar tracking system. Again, we consider this matching
as non reliable and will not be used for the localization.

This example aims at providing a practical illustration of how the constraint
propagation methods can be used to:

1. find the trajectory the vehicle
2. solve the data association problem without any combinatorial explosion.

Once these two issues are solved, any classical localization method, such as an
EKEF [4], can be used to get a more accurate estimate of the trajectory. The filter
is initialized with a reliable starting point and only updated with observations
which are correctly associated.

4 Results

Given [x(0)],..., [x(kmaz)] & set of boxes that enclose the state vector of the
robot. All are initialized to R? x [—7, 7]. The initial heading is assumed to be
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Figure 1: The simulated environment for initial localization. The trajectory of
the AUV is depicted by the blue lines. Its starting point is drawn by the red
dot. The map is composed of 230 landmarks represented by black dots.

data | description uncertainty unit
1(0) | initial heading [—10,10] deg
v(t) | linear speed [—0.05,0.05]%2 | m.s~?
w(t) | angular velocity [—0.001,0.001] deg.s~!
p(t) | range p(t) - [-0.01,0.01] | m

Y(t) | azimuth [—1,1] deg

Table 1: Uncertainties on data used for the application.

known with an accuracy of £10 degrees. Table 1 shows bounds used to quantify
error on sensor readings. The map M is composed of 280 landmarks, and 90
observations have been done during the whole mission.

Figure 4 shows the final trajectory obtained after 12 iterations in less than
1 minute on i7-5600U CPUQ@2.60GHz.

In Table 2, for each iteration, the times needed to contract the whole trajec-
tory are given. This time is constant at each iteration. During the constraint
propagation process, the thinner the trajectory is, the smaller the number of
landmarks contained in [m)](¢;) is, and vice versa. As an indicator, columns 3
(resp. 4) of Table 2 shows the minimal (resp. maximal) number of landmarks
included [m](¢;) among all measurements. The last column corresponds to the
number of correct association, i.e, when [m](¢;) contains a single landmark.
Figure 2 shows diameters of boxes along the trajectory for different iteration
which illustrates the constraint propagation process. The constraint propaga-
tion methods is shown to be powerful in situations involving a huge number of
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Figure 3: w([f]) with respect to the iteration number. The peaks in the graph
are due to the wrapping effect when the vehicle turns.

possible data association. In comparison, existing method often meet difficulty
when both the initial position and the data associations are unknown.
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Figure 4: Final trajectory with correct estimation of the initial position and
landmarks association. The true trajectory, in blue, belongs the tube in red.

# || time(s) | #min | #max | #ok
1 2.61 202 230 0
2 2.65 27 81 0
3 2.99 22 75 0
4 2,77 15 73 0
5 2.62 11 71 0
6 2.48 4 71 0
7 2.33 2 68 0
8 2.02 1 29 10
9 2.61 1 6 64
10 2.44 1 3 82
11 2.41 1 2 88
12 2.40 1 1 90

Table 2: Time needed to contract the whole trajectory for each iteration. #min
(resp. #max) is the smallest (resp. greatest) number of elements of [m](¢;)
among all measurements. #ok denotes the number of good associations. The
computing time is nearly constant.
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