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Abstract—Targets recognition in radar images presents an 

essential task for monitoring and surveillance of sensitive areas 

such as military zones. The fundamental problem in radar imaging 

is related to the recognition of objects in radar images, that its 

needs a whole chain of treatment. To classify radar images a 

feature extraction method is used to detect an appropriate subspace 

in the original feature space, which is based on transformation of 

the original feature. This subspace should be big enough to 

maintain minimal loss of information and small enough to 

minimize the complexity of classifier. Since the feature extractor is 

difficult to build in manual mode and needs to be redesigned for 

each application, a Deep Learning in automatic mode is used with a 

training process subdivided into several modules. In this paper, we 

lay out an approach to classify Synthetic aperture radar (SAR) and 

Inverse Synthetic aperture radar (ISAR) images using Deep 

learning techniques. At first, in order to evaluate the effect of 

convolution layers and the number of hidden layers of the 

perceptron we thought of implementing 4 configurations of CNN 

(Convolutional neural network). In the second time, we use the 

CAE (Convolutional auto-encoder) to learn the optimal filters that 

minimize the reconstruction error, after we use these filters to feed 

the CNN retained and evaluate the effect on performance’s system. 

Keywords—Target recognition, Deep learning, ISAR images, 

SAR images, Convolutional neural network, Convolutional auto-

encoder. 

I.  INTRODUCTION 

Synthetic Aperture Radar produces two-dimensional (2D) 
images where one dimension in the image is a range and the 
other dimension is an azimuth (or cross range). The SAR 
remote sensing presents numerous advantages over optical 
remote sensing, due to its independence on atmospheric and 
sunlight condition [1]. It has been successfully applied in many 
fields such as military, and oceanology. Similar to the SAR, 
Inverse Synthetic Aperture Radars (ISAR) also produce a two-
dimensional image (range and cross range, and intensity). 
However, the ISARs synthesize a large aperture antenna by 
using the motion of the target. Thus, the notation “inverse 
synthetic aperture” is generally applied to movement of the 
target which permits derivation of information about the shape 
and size of the target. 

The classification of radar images is a significant 
challenging task yet [18]. Due to the presence of speckle noise 
and the absence of effective feature presentation, the 
interpretation and the understanding of radar images are always 
much different from optical images [2]. An adequate feature 

extraction approach, which can abstract spatial information 
from radar images as well as improve classification accuracy, is 
required. Feature extraction of these images has been 
researched for many years, and a lot of methods have been 
proposed by many researchers. Recently, inspired from 
artificial intelligence, Deep Learning methods [6,11,19,20] are 
used to classify SAR and ISAR images. 

In our framework, ISAR and SAR databases are used, the 
first is composed of aircrafts images and the second is a 
benchmark of SAR images representing military vehicles. At 
first we evaluated the impact of the convolutions layers and the 
hidden layers of the perceptron on system performances, by the 
implementation of 4 architectures of CNN. Then we proposed 
the use of a Convolutional Auto-Encoder (CAE) to generate 
optimal filters, which will be wormed in the convolution layers. 

The remainder of this paper is organized as follows. Section 
II gives an introduction of different deep learning techniques. 
In section III, details of training are described and some 
experimental results on the MSTAR and Aircraft datasets are 
presented. Finally a conclusion will be given in the section IV. 

II. DEEP LEARNING METHODS 

A. Convolutional Neural Network (CNN) 

For pattern recognition and image classification tasks, 
variants of CNNs have emerged as a robust supervised feature 
learning and classification tools, especially when combined 
with pooling operations [5]. 

Fig. 1. CNN architecture. 

As shown in Fig 1, the CNNs are multi-layered NNs which 
is composed of several alternations of convolution and pooling 
layers, followed by fully connected layers on the top. They are 
specialized on recognition visual patterns directly from image 
pixels. 
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1) Convolutional layer

This layer is parameterized by the number of feature maps J 

and the size of these maps also the kernel sizes F × F. Each 

layer has many maps of equal size [7]. The kernel kji(l)(u, v) is

shifted over the valid region of the input feature map, a 

trainable bias  bi(l) is added and a sigmoid function is applied to

activate this layer. Thus, in a Convolutional layer, each map 

Mj(l)(j = 1 … J) is connected to all of its preceding feature maps

Mi(i−1)
(x, y), where Mi(i−1)

(x, y) is the unit of the ith input

feature map at position (x, y), and Mj(l)(x, y) is the unit of the𝑗𝑗P

th
 output feature map at position (x, y). The convolution

operation is defined by (1) as: 

Vj(l)(x, y) =  � � kji(l)(u, v). Mi(l−1)
(x − u, y− v) + bj(l)F−1

u,v=1
I
i=1 (1) 

𝑀𝑀𝑗𝑗(𝑙𝑙)(𝑥𝑥,𝑦𝑦) = 𝑓𝑓 �𝑉𝑉𝑗𝑗(𝑙𝑙)(𝑥𝑥, 𝑦𝑦)�  (2) 

Where f(x) is the nonlinear activation function, and 

Vj(l)(x, y) denotes the weighted sum of the jP

th
 inputs to the

output feature map at position(x, y). 

To improve classification tasks, a nonlinear activation 

function should be added at each convolution layer. In 

traditional ConvNets, a sigmoid f(x) =  
1

(1+e−x)
 or a hyperbolic 

tangent functionf(x) =  tanh(x) is applied to each unit on the 

output feature maps on the convolutional layer. Recent 

research has found a non-saturating nonlinearity, i.e., the 

rectified linear unit (ReLU), which often works better in 

practice. The ReLU activation function is given by (3): 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥)  (3) 

2) Pooling layer

The purpose of the pooling layers is to achieve spatial 
invariance by reducing the resolution of the feature maps and to 
control the overfitting [3]. Each map in the pooling layer 
corresponds to one map of the previous layer. Their units are 
combined from a small patch (local region) of pixels; this patch 
can be of arbitrary size. There are too different pooling 
operations the average-pooling which computes the average 
over the inputs and max pooling which takes the maximum of 
the neighborhood. The max pooling operation is defined by (4):  

Mi(l) = maxq Mi(l) (x. s + u, y. s + v)        (4) 

Where q is the pooling size and s is the stride which 

determines the intervals between neighbor pooling windows. 

3) Classification layer

After stacking convolution and pooling layers, a shallow 

Multilayer Perceptron (PMC) is used to complete the 

architecture. The output layer has one neuron per class and a 

sigmoid is used as a nonlinear activation function. Thus, each 

neuron’s output in between 0 and 1, which makes it possible to 

consider this output as a probability. Other than the supervised 

methods, there are the unsupervised ones, which aim to extract 

generally useful features from unlabeled data, to detect and 

remove input redundancies, and to preserve  essential aspects 

of the data in robust and discriminative representations. 

Unsupervised methods have been used in many scientific 

and industrial applications. In the context of neural network 

architectures, un-supervised layers can be stacked on top of 

each other to build deep architectures [8]. These methods 

permits unsupervised initializations which tend to avoid local 

minima, which increase the network’s performance stability 

[9]. 

II. CONVOLUTIONAL AUTO-ENCODER (AE)

The Convolutional Auto-encoder is an unsupervised 

method for hierarchical feature extraction; it forms a 

convolutional neural network (CNN). The CAE discovers good 

CNNs initializations that avoid the numerous distinct local 

minima of highly non-convex functions arising in virtually all 

deep problems. While the CAE’s representation makes learning 

even harder than for standard auto-encoders [12], good filters 

emerge if we use pooling layer, an elegant way of enforcing 

sparse codes without any regularization parameters to be set by 

trial and error [13]. 

Fully connected AEs ignore the 2D image structure, which 

can cause problems like introducing redundancy in the 

parameters, with forcing each feature to be global. The CAE 

differs from conventional AEs as their weights are shared 

among all locations in the input, preserving spatial locality. The 

reconstruction is hence due to a linear combination of basic 

image patches [14]. 

For a mono-channel inputs x the latent code of the jth 

feature map is given by (5): ℎ𝑗𝑗 = 𝜎𝜎(𝑥𝑥 ∗ 𝑤𝑤𝑗𝑗 + 𝑏𝑏𝑗𝑗)  (5) 

Where the bias bj is broadcasted to the whole map, σ is the 

activation function, and * denotes the 2D convolution. A 

single bias per maps is used in [14] because one bias per pixel 

would introduce too many degrees of freedom. 

The reconstruction is obtained using (6) 𝑦𝑦 = 𝜎𝜎(ℎ𝑗𝑗 ∗ 𝑤𝑤𝚥𝚥� + 𝑐𝑐)  (6)   

Where again c is a bias per input channel and wȷ� represent the 

flip operation over both dimensions of the weights. In this 

CAE the back-propagation is applied to compute the gradient 

of error function with respect to the parameters. The 

convolution of a k × k  matrix with a n × nmatrix may in fact 

result in an(m − n + 1) × (m − n + 1). The cost function to 

minimize is the mean squared error (MSE) given by (7): 

E(θ) =  
1

2n
�(xi − yi)2  (7)

n
i=1  
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III. EXPERIMENTS AND DISCUSSION

In this part, we report and analyze the implementations and 
classification results obtained on ISAR and SAR images. We 
are interested in this section both in classical methods and in 
Deep Learning techniques by combining the auto-encoder and 
the convolutional auto-encoder with a network of 
convolutional neurons to enhance system performances. Note 
that the tests are performed on an Intel processor, CPU 3.10 
GHZ with 8 GB of RAM. We introduce in the first of this 
section the datasets used for different simulations. 

A. Datasets 

For target recognition, we utilize two datasets. The first 

one is MSTAR database [15] which include ten different 

categories of ground targets (armed personnel carrier: BMP-2, 

BRDM-2, BTR-60, and BTR-70; tank: T-62, T-72; rocket 

launch: 2S1; air defense unit: ZSU-234; truck: ZIL-131; 

bulldoze:  D7) as shown in Fig. 2. They were collected using 

an X-band SAR sensor, in a 1-ft resolution spotlight mode 

with a full aspect coverage (in the range 0° to 360°).  

         

The second datasets, SynISAR [16], is composed of 7 

classes of aircrafts as illustrated in Fig. 3, which each class 

contains 181 images. We have reduced the initial size of the 

images which is 300×300 to 32×32, so that the center of the 

image obtained is the same as that of the initial image. We 

note also that for the ISAR database we have mapped the 

images in 70% (840 images) for the learning base and 30% 

(427 images) for the test base. 

B. Standard classification versus deep learning 

In this section, we proposed the use of the multilayer 

perceptron (MLP) and the K nearest neighbors (KNN) as 

classifier, after that we implement a CNN which composed of 

2 convolutional layers and a perceptron of two layers, to 

evaluate and analyze the results obtained over these methods. 

For the KNN, first of all we tried with different number of K, 

we noticed that we obtain a minimal error when k is high but 

the time of training here is too long. So we chose a k=9 which 

we have acquired 95.71 % for ISAR images and 72.53% with 

the SAR ones. For the PMC, each pixel of the image is 

connected to an input neuron, so 1024 neurons are used for the 

input layer (32 × 32 Input size). The number of hidden layer 

neurons is chosen according to the equation cited in [17]where 

the number of neurons in this layer must be equal to the square 

root of the product of the number of neurons in the input and 

output layer, that’s why we have configured the hidden layer 

with 85 neurons. In the output layer, we have 7 classes which 

correspond to 7 neurons. For the minimization of the error and 

the optimization of the network, a learning rate of 0.5 was 

chosen. After learning and updating the weights and biases, we 

obtain a recognition rate of 92.97% for the ISAR database. For 

classification of SAR images (10 classes), we have configured 

the network with 102 neurons according to [17]. Since there 

are 1024 neurons in the input layer and 10 neurons in the 

output layer. The overall recognition rate is 62.24%. With the 

CNN architecture; we adopted  the approach used for the 

networks of deep neurons, which requires a judicious choice 

of the number of epochs and the size of the block. These two 

parameters make it possible to define an optimal number of 

iterations to arrive at a minimum error rate. The first 

architecture of deep neural network is the convolutional neural 

network, there are different models of this network, depending 

on the size of the data inputs, the configuration of the layers, 

the number of filters, the size of kernels and the sub-sampling 

steps. The architecture of this network is given in Fig. 4. 

 At each convolution layer, a bias is added to the convolved 
images before passing through an activation function. In this 
architecture 1 of CNN (Fig. 4), we used a sigmoid function 
which presents the correction layer. The last 8 images obtained 
are sized 5×5 and concatenated into a vector, which is the 
input of the neural network. The input layer contains 200 
neurons and the output layer contains neurons as the number 
of classes (7 neurons for ISAR Dataset and 10 neurons for 
MSTAR Dataset) with a sigmoid function as activation 
function. Note that the neural network in this architecture has 
no hidden layer. Using this CNN, we obtained 96.48% with 
ISAR images and 72.82% with SAR images. The obtained 
results on SAR and ISAR datasets are given in Table I. 

Fig. 3. SynISAR dataset [16]. 

Fig. 2. MSTAR Dataset. 

Fig. 4. CNN architecture. 
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TABLE I. CLASSIFICATION ACCURACIES 

K-NN PMC CNN 

ISAR database 95.71% 92.97% 96.48% 

SAR database 72.53% 62.24% 72.82% 

The CNN use relatively little pre-processing, unlike the 

other classical algorithms such as KNN and MLP.. The 

absence of initial parameterization and human intervention for 

the extraction of the characteristics is a major asset of the 

CNN, in addition to these advantages; the recognition rate is 

better by applying the CNN.  

To evaluate the performance of CNN architecture, the 

convolution layers and the hidden layer on the classification 

step (see Fig.1) are studied. The influence of these layers are 

presented and discussed in the section below.  

C. Evaluation of convolution layers and hidden layer 

In order to evaluate the effect of convolution layers and 

the number of hidden layers of the perceptron we thought of 

implementing 3other configurations of CNN. As a proposition 

of amelioration, we used a CAE to learn the optimal filters that 

minimize the reconstruction error, after that we used these 

filters to feed the CNN retained among the 3 configurations. 

To optimize the weights of the perceptron we integrated an 

AE. Since everything is optimal in the architecture we 

proposed the minimization of the number of filters used to 

reduce the learning time and improve the recognition rate. 

• 1
st

 architecture

For this configuration, 8 kernels were used with one 
convolutionnel layer. After sub-sampling of the founded 
images, we obtained 14 × 14 images. The input vector of the 
perceptron has 1568 neurons with an output layer of 7 
neurons. With this configuration, we obtained a recognition 
rate of 92.27% with an estimated learning time of 21 seconds 
for ISAR dataset. We also used this architecture for the 
MSTAR database; the perceptron in this case contains 1586 
neurons in the input layer and 10 neurons for the output layer 
(10 classes). We found 62.27% as the recognition rate, with a 
learning time of 55 seconds. The obtained recognition results 
on MSTAR dataset show that this fist architecture fails to 
recognize the 3 classes (recognition rates are 0% for 
ZSUS234, BTR70 and T72). In the next architecture, we 
added a hidden layer to the perceptron. 

• 2
nd

 architecture

 

In this configuration a hidden layer was added according 

to rule [17]. For the ISAR dataset, the input layer is composed 

of 1568 neurons and the output layer consists of 7 neurons so 

we inserted a hidden layer of 105 neurons. We obtained a 

recognition rate of 95.31% with a learning time of 27 seconds 

for all ISAR images of learning dataset. For the MSTAR 

database, the perceptron is configured with a hidden layer of 

125 neurons, we obtained a recognition rate of 70.74%. The 

learning time for this learning database is 85 seconds. 

We can see from these two configurations that by adding 

a hidden layer the recognition rate increases. It should also be 

noted that the learning time becomes more important by 

increasing the number of hidden layers. With this 

configuration, the adding of a hidden layer improves the 

system performances. We observe that this CNN can 

recognize two classes (ZSUS234, BTR70) but the third 

remains always unknown (T72). The next architecture, we 

append a second convolution layer to the previous 

architecture. 

• 3
rd

 architecture

 

Using this architecture, we can assess the impact of 

convolution and sub-sampling, by adding the second 

convolution layer. The 8 images of the last sub-sampling step 

are of size 5×5. After the concatenation of these images, the 

feature vector is of size 200.For the connected layers, the input 

layer is 200 neurons, the output layer is 7 neurons (ISAR data 

base) and the hidden layer according to [17] is of 38 neurons. 

For the MSTAR datasets which have 10 classes, so we 

configured the hidden layer with 45 neurons. We obtain a 

recognition rate of 97.19% with a learning time of 37 seconds 

for the ISAR images and recognition rate of 75.98% with 105 
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Fig. 6. CNN with one convolutionnel layer and with hidden layer. 
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Fig. 5. CNN with one convolutionnel layer and without hidden layer. 
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Fig.  8. CNN with CAE and AE architectures. 

seconds on learning SAR images dataset. We have found that 

adding a convolution layer the recognition rate as well as the 

learning time increases. In this proposed architecture, all 

classes are recognized with enhancing of the classification rate 

but make the learning time more long. 

The table II summarizes the results obtained by the 

different CNNs on the two databases. We noticed that adding a 

hidden layer to the PMC or adding a convolution layer results 

improve the recognition rate. On the other hand it serves to 

increase the learning time. 

For the improvement of the recognition architecture by 

reducing the learning time, we opted for the last configuration 

which gives us a good classification. We then use a 

convolutional auto-encoder for the generation of filters. 

TABLE II. RECOGNITION ACCURACIES FOR CNN ARCHITECTURE 

D. CNN using CAE 

As previously described, Convolutional Auto-Encoder 

(CAE) addresses the task of defining filters in a different 

perspective. Instead of using CNN convolutional random 

filters, we used the CAE to learn the optimal kernels that 

minimize the reconstruction error, after we use these filters for 

the two layers of our CNN. Since we have 2 layers of 

convolutions, we first start by implementing a 2-layer CAE, 

each layer gives us the 8 filters intended to be used in the 

CNN. 

For the ISAR database, we obtained 96.72% with a 

learning time of 40 seconds. Howevern for MSTAR database 

we obtained a rate accuracy of  82.15% with 110 seconds. For 

learning step including CAE times learning. Note that the 

accuracies are roughly equal to that found without CAE with 

increased learning time. In order to reduce the learning time 

without loss system’s performances, we introduce an AE in 

order to obtain the optimal weights that will be used for the 

hidden layer of the perceptron. Then, we opted to reduce the 

number of filters given by CAE. 

E. CNN With CAE and AE. 

In this step and in ordrer to optimize the previous 

archticture (with CAE solution), we integrate an auto-encoder 

to optimize the weights of the perceptron.  

• 4
th

 architecture

 

Using the weights given by the auto-encoder, we obtain 

97.65% as a classification rate for a learning time of 47 

seconds with the ISAR database, and a rate of 83.27% with a 

learning time is 117 seconds for the MSTAR database. 

Note here that the recognition rate is improved while the 

learning time has increased. In order to reduce learning time, 

we sought to reduce the number of filters generated by the 

CAE. The first simulations are carried out with 8 filters in the 

first convolution layer and 8 filters in the second (8, 8), we 

have reduced the number to (2, 2) to bring out the influence of 

this step on the classification rate and learning time. With two 

filters in the two convolutions layers, a recognition rate of 

98.12% with a learning time of 25 seconds, is obtained, which 

implies an improvement in the results in terms of rate and 

calculation time. We found the same improvement for the 

MSTAR database, a classification rate of 90.09% is achieved 

with a learning time of 78 seconds. The obtained results using 

CAE and AE are presented un Table 3. 

TABLE III. RECOGNITION ACCURACIES FOR CNN WITH CAE AND AE 

ARCHITECTURES. 

CNN archi; using CAE (2 

convolutions)  and AE (one hidden 

layer) 

Number of kernels 

(conv1, vonv2) 

Conv. Layers 

(CAE) 

Conv. Layers 

(CAE) 

(8,8) (2,2) 

IS
A

R
 

D
ataset 

Recog. 

rate 
97.65% 98.12% 

Learn t 47s 25s 

M
S

T
A

R
 

D
ataset 

Recog. 

rate 
83.27% 90.09% 

Learn t 117s 78s 

CNN 

One conv. layer Two conv.layer 

Perceptron 

Without 

hidden 

layer 

One 

hidden 

layer 
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hidden 

layer 

One 

hidden 

layer 

IS
A

R
 

D
ataset 

Recog. 

rate 
92.27% 95.31% 96.48% 97.19% 

Learn. t 21 s 27 s 30 s 37 s 

M
S

T
A

R
 

D
ataset 

Recog. 

rate 
62.27% 70.74% 72.82% 75.98% 

Learn. t 55 s 85 s 90 s 105 s 

CAE 

AE 

Perception Conv Conv 

One hidden layer 

2 conv. layers 

8 kernels/layer 

CNN 
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CONCLUSION 

In this work, we studied and applied different classification 

methods: K-NN, RN, and CNN, which are evaluated in terms 

of recognition rates and learning time. We evaluated also the 

influence of the addition of the layers of convolutions and the 

hidden layers on the performances of the network.  

The results presented in the last section shows the 

effectiveness of deep learning methods for the classification of 

radar images. By varying the number of filters with the use of 

various deep learning techniques (CAE and CNN), we 

achieved a better classification rate with optimal number of 

filters and one hidden layer.  
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