
HAL Id: hal-01780390
https://ensta-bretagne.hal.science/hal-01780390

Submitted on 27 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Insights into portability issues of FM3TR waveform
Frédéric Le Roy, Lahatra Rakotondrainibe, Jean-Philippe Delahaye, Ali

Mansour

To cite this version:
Frédéric Le Roy, Lahatra Rakotondrainibe, Jean-Philippe Delahaye, Ali Mansour. Insights into porta-
bility issues of FM3TR waveform. Analog Integrated Circuits and Signal Processing, 2021, 106, pp.45-
57. �10.1007/s10470-017-1097-x�. �hal-01780390�

https://ensta-bretagne.hal.science/hal-01780390
https://hal.archives-ouvertes.fr


Insights into portability issues of FM3TR waveform

Frédéric Le Roy1 • Lahatra Rakotondrainibe2 • Jean-Philippe Delahaye3 • Ali Mansour1

Received: 30 November 2015 / Revised: 15 May 2017 / Accepted: 13 December 2017
� The Author(s) 2017. This article is an open access publication

Abstract
This manuscript focuses on issues related to the implementation of the Future Multiband Multiwaveform Modular Tactical

Radio (FM3TR) waveform on two different SCA platforms with similar hardware but different SCA development and

deployment environments. Our experimental results showed that a SCA standardization based on technologies such as

CORBA, XML, IDL, is not enough to ensure the portability of the waveform. Indeed, the files generated by SCA 2.2.2

environments (ZCE, SCA Architect, http://nordiasoft.com/products/scari-software-suite/sca-architect/) may often use a

specific non-standard IDL interface to generate software components. To corroborate our statement, specific examples of

SCA components are considered. The portability of the waveform depends on the waveform software used by the porting

team. Three classic cases can be observed during the development of a waveform according to a standard specification: The

first case is related to waveform development from scratch, the second case is observed when a static library is used to

carry the golden code of the waveform and the third one occurs when only platform specific codes are available to the

porting process. Finally, a general discussion about portability is provided.

Keywords Software defined radio (SDR) � Software communications architecture (SCA) � Waveform portability �
Model driven engineering (MDE) � CORBA

1 Introduction

In many SDR projects, the waveform (WF) portability has

been investigated [2] and identified by portable code that

may reduce implementation time, money and effort and

save budget investments. Over the last decade, researchers

from all around the world have been involved in the con-

cept of portable codes. In ‘‘Wireless Innovation Forum:

Top 10 Most Wanted Wireless Innovations’’ [3], porting

activity was at the top of the list.

The porting concept was mainly introduced to improve

the interoperability among various radio systems using a

single code source that can be run on various platforms. In

this study, the analysis of executive settings is investigated

and several areas related to WF design are also considered

(such as the glue code generation, IDL, CORBA messaging

and Model of Computation (MoC) of ‘‘pipelined

components’’).

In this manuscript, three types of SCA [4] component

software design architecture and source code generation

are considered. Architectures of WF and platforms used in

this porting work are introduced. In addition, this manu-

script describes porting situations and proposes a Model

Driven Engineering (MDE) tool chain prototype to port

SCA waveforms on various platforms. Hereinafter, the

porting limitations observed in our experiments are

analyzed.

It is worth mentioning that our study showed how hard

can be the porting of a target waveform even thought it was

based on standardized software architecture. However,

Model-Driven Architecture (MDA) can provide various

& Frédéric Le Roy

frederic.le_roy@ensta-bretagne.fr

Lahatra Rakotondrainibe

lahatra.rakotondrainibe@be.thalesgroup.com

Jean-Philippe Delahaye

jean-philippe.delahaye@intradef.gouv.fr

Ali Mansour

mansour@ieee.org

1 ENSTA Bretagne, 2 Rue François Verny, 29806 Brest Cedex,

France

2 Thales Belgium S.A, Rue des Frères Taymans 28,

1480 Tubize, Belgium

3 DGA-MI, BP 7, 35998 Rennes Cedex 9, France

123

Analog Integrated Circuits and Signal Processing
https://doi.org/10.1007/s10470-017-1097-x(012 3456789().,- volV)(0123456789().,-volV)

http://orcid.org/0000-0001-6758-917X
http://nordiasoft.com/products/scari-software-suite/sca-architect/
http://crossmark.crossref.org/dialog/?doi=10.1007/s10470-017-1097-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10470-017-1097-x&amp;domain=pdf
https://doi.org/10.1007/s10470-017-1097-x


tools (Rapsody, MDWorkbench, Modelio, QVT, …) based

on meta-models allowing the transform of code models

using transformation rules which can take into account the

specificities of a platform and could release a comparison

report to enhance major differences between original and

target platforms.

The rest of this paper is presented as follows; Sect. 2

gives an overview of issues existed with the porting of

Software Communication Architecture (SCA) waveforms

and it also presented the proposed solutions of these issues

in the literature. In Sect. 3, three examples of software

component generation are presented to illustrate the dif-

ference that can be obtained by three generation environ-

ments yet based on the same SCA standard. In the Sect. 4,

we analyze the porting of a FM3TR waveform between

two different platforms. In Sect. 5, portage limitations

related to the compatibility among waveforms and plat-

forms are considered. Finally, Sect. 6 presents Model-

Driven Architecture (MDA) tools which could ease the

portage of a target code, developed on a given platform, to

a different platform.

2 Overview of portability concerns in SDR

In this section, different aspects of SDR WF design

impacting the portability are presented. In the context of

Software Defined Radio (SDR), the WF design should be

obtained on real time embedded systems, so software

portability can be considered as a multi-aspect problem.

The first aspect is related to the variety of digital signal

processing resources used in SDR. In [1], the authors

present a survey of various hardware platforms proposed in

US military SDR projects with different technical approa-

ches used during the last two decades. In these projects,

different Processing Elements (PE) are used such as:

General Purpose Processor (GPP), Digital Signal Processor

(DSP), Field Programmable Gate Array (FPGA), System

on Chip, (SoC), etc. By combining different PE technolo-

gies in a heterogeneous reconfigurable hardware in SDR

platforms, recent SDR architectures can make a trade off

among the overall performance, the power consumption or

the flexibility. The variety of these heterogeneous and

distributed architectures implies different allocations of

WF functions and codes among platform nodes which

limits the WF portability. Others technologies such as

MPSoCs (Multi Processor System on Chips), multicore,

manycore processors, or NoCs (Network on Chips) will be

introduced in next SDR platforms. Another aspect of SDR

platforms impacting software portability is the use of

middleware over the SDR platform hardware. Middleware

should help application programming and software porta-

bility by providing a high level of abstraction and a

uniform access over distributed hardware [5]. The most

important aspects for WF portability is the support of

standardized platform services given by e.g. SCA [1] and

ESSOR Architectures [6], to satisfy a wide variety of WFs.

The abstraction and standardization should be done over

the entire SDR Platform hardware as recommended by the

ESSOR architecture extensions on OE (Operating Envi-

ronment) Services for DSP, FPGA, additional APIs defin-

ing Radio Devices and Radio Services to solve the WF

portability challenges.

Recent studies on the WF proposed important develop-

ments concerning portability. The SCA Domain Specific

Modeling tools that generate SCA compliant source codes

is one of these important portability enablers. In fact, these

tools enable WF development methodologies and they are

composed of design guidelines associated to the WF soft-

ware development process.

According to [4], the ESSOR methodology is introduced

to define the WF portability. Taking into account the

diversity of platform architectures, this methodology

allows a common waveform to be developed and shared

among several actors. Therefore, the ESSOR methodology

relies on ‘‘BaseWF/TargetWF’’ design approach, where the

‘‘BaseWF’’ is the portable object. This two-step approach

can generate, at the ‘‘BaseWF’’ level, a software code

independent from any target platform supported by a WF

Platform Independent Model (PIM) modeling language

profile [7]. According to [6], the ESSOR methodology for

portability is generic, and it is elaborated to design and

validate the ‘‘BaseWF’’ with respect to the ESSOR

Architecture.

The different kinds of PE imply dealing with different

programming approaches and languages such as: C/C??

for GPP and DSP, VHDL for FPGA. This aspect limits the

waveform portability as discussed in [2].

The rest of the paper presents detailed insights into

waveform portability, especially a discussion on the SCA

component design with related design tools and some

platform aspects in regard to a porting experience of a

waveform.

3 SCA component generation

A main objective of the SCA specification is the definition

of an Operating Environment (OE) for a software radio

terminal. This OE defines a set of software interfaces that

forms the SCA v2.2.2 Core Framework (CF) and other

software architecture elements such as the Application

Environment Profile (AEP). The SCA v2.2.2 also relies on

technological choices such as XML Language for the

Domain Profile, Object Oriented technologies, Design

Patterns and UML Language.

Analog Integrated Circuits and Signal Processing

123



The CF of the SCA specification is mainly defined by its

interfaces (API). The CF controls, manages, and deploys

the waveform on a SDR platform. In the context of a JTR

(Joint Tactical Radio) System, ‘‘a waveform is used to

describe the entire set of functions that occurs from the user

to the RF output and vice versa’’. An implementation of a

waveform is a list of interconnected SCA component

producing services [4].

The component design is based on meta-models defined

within each code generation tool. These meta-models can

be very different from one tool to another despite the fact

that the tools are compliant with SCA coding rules, com-

ponent definitions, interfaces and XML files of the

‘‘DomainProfile’’.

3.1 SCA component definition

In SCA, the concept of component is mainly defined by the

IDL used to describe the SCA interfaces and by the XML

used to create the SCA Domain Profile elements which

identify the capabilities, properties, inter-dependencies,

and location of the hardware devices and software com-

ponents that make up a ‘‘SCA-compliant system’’ [4]. API

standards explicitly define the port concept required to

deploy software components in SDR platforms. The

authors of [1] showed that SCA components inherit a set of

interfaces defined in the Core Framework (CF). To

exchange data, the software components communicate

using ports of processing services, such as: port Provide or

port Use. These ports inherit from their SCA standard

interfaces and they must implement service packages

allowing the CF to manage interconnection, configuration,

testing and lifecycle of software components.

Each component has a well-defined set of ports specified

by two settings:

1. The first one is the service type setting. For example,

an ‘‘input port’’ or ‘‘provide’’ port can receive requests

from a component ‘‘output port’’ or use port. An ‘‘input

port’’ should wait for remote calls to produce its

service (server side). On the other hand, an output port

represents the client side that triggers requests to the

server side. In the context of waveform datapath,

output ports send data, while input ports receive

requests.

2. The second one is the data type setting carried by ports.

These two settings can be defined using interfaces. These

ones can be standard APIs or custom one. Creating a

custom interface in IDL allows the designer to choose, for

instance, the interface name, the associated methods, and

data types.

3.2 Implementation possibilities

In a SCA development tool chain, the implementation

containers of SCA components can be generated by a code

generator. In our experiments, three implementation con-

cepts of SCA component are considered:

1. In the first scheme, the SCA component class special-

izes the ‘‘Resource’’ class of the CF.

2. A second scheme separates the functionalities of a

SCA component and its ports.

3. The last one consists in distributing the component’s

services on its possible ports.

The three concepts are developed from the study of three

SCA Domain Specific Modeling tools: ‘‘OSSIE’’, ‘‘SCA

Architect’’ and ‘‘Zeligsoft CE’’ v2.4 (ZCE). The codes

generated by these three concepts conform to SCA speci-

fications; however, the code portability depends on the

implementation choices. The drawback of the first concept

is that the waveform functional code or business code is

mixed with the platform non-functional code or glue code

(SCA code). From the portability point of view, the second

concept is better because it separates the functional code

and the glue code also called the SCA container. However,

this separation affects the size of the generated code. The

last concept does not provide the separation of concerns, it

does not respect the concept of encapsulation of software

components and it maximizes porting complexity of a

waveform.

The choice of software component implementing model

is strongly linked to the choice of SCA Domain Specific

Modeling tools.

The second choice can promote the exchange and the

understanding within a team of developers using the same

chain of tools. However, when the chain is changed, the

compatibility of codes is no longer satisfied and the func-

tional code must be manually integrated into the generated

component container.

3.3 Example of code generation

To illustrate the second concept presented above, three

generation examples based on ‘‘OSSIE’’ [8], ‘‘ZCE’’ [9]

and ‘‘SCA Architect’’ [10] are presented. Although, they

are based on the same concept but implementations can be

different.

3.3.1 OSSIE example

The software component generated by the OEF (OSSIE

Eclipse Feature) for the interface of Fig. 1 produces three

C?? files: A file for the component class declaration, the

second file and the last one ‘‘main.cpp’’ are required to start

Analog Integrated Circuits and Signal Processing

123



the component in a thread of middleware (e.g. omni_th-

read). In addition to the source files, the tool generates

configuration scripts of installation and XML files for the

‘‘DomainProfile’’ of the SCA CF.

The class ‘‘Component1’’ generated by OEF inherits the

‘‘Resource_impl’’ class which includes all classes neces-

sary for SCA support, such as for example ‘‘getPort’’,

‘‘start’’, and ‘‘stop’’. In addition to these SCA methods, the

component body, file ‘‘Component1.cpp’’ contains several

methods such as ‘‘Run’’, ‘‘releaseObject’’, ‘‘boot’’,

‘‘query’’, ‘‘configure’’ and ‘‘ProcessData’’. ‘‘ProcessData’’

should implement the functionality of the component.

Component interfaces are also instantiated in this class as

illustrated in Listing 1.

In the OSSIE example, ‘‘dataIn_0’’ (resp. ‘‘dataOut_0’’)

ports inherit classes from ‘‘complexShort_p’’(resp. ‘‘com-

plexShort_u’’). To achieve this task, these two ports use the

well-defined methods ‘‘getData’’ and ‘‘pushpacket’’. These

methods interface the component with a finite size buffer of

type ‘‘complexShort’’. The function code defined in the

‘‘ProcessData’’ method is well isolated from its environ-

ment. However, the model of computation works as a

bounded Kahn Process Networks (KPN) [11, 12]. In this

model, network queues ensure the exchange of messages in

asynchronous mode.

3.3.2 ZCE example

The description of ZCE SCA component which fulfills the

concept of component container (glue code) that encapsu-

lates the functional code is illustrated in Fig. 2.

ZCE adds proprietary infrastructure and scripts (written

by developers) to make Component Based Software Design

(CBSD) possible. The CBSD offered by the Zeligsoft tool

addresses the limitations of IDL2.0 based design by

establishing architectural choices for component

implementations.

ZCE can integrate Object Request Broker (ORB) from

different providers and various Operating System (OS) and

CF. According to [13]; SCA components which are gen-

erated by ‘‘ZCE’’ satisfy the concept of SCA specification

[1]. It is worth mentioning that the architecture of a ZCE

component is divided into three parts: the functional part,

the SCA connector and the linking code.

When ZCE generates a SCA component three classes

‘‘SourceMain’’, ‘‘SourceServant’’ and ‘‘SourceWorker’’ are

produced: ‘‘SourceMain’’ creates an object of class

‘‘SourceServant’’ connected to the CF, ‘‘SourceServant’’

instantiates the ‘‘SourceWorker’’ and uses or provides

ports.

The functional code describing the functionalities of a

SCA component must be completed in the class ‘‘Source-

Worker’’ according to coding rules of the waveform

designer.

The component of Fig. 1 cannot be generated in exactly

the same way by two environments. As illustrated Listing

2, ports implement specific classes ‘‘SimpleOctetPack-

etSink’’ and ‘‘SimpleOctetPacketUses’’ that are specific to

ZCE. Moreover, the functional code of the worker class is

executed in a lightweight process (e.g. dmtkThread from

Harris dmTK SCA Core Framework (CF) v2.2.2) which

has different syntax and behavior from one OE to another.

3.3.3 SCA architect example

Like ‘‘Zeligsoft CE,’’ the ‘‘SCA Architect’’ modeler gen-

erates for each SCA component C?? code dedicated to

DataInPort DataOutPort

Provides Uses

WorkClass

data_queue

Component1

Fig. 1 A minimal SCA component

(Component_i::Component1_i const char *
omni_condition *

uuid,
uuid) :

Resource_impl (uuid), component_running (condition)

{

dataIn_0 = new
standardInterfaces_i::complexShort_p ("dataInPort");

dataOut_0 = new
standardInterfaces_i::complexShort_u ("dataOutPort");

start();
}

Listing 1 SCA component

generated by OEF

Analog Integrated Circuits and Signal Processing

123



OS, ORB and SCA CF embedded by the target platform. In

this component generation step ‘‘Use’’ and ‘‘Provide’’ ports

can thus be added by the developer to satisfy functional

requirements, each port being associated to a class enabling

the implementation of queues and methods associated to

the services implemented in the components.

Thanks to this tool, each component associates a class to

a component port. Each class is instantiated by a parent

class which builds the architecture of the component.

As with the two preceding tools, ports are found

enabling parameters, data and events to be conveyed.

The implementation class which carries the ‘‘golden

code’’ (or the signal processing tasks) inherits this archi-

tectural definition class and adds the processing methods

that should be performed on the data.

With these three examples, we showed that the model of

computation control can be defined by a communication

meta-model used by SCA development tools. Finally,

functional code can depend on the MOC used by tool

generators to connect the SCA software components.

4 FM3TR target WF on two heterogeneous
platforms

4.1 Porting specification

The objective of this porting work was to evaluate porting

effort in porting processes of SCA waveforms. For this

task, we chose the reference SCA model FM3TR wave-

form developed by Calit2 [14]. This waveform implements

frequency hopping over both the very high frequencies

(VHF) and ultra-high frequencies (UHF) of the military

bands (30–400 MHz). The FM3TR waveform can transport

voice and data. It was deployed by Calit2 in an SDR-4000.

Our objective was to try to port it on an SDR-3002 plat-

form that came from the same ‘‘Spectrum Signal Process-

ing’’ branch of the ‘‘Vecima’’ company. ‘‘Spectrum Signal

Processing’’ has become one of the leading developers of

high-performance, software-reconfigurable SDR platforms.

4.2 Software architectures

The software architecture of the FM3TR waveform

developed by Calit2 is illustrated in [14]. The Calit2

demonstrator is composed of two SDR-4000 platforms

associated with two computers supporting a GUI which

encapsulates sound or Instant Text Messaging (ITM) over

TCP/IP. As [14] demonstrates that waveform components

can be decomposed into software components using a

network point of view.

The Calit2 implementation of FM3TR is organized

around two kinds of source files: the ‘‘SCA components’’ and

the ‘‘Devices’’. The software components are generated

using the ‘‘SCAArchitect’’ of the Nordiasoft tool chain [10].

4.2.1 Devices

• The Net device (data/voice) handles the platform

specific transport of voice and data packets between the

SDR platform and the TCP/IP Ethernet interface.

DataInPort DataOutPort

Provides Uses

SCAWrappercode LogOut

(Functional Code)
SourceWorker

Glue code

Component1::Source

Fig. 2 ZCE software component

zceComponent1Servant::zceComponent1Servant

( const CORBA::ORB_ptr& orb,

const sink_params& execParams ZCZ_EXC_ENV_ARG )
{

ZCE_ASSERT_EXCEPTION_VOID;

orb_ = CORBA::ORB::_duplicate (orb);

params_ = execParams;

state_ = UNINITIALIZED;

worker_ = new zcesComponent1Worker (execParams ZCE_EXC_ENV_PARAM );

in_dataInPort = new zceSimpleOctetPacketSinkProvidesPort ( "dataInPort", SINK_DATAIN, worker_ ZCE_EXC_ENV_PARAM);

out_dataOut = new zceSimpleOctetPacketSinkUsesPort ( "dataOutPort" ZCE_EXC_ENV_PARAM);

}

Listing 2 SCA component generated by ZCE

Analog Integrated Circuits and Signal Processing

123



• The Modem device is compliant to Modem Hardware

Layer (MHAL) modem API. It encapsulates (or

extracts) voice and data to MHAL frames. These

frames are exchanged with non-CORBA components.

4.2.2 SCA components

• The Continuously Variable Slope Delta modulation

(CVSD) codec is a voice variable step coding and

decoding component.

• The Data Link Control (DLC) segments and reassem-

bles voice and data messages. It implements the

classical Automatic Repeat reQuest (ARQ) network

protocols.

• The Reed-Solomon (RS) is a SCA resource that

encodes outgoing data packets into a RS block code

and decodes received RS encoded blocks.

• The data Media Access Control (MAC) converts the

format between MHAL frames to match the RS

encoding format.

• The voice MAC converts the format between voice

samples and MHAL frames.

4.3 Platform architecture and mapping

4.3.1 SDR-4000 architecture

The Calit2 demonstrator platform combines the SDR-4000

with a ‘‘National Instrument’’ PXI system for the frequency

transposition. This PXI system consists of:

• A card ‘‘PXI-5610 Up-converter’’,

• A card ‘‘PXI-5600 Down-converter’’.

Application or platform components are implemented in

the GPP processor card PRO-4600 subsystem SDR-4000.

The non CORBA processing base band signal component

is implemented in the TMS320C6416 processor PRO-4600

card while the frequency translation component is done

using the Virtex-4 of the XMC-3321 card.

4.3.2 SDR-3002 architecture

The architecture of the platform (SDR-3002) used in our

project is illustrated in Fig. 3. The entire system consists of

a combination of a SCA subsystem and a transceiver

subsystem. The transceiver subsystem is a part of the radio

chain that converts the baseband into a radio signal for

transmission and converts the radio signal into a baseband

signal for reception.

The SDR-3002 platform consists of two integrated

subsystems in the same cPCI chassis.

The DRT-4001 consists of an amplifier subsystem and a

transceiver (transceiver) radio frequency that transposes an

intermediate frequency signal up to 3 GHz. The Radio

Frequency (RF) signal to be transposed into the DRT-4001

should be centered on an Intermediate Frequency (IF) of

70 MHz. The RF signal received by the DRT-4001 is

transposed to 17.5 MHz.

The sub SDR-3002 system consists of:

• The TM1-3350 grabber radio signal (both channels

ADC and two DAC channels).

• The SBC board (a Single Processor Board) with a x86/

Win (Host PC) processor.

• The PRO-3100 board that has four Xilinx Virtex-II, a

power PC 405 and an Ethernet interface.

• An Ethernet board with a GPS receiver.

4.3.3 Mapping and results

The challenge of SCA FM3TR waveform portability, based

on the CALIT 2 SCA waveform is illustrated in [14]. The

ZCE model obtained is illustrated in appendix.

The transfer methodology of application code used in

the ZCE model consists of:

1. Searching for equivalences between the port types

available in ZCE and port types used in the target code.

2. Creating the corresponding SCA model components

and waveform.

3. Generating source code for each SCA component of

the waveform.

4. Adding the functional code manually to ZCE SCA

components.

We have mapped the following waveform on the SDR-

3002 platform (Table 1).

In this mapping phase, the use of ‘‘ZCE’’ instead of

‘‘SCA architect’’ initially used by the Calit2 team made the

porting process difficult to be manually managed.

5 Observed porting limits

Hereinafter, the limitations observed of the development

tools, middleware and platforms are discussed.

5.1 Development tool limitations

The limitations observed originate from component inter-

faces and architecture.

Analog Integrated Circuits and Signal Processing

123



5.1.1 Component interfaces

The SCA compliant platform comes with its BSP (Board

Support Package), its devices and its Software Develop-

ment Kit (SDK). As indicated by SCA specification,

devices and component interfaces may be abstracted by

additional specific interfaces that warranty the indepen-

dence of a software waveform to platform services. How-

ever, BSP and SDK libraries called upon by SCA tools in

the generation process of the software components can use

specific IDL which is not defined in the SCA CF interface.

In the next example, three IDL interfaces generated by

three different SCA development tools are provided.

Listing 3 shows that for similar services of data

exchange, different interface definitions with behavior

difference are used and supported by Platforms. This rep-

resents an additional porting effort to adapt from one to

another and it becomes sometimes difficult to be satisfied.

However, this porting can be achieved by importing

specific libraries from the first tool/platform to the second

or by redesigning the waveform accordingly to fit this

specific interface. This experience shows that the use of

different IDL interface definitions among different SCA

platforms limits the portability event if tool chains help to

perform the required transformation.

5.1.2 Component architecture

The SCA specifies that components inherit the ‘‘Resource’’

class from the SCA CF. A component must implement

‘‘use’’ and ‘‘Provide’’ ports (see Fig. 1). However, the SCA

specification does not specify details about the implemen-

tation. Therefore, the designer can freely implement the

required components.

DAC
DAC

DAC

ADC
ADC

ADC

TM1−3350

FPGA

FPGA

FPGA

FPGA

PPC

PPC

PRO−3500PRO−3100

Analog IF
frequency

Digital IF
frequency

Baseband
data encoded

DRT−4001

High
frequency

4011B

4011B

Antenna

SDR 3002 Platform

Fig. 3 SDR-3002 platform

Table 1 Waveform mapping on

the SDR-3002
Component Board Target circuit OS

cvsd PRO3500 P0, PPC7410 VxWork

datamac PRO3500 P0, PPC7410 VxWork

fm3trcontroller SBC Pentium Windows

mac PRO3500 P0, PPC7410 VxWork

nspr842_duc PRO3100 XC2V3000 Virtex-II, SAND 0 VxWork

nspr842_ddc PRO3100 XC2V3000 Virtex-II, SAND 3 VxWork

rs PRO3500 P0, PPC7410 VxWork

net SBC Pentium Windows

voiceNet SBC Pentium Windows

modem_device PRO3500 P0, PPC7410 VxWork

Analog Integrated Circuits and Signal Processing

123



In the case of the ‘‘ZCE’’ tool, code of an instance of a

‘‘worker’’ class runs functional code i.e. a part of a com-

ponent waveform. This approach separates the structural

from the functional parts of a software component. Indeed,

the ‘‘servant’’ class implements ‘‘Provide’’ ports that

implement interfaces of the processing task (CF::Re-

source). This separation of concerns is at the expense of

code expansion.

Another software design approach uses the interface by

encoding method. According to our third concept men-

tioned in Sect. 3.2, functionalities are embedded in the

implementations of a ‘‘class Port’’. The major drawback of

this approach is the loss of functional code visibility.

In our study, we distinguished between two types of

SCA component implementations. The first follows the

CBSD (Component-Based Software Development)

methodology while the second uses the customer separa-

tion/server provided by CORBA 2.x component. The first

approach improves the portability; but the designer is free

to define the implementation because the SCA standard

does not impose any constraint on the implementation

other than the use of CORBA.

5.2 CORBA and MOC limitations

SCA waveforms are made from a blend of software com-

ponents (application components, API devices and con-

trollers). This combination of software components usually

executes on target in a pipeline manner. SCA 2.2.2 relies

on CORBA; data transported by the CORBA bus provides

two types of messages: ‘‘One-way messaging’’ and the

‘‘two-way messaging’’. The authors of [15] describe the

problem of ‘‘pipeline’’ vacuum related to the use of ‘‘two-

way messaging’’. They also describe how ‘‘one-way

messaging’’ can be used to limit the impact of the empty

pipeline on throughput and processing latency. ‘‘One-way

messaging’’ is usually considered to be a better approach to

increase processing rate. Finally, solutions such as flow

control mechanism for ‘‘one-way messaging’’ and

‘‘threads’’ using ‘‘two-way messaging’’ are proposed to

address drawbacks.

According to the middleware used by SCA CF (e.g.

TAO or omniORB, etc.), ORB settings acts significantly on

the waveform portability. Indeed, this action changes the

model of computation (MOC) [12] of component message

exchanged in waveform applications.

5.3 Platform limitations

Processing boards inside SDR platform usually have a fast

specific link that can be used to bypass the CORBA bus.

For example, the ‘‘FlexFabric’’ examples of Fig. 4 are used

by Spectrum Signal systems for high-speed communication

between two processing resources of the SDR platform. As

illustrated in this figure, the connection between the ports

of the two components is associated with the use of an

abstract port called ‘‘DeviceThatLoadedThisCompo-

nentRef’’. For the SDR-3002 platform, the use of this port

in a ZCE model refers explicitly to the ‘‘FlexFabric’’ link in

the model. Thus, this type of connection modifies the

computation model of the waveform. Indeed, they can be

configured in point to point blocking and non-blocking

channels.

Using this type of connection limits the waveform

portability, because it is specific to the platform and it

modifies the scheduling of the execution or the computa-

tion model.

6 Proposal

The experiment that we have described has highlighted

certain limitations of the specific development tools, the

CORBA software bus used, as well as the BSP embedded

on the platforms. Our specifications summarized in the

table below consisted in porting a ‘‘Target OE I’’ type

waveform to another ‘‘Target OE II’’ type waveform (in

our case we port the ‘‘Target OE I’’ from the SDR-4000

platform to ‘‘Target OE II’’ to the SDR-3002 platform)

(Table 2).

As illustrated by the table above, the SCA code gener-

ation and waveform deployment tools are different. As it

can be seen, the porting operation remains particularly

delicate as the ‘‘Target OE I’’ type waveforms do not

generally rely on static libraries as advised in [16, 17]. The

portability of the waveform depends on the waveform

interface IoPacket
{
oneway void

(in 
};

interface SimpleOctetPacketSink
{
void pushPacket

(in NullControl unusedControl,
in CF::OctetSequence
raises (

};

interface OctetStream :PayloadStatus
{

void pushPacket
(in StreamControlType
in JTRS::OctetSequence )
raises ( UnableToComplete

PushPacketFailure

};

CF:OctetSequence 
pushPacket

payload );

)payload
);

control,
payload
);

Listing 3 IDL definition for different Packet interfaces

Analog Integrated Circuits and Signal Processing

123



software used by the porting team. Three classic situations

can be observed:

1. When the waveform is to be developed from a

specification, a CIM (Computation Independent

Model) or a PIM (Platform Independent Model) on

one or several SCA compatible platforms.

2. When there is a static library used by a ‘‘Target OE I’’

type waveform and the waveform is to be ported onto

another OE to obtain a ‘‘Target OE II’’ type waveform.

3. The final, most usual yet most difficult possibility is

when only a ‘‘Target OE I’’ waveform source code and

its specification are available. It was within this context

that our porting took place.

Generally, any waveform artifact associated to a waveform

code delivery will help the porting process, as for example

Software Models, Functional WF Model, and WF

Simulation.

In the last paragraph, we will propose semi-automatic

processes based on MDA approaches which will ease a

waveform to be ported.

6.1 From a CIM or PIM model

When a waveform is to be developed from scratch, the

adoption of a Model-Driven Engineering (MDE)

methodology such as MoPCoM [18, 19] has numerous

advantages including easing the portability of a waveform.

Indeed, the association of meta-models in the processes

defines three levels of abstraction which enable a PSM

(Platform Specific Model) to be obtained at the end of the

process. This model is associated to a platform which can

be strongly heterogeneous.

This modeling process relies on the three following

abstract level: AML (Abstract Modeling Level), EML

(Execution Modeling Level), DML (Detailed Modeling

Level) layers, which respectively enable to test:

• The functional aspect of calculation model of the

waveform.

• The chronological sequencing of the operations on the

communication channels (bus).

• The chronological sequencing at cycle accurate

operation

The code generators associated to the MDA process also

enable the validation of the developments via the Elec-

tronic Design Automation (EDA) event simulator.

Unfortunately, the SCA modeling tools capacity for

importing or exporting models to commercially UML

modeler are often weak, whereas the SCA 2.2.2, SCA 4.1

and ‘‘upgrades’’ remain in the realms of the specialist. The

metamodels employed for the generation of SCA compo-

nent frames thus remain among the property knowledge of

the toolmakers as their own ‘‘business model’’.

6.2 From a ‘‘base OE’’ PSM model with a static
library

This porting operation starts out from a ‘‘Base OE’’ type

PSM model, that is to say, a group of components often

written in C?? and generated by a SCA modeler. The

‘‘golden’’ codes of these components are then inserted by

<<component>>
Source Sink

<<component>>

dataOut

fabric_dataOut

fabric_dataOut

fabric_dataIn

fabric_dataIn

dataIn

Fig. 4 Fast communication bus

illustrated in ZCE

Table 2 Operation environment

Target OE I Target OE II

Modeling tool SCA Architect Zeligsoft CE

CF SCARI?? Harris dmTK

OS Linux Windows XP

ORB TAO TAO

Analog Integrated Circuits and Signal Processing

123



the developer into the application code via a static library

which has been previously validated.

The first step of the process in Fig. 5 consists in vali-

dating the interconnection schemes from XML files,

nowadays often, produced by the SCA code generators.

These analyzers/parsers check the conformity of the SCA

models as well as the correspondence between the different

ports of the SCA models. The formats produced by the

SCA component extraction tools are, in this case, UML

models which can be checked by a ‘‘model checker’’. This

step produces two component diagrams (one for the ‘‘base

OE’’ and the other for ‘‘target OE’’ waveform) and a SCA

skeleton (wrappers and worker class) for each component

of the ‘‘base OE’’ waveform.

The second step uses the three last models, static library

carrying ‘‘golden code’’ and ‘‘base OE’’ component sour-

ces. The porting process (cf. Fig. 6) consists in carrying out

‘‘reverse engineering’’ of ‘‘base OE’’ and ‘‘target OE’’ to

make a C?? class models. This task can be done by most

of the commercially available UML modeler. After this sub

step, this model can then be used to associate the ‘‘golden

code’’ to ‘‘target OE’’ component diagram ports identified

in the first step. This is an annotation action that can be

done by UML transformer on the ‘‘target component dia-

gram’’. The last sub step can generate ‘‘target OE’’ C??

code from this ‘‘target OE’’ component diagram model and

from ‘‘target OE’’ C?? class diagram on the condition, of

course, of having a SCA implementation meta-model for

SCA component generation.

6.3 From a ‘‘Target OE’’ PSM model with no static
library

This is a classic yet the most delicate situation to be

implemented. The results presented in Sect. 4 originate

from this type of situation. The process is quite similar to

that described in Sect. 6.2 except that it is impossible to

extract the functionalities from the static library. The

operation is thus much more complex in its execution as

the extraction of the ‘‘golden code’’ from the implemented

code is totally specific to the developer, and can only be

manually accomplished. The performance of the human

operator is thus pivotal yet variable according to his

knowledge of the two ‘‘base’’ and ‘‘target’’ OEs and also

the business code as well.

7 Conclusion

In this manuscript, we investigate the portability of FM3TR

waveform on SDR-3002. Initially, Calit2 implemented

FM3TR waveform on the SDR-4000. This platform is quite

similar to our target platform SDR-3002. Even though the

two platforms are similar, the portability of the code is not

an easy task. In fact, our experiments showed that the

generation of source codes depends on software develop-

ment kits (SDK), CORBA ORB, and OS for the imple-

mentation. We have to emphasize again that the execution

model is not defined in the SCA specification. This model

can be affected by the implementation of software

XML Base OE

UML modeler

Model checker

UML modelerChecker SCA

Generate

XML Parser

Diagram (XMI)

UML export

Target component
Diagram (XMI)

Base component

XML Target OE

Target OE
empty C++ code

Components
Interfaces

Interconnections
XML Parser

UML export

Import XML
Check

SCA modeling tool

Fig. 5 First step of the ‘‘Base OE’’ PSM to ‘‘Target OE’’ PSM with static library

Analog Integrated Circuits and Signal Processing

123



components and the setting of the ORB. Accordingly, this

affects the waveform code portability by creating depen-

dencies on the platform.

Our experimental works demonstrate that the SCA

development tool chain (such as ‘‘Zeligsoft CE’’, ‘‘Spectra

CX’’ or ‘‘SCA Architect’’) improves the development of a

SCA waveform. However, the software configurations are

difficult (e.g.: dependency management, settings…), but

the code portability is partial between tool chain elements

and the portability at the model level becomes also poor.

We have shown in Sect. 6 that there are several situa-

tions of porting a waveform on a target platform. This

porting operation is more or less complex to automate

related to these situations. An almost automatic proposal

was proposed in the case of the use of a static library to

implement a golden code of SCA components.

Even if SCA specification enforces the uses of a large

set of Interfaces (mainly related to CF), the use of addi-

tional standardized APIs (Radio Devices and Radio Ser-

vices) represents a step beyond to cover all the waveform

needs but it is still not sufficient in terms of portability

requirement. Therefore, there are still difficulties to port a

waveform on a COTS platform because these products do

not provide ‘‘natively’’ a support for additional standard-

ized APIs.

Finally, we can observe the fact that selecting an

appropriate metamodel can help us to adapt the code to any

specific platform. This approach could be continued by

using the MDE approach which can help to manage the

development and the validation of SCA models better.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix

See Fig. 7.

meta−model (XMI)
SCA implementation

C++ codes
Target OE

UML modeler

Base OE
C++ sources

Static Library (.a, .h)

UML modeler

Target OE

C++ Reverse
engineering

C++ Reverse
engineering

C++ Target Class

empty C++ code

Diagram (XMI)

C++ Base Class
Diagram (XMI)

Base component Target component
Diagram (XMI) Diagram (XMI)

Transformation

Navigation
Annotation

Annotated model

UML modeler

toolUML

Fig. 6 Second step of the ‘‘Base OE’’ PSM to ‘‘Target OE’’ PSM with static library

Analog Integrated Circuits and Signal Processing

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


References

1. SCA Architect. http://nordiasoft.com/products/scari-software-

suite/sca-architect/.

2. Goeller, L., & Tate, D. A. (2014). Technical review of software

defined radios: Vision, reality, and current status. In IEEE mili-

tary communications conference, Batimore, USA.

3. Wireless Innovation Forum. (2013). Wireless innovation forum

top 10 most wanted wireless innovations, document WINNF-11-

P-0014, version V3.0.0. http://groups.winnforum.org/winnforum_

top_ten.

4. Wireless Innovation Forum. (2006). Software communications

architecture specification v2.2.2, JTRS standards. http://www.

public.navy.mil/jtnc/sca/Documents/SCAv2_2_2/SCA_version_

2_2_2.pdf.

5. Gomez, I., Miguelez, V., & Gelonch, A. (2011). ALOE: An open-

source SDR execution environment with cognitive computing

resource management capabilities. IEEE Communications

Magazine, 49(9), 76–83.

6. Serra, C., Heikkinen, P., Aguado, R., Kosiuk, R., Granbom, B.,

Casalino, F., et al. (2010). ESSOR architecture—motivation and

overview. In SDR’10 Conference, Washington DC, USA.

7. Wireless Innovation Forum. (2015). IDL profiles for platform-

independent modeling of SDR applications, WINNF-14-S-0016

V1.6.0. http://groups.winnforum.org/d/do/7967)#sthash.

yNPqxV03.dpuf.

8. Paone, E. (2010). Open-source SCA implementation-embedded

and software architecture—OSSIE SCA waveform development,

master report. Stockholm: KTH Royal Institute of Technology.

9. Hermeling, M., Hogg, J., & Bordeleau, F. (2005). Developing

SCA compliant systems. http://www.zeligsoft.com/files/white

papers/Developing-SCA-Compliant-Systems-WP.pdf. Accessed

Sept 2015.

10. Nordiasoft. SCA Architect. http://www.nordiasoft.com/#!sca-

architect/cxxs.

11. Kahn, G. (1974). The semantics of a simple language for parallel

programming. In International federation for information pro-

cessing (IFIP) congress, Stockholm, Sweden.

12. Lee, E. A., & Sangiovanni-Vincentelli, A. (1998). A framework

for comparing models of computation. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

17(12), 1217–1229.

13. Hermeling, M. (2005), Code generation for SCA components,

Zeligsoft white paper. http://www.zeligsoft.com/files/white

papers/Code-Generation-for-SCA-Components-WP.pdf.

14. Johansson, P., Cao, Z., & Hodgkiss, W. Rapid porting of an SCA-

compliant FM3TR waveform. In SDR‘2009 conference.

15. Bernier, S., Latour, H., & Zamora Zapata, J. P. (2011). How

different messaging semantics can affect SCA applications per-

formances. International Journal in Analog Integrated Circuits

and Signal Processing, 69(2–3), 227–243.

Fig. 7 FM3TR waveform deployment in an SDR-3002

Analog Integrated Circuits and Signal Processing

123

http://nordiasoft.com/products/scari-software-suite/sca-architect/
http://nordiasoft.com/products/scari-software-suite/sca-architect/
http://groups.winnforum.org/winnforum_top_ten
http://groups.winnforum.org/winnforum_top_ten
http://www.public.navy.mil/jtnc/sca/Documents/SCAv2_2_2/SCA_version_2_2_2.pdf
http://www.public.navy.mil/jtnc/sca/Documents/SCAv2_2_2/SCA_version_2_2_2.pdf
http://www.public.navy.mil/jtnc/sca/Documents/SCAv2_2_2/SCA_version_2_2_2.pdf
http://groups.winnforum.org/d/do/7967)%23sthash.yNPqxV03.dpuf
http://groups.winnforum.org/d/do/7967)%23sthash.yNPqxV03.dpuf
http://www.zeligsoft.com/files/whitepapers/Developing-SCA-Compliant-Systems-WP.pdf
http://www.zeligsoft.com/files/whitepapers/Developing-SCA-Compliant-Systems-WP.pdf
http://www.nordiasoft.com/%23!sca-architect/cxxs
http://www.nordiasoft.com/%23!sca-architect/cxxs
http://www.zeligsoft.com/files/whitepapers/Code-Generation-for-SCA-Components-WP.pdf
http://www.zeligsoft.com/files/whitepapers/Code-Generation-for-SCA-Components-WP.pdf


16. Singh, S., Adrat, M., & Antweiler, M. (2009). NATO RTO/IST

RTG on SDR: Demonstrating portability and interoperability of

SCA-based waveforms. In SDR’09 conference.

17. Research Task Group on Software Defined Radios. (2012).

Software defined radio, RTO technical report, TR-IST-080.

https://www.cso.nato.int/abstracts.aspx?RestrictPanel=4.

18. Le Roy, F., Champeau, J., & Delahaye, J. P. (2011). A model

based methodology for SCA waveform design enhancing porta-

bility: Application to the FM3TR waveform application. In

WInnComm Europe’11 conference.

19. Koudri, A., Champeau, J., Aulagnier, D., & Vojtisek, D. (2009).

Processus de développement UML/MARTE MoPCom pour le

codesign, Génie Logiciel.

Frédéric Le Roy was born in

Landerneau, France, in 1971.

He received the Master and

Ph.D. degrees in electronic from

the University of Brest, France,

in 1995 and 2000 respectively.

He spends his Ph.d period at the

actual PRACOM laboratory of

Ecole Nationale Supérieure des

Télécommunication de Bre-

tagne (ENST Bretagne, France).

His research was made in col-

laboration with the international

company France Telecom R&D

on High Level Synthesis

methodologies for asynchronous circuits design. In 2000–2001 he

worked at Institut Supérieure de l’Electronique et du Numérique

(ISEN Brest) for five years where he was involved in industrial few

projects of telecommunication and was the principal advisor for the

bachelor grade. Since 2006, he has been an associate Professor at

Model Driven Engineering team of Ecole Nationale Institute des

Techniques Avancées, Brittany (Ensta Bretagne), Brest, France,

where he teaches computer science engineering and telecommunica-

tion. Actually, his research interests are in high performance of cir-

cuits and systems design and performance analysis for software and

cognitive radio design.

Lahatra Rakotondrainibe In

2010, Lahatra Rakotondrainibe

(LR) received his PhD degree in

Electronics from the IETR/

INSA university (France). He

has been involved in Millimetter

waves (60 GHz) and radio cog-

nitive projects. In September

2010, he joined the research

REMS (Radar Electromagnetic

and Remote Sensing) team of

ENSTA Bretagne (France). He

was implied in the development

of the wideband Ku-radar and

GNSS receiver platforms. In

September 2011, he joined the research MDE (Model Driven Engi-

neering) team of ENSTA Bretagne laboratory. He was implied in the

reverse engineering project to ensure the waveform portability and the

conformity to SCA standard. Since October 2012, he is implicated in

Defence HF/RF communications, wireless telemetry and ETCS pro-

jects at Thales Communications Belgium.

Jean-Philippe Delahaye received
his MS in Telecommunications

from the National Institute of

Telecommunications ‘‘Telecom

SudParis’’ and his Master

Degree in Electronics from the

University of Paris 11, both in

2003. He received his Ph.D.

Degree in Electronics from the

University of Rennes 1, France

in 2007 with research interest

focused on reconfigurable

heterogeneous architecture in

SDR (DSP/FPGA/GPP). In

2007, he joined the French

armament procurement agency in Information Warfare Technology

Center called ‘‘DGA Maitrise de l’Information’’ as a technical system

engineer in software radio (SDR). He is currently the expert for the

French SDR tactical radio ‘‘Programme CONTACT’’ working in

SDR Standardization. His interests include middleware and software

architectures for embedded systems, component based software

engineering and testing.

Ali Mansour received the M.S.

degree in electronic electric

engineering from Lebanese

University in September 1992,

the M.Sc. and Ph.d. degrees in

signal, image and speech pro-

cessing from the ‘‘Institut

National Polytechnique de

Grenoble-INPG (France), in

July 1993 and January 1997,

respectively, and the HDR

degree (Habilitation a Diriger

des Recherches, in the French

system, this is the highest of the

higher degrees.) from UBO,

Brest, France, in November 2006. From January 1997 to July 1997, he

held a Postdoctoral position at LTIRF-(INPG Grenoble, France).

From August 1997 to September 2001, he was a Researcher at the

Bio-Mimetic Control Research Center (BMC), Institut of Physical

and Chemical Research (RIKEN), Nagoya, Japan. From October 2001

to January 2008, he held a Teacher-Researcher position at ENSIETA,

Brest, France. From February 2008 till August 2010, he was a Senior

Lecturer in the Department of Electrical and Computer Engineering,

Curtin University of Technology (ECE-Curtin Uni.), Perth, Australia.

During January 2009, he held an Invited Professor position at the

Universite du Littoral Cote d’Opale, Calais, France. From September

2010 till June 2012, he was a Professor and the head of electrical

department at the University of Tabuk, KSA. Actually, he is a Pro-

fessor at ENSTA-Bretagne, Brest, France. His research interests are in

the areas of blind separation of sources, high-order statistics, signal

processing, robotics, telecommunication, electronic warfare and

cognitive radio. He is the author and the coauthor of three books. He

is the first author of many papers published in international journals,

such as IEEE TRANSACTIONS ON SIGNAL PROCESSING, IEEE

Signal Processing Letters, NeuroComputing, IEICE and Artificial

Life and Robotics. He is also the first author of many papers published

in the proceedings of various international conferences.

Analog Integrated Circuits and Signal Processing

123

https://www.cso.nato.int/abstracts.aspx?RestrictPanel=4

	Insights into portability issues of FM3TR waveform
	Abstract
	Introduction
	Overview of portability concerns in SDR
	SCA component generation
	SCA component definition
	Implementation possibilities
	Example of code generation
	OSSIE example
	ZCE example
	SCA architect example


	FM3TR target WF on two heterogeneous platforms
	Porting specification
	Software architectures
	Devices
	SCA components

	Platform architecture and mapping
	SDR-4000 architecture
	SDR-3002 architecture
	Mapping and results


	Observed porting limits
	Development tool limitations
	Component interfaces
	Component architecture

	CORBA and MOC limitations
	Platform limitations

	Proposal
	From a CIM or PIM model
	From a ‘‘base OE’’ PSM model with a static library
	From a ‘‘Target OE’’ PSM model with no static library

	Conclusion
	Open Access
	Appendix
	References




