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ABSTRACT 

 
The one-dimensional Saint-Venant model can reproduce the elastic-plastic uniaxial behavior of 

metallic materials. A three-dimensional extension of this model is proposed, to simulate the cyclic elastic-

plastic multiaxial behavior for complex loading paths. A multi-surface model is obtained and an original 

flow rule, defined in the strain space, is considered. This model has been implemented in a commercial 

finite element code. The model response is investigated for different loadings and compared to 

experimental data from the literature. The model showed accurate response in the multiaxial case of 

tension-torsion experiments. 

 

INTRODUCTION 

 

The discrete generalized Saint-Venant model has been extended to the pure hysteresis continous 

model by Persoz (1960), and has been studied in a more complete way by Guélin (1980). This model can 

reproduce the typical elastic-plastic behavior of metallic materials, in the case of a one-dimensional 

loading such as pure shear. The aim of this study is to propose an original flow rule, defined in the strain 

space (see Naghdi et al. (1975), Heiduschke (1995), Lee (1995) and Brown et al. (2003)), to extend the 

one-dimensional generalized Saint-Venant model to obtain a multiaxial elastic-plastic cyclic model. In the 

first part of this paper, the one-dimensional generalized Saint-Venant model is described. Then, an 

extension of this model to the three-dimensional case is presented. The last part of this work focuses on 

numerical results obtained after this model has been implemented in a commercial FEM code. These 

results are then compared to experimental data from the literature. 

 

ONE-DIMENSIONAL GENERALIZED SAINT-VENANT MODEL 

 

In this section, a definition of the one-dimensional generalized Saint-Venant model is proposed, 

and its properties are illustrated. In the general three-dimensional case, the stress states and the plastic 

strains involved in an elastic-plastic behavior are deviatoric. Even if this section deals with the one-

dimensional case, stress and strain scalars will be denoted � and � respectively, where the underlining 

recalls the deviatoric nature of stress and strain states, in anticipation for the three-dimensional extension. 

 

Definition and Illustration of the Resulting Behavior 
 

The one-dimensional elementary Saint-Venant model (or one-dimensional Saint-Venant element) 

is composed of a linear spring characterized by an elastic modulus � and a friction slider characterized by 

a threshold strain �, associated in series (Figure 1.a). If the strain of the element is less than its threshold 

value �, its behavior is that of the spring alone; the friction slider is locked. If the strain becomes greater 

than or equal to �, the friction slider unlocks and the spring strain remains fixed.  
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Figure 1.b illustrates the monotonic elastic-perfectly plastic behavior of this model. Saint-Venant 

parameters are defined by the pair (�,�). The total strain � of the elementary model can be partitioned into 

an elastic strain �� relative to the spring and a plastic strain �� relative to the friction slider. 

 

 
Figure 1. Elementary Saint-Venant model (a) and its mechanical response (b). 

 

The one-dimensional two-element Saint-Venant model is composed of two elementary Saint-

Venant models associated in parallel. It is characterized by the pairs (��,��), (��,��) such as �� < �� 

(Figure 2.a). Its behavior results from the summation of the stresses �	� and �	�, applied on each element. 

The total strain is the same for the two elements due to the parallel construction. If the strain of the model 

is less than the first threshold ��, the behavior is purely elastic and the two friction sliders are locked. If 

the strain becomes greater than or equal to ��, the first friction slider unlocks and the first spring locks, 

hence a loss of rigidity of value �� is recorded (Figure 2.b). Finally, if the strain of the model becomes 

greater than or equal to ��, the behavior becomes perfectly plastic. 

 

 
Figure 2. Two-element Saint-Venant model (a) and its mechanical response (b). 

 

The one-dimensional generalized Saint-Venant model is characterized by a discrete sequence of 
 

pairs (�� ,��),(�� ,�� ),…,(�� ,�� ),…,(�� ,�� ). This sequence is distributed by ascending order of the 

thresholds strains: �� < �� < … < �� < … < �� (Figure 3.a). The first threshold �� tends toward zero so 

that the behavior of the model is always irreversible. Nevertheless, a quasi-reversible behavior can be 

revealed by an infinitesimal loading close to the origin; it corresponds to an initial elastic modulus equal 

to the sum of all the spring elastic moduli ��, i.e. ∑ ������  (Figure 3.b). The total strain is the same for all 

the elements due to the parallel construction. As the strain increases, successive losses of rigidity are 

recorded, which correspond to the triggering of the thresholds strains �� . For a large number 
  of 

elementary Saint-Venant models, the resulting behavior in the (�,�) diagram tends towards a continuous 

behavior (Figure 3.b). 
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Figure 3. One-dimensional generalized Saint-Venant model (a) and its mechanical response (b). 

 

Intrinsic Properties 
 

The six essential intrinsic properties of the one-dimensional generalized Saint-Venant model are 

listed below (see Wack et al. (1992)): 

 

1. The total strain in the model is the same for all the elements (Figure 3.a). 

2. The first threshold strain tends toward zero, so that the model behavior is always irreversible 

(Figure 3.b). 

3. At each reversal, all the friction sliders lock and the model gets back to its initial elastic 

modulus ∑ ������  (Figure 4.a).  

4. During a cyclic loading, the model observes Masing’s rule. This is illustrated Figure 4.a, 

where the unload curve CD is the image of the first load curve OC, by a homothety of ratio -2 

and center H. Thus, point N', on the CD curve, is the image of point N on the OC curve. 

5. During complex cyclic loading, the model can memorize events such as load reversals. This 

is illustrated in Figure 4.a by the BAC reload and more particularly by the return to the first 

load behavior (OAC), after passing through point A. 

6. Despite the irreversible behavior of the model, there is a neutral state that can be restored, 

after any mechanical loading, by a fundamental cycle. This property is illustrated by the 

cyclic loading OABACDE of Figure 4.a, which corresponds to an irreversible behavior, 

followed by a fundamental cycle EFO (Figure 4.b). This demagnetization-type cycle EFO 

consists of a cyclic loading of slowly decreasing strain amplitude through successive steps, 

until cancellation. The great property of a fundamental cycle is that a reload OG' after it 

shows a recovery of the initial behavior of first load (curve OG’ is the same as curve OC, as 

illustrated on Figure 4.a). 

 

 
Figure 4. One-dimensional generalized Saint-Venant model behavior during a cyclic loading (a) and 

return to the neutral state by a fundamental cycle (b). 
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Definition and Distribution of the Threshold Strains and Elastic Moduli 
 

To define the model response, it is necessary to define the discrete sequence of the friction slider 

threshold strains �� and the distribution of the spring elastic moduli ��. To do so, two parameters (
, ��) 

are chosen, which are the total number of Saint-Venant elements and the threshold strain limit 

respectively. Then, the threshold strains are calculated as follows: 

 

 �� = ��
�  (1) 

 �� = �. ��   with   � ∈ �1, 
� (2) 

 

To define the distribution of the spring elastic moduli ��, a generative function ���� is adopted, 

such as: 

 

 ���� = ��. �ℎ  !"#" . �$ (3) 

 

Where �� represents the initial elastic modulus at the origin and �� represents the yield limit. 

Figure 5 illustrates the shape of the generative function and its first and second derivatives, such as: 

 

 �′��� = &'
&( ��� = �� )1 −  '�(�#" $�+ (4) 

 �′′��� = &,'
&(, ��� = −2 !"#"$

� ���� )1 −  '�(�#" $�+ (5) 

 

 
Figure 5. Generative function ���� (a), first derivative �′��� (b) and second derivative �′′��� (c). 

 

Let us consider the continuous one-dimensional generalized Saint-Venant model, which consists 

in replacing the discrete sequence of thresholds strains �� by a continuous sequence of elements indexed 

by a continuous threshold �, varying from 0 to +∞. In this case, a section between � and � + �� is 

equivalent to an elementary Saint-Venant model with an elastic modulus −��′1�2 or −�′′1�2. ��. Thus, 

for a discrete sequence of thresholds ��, the spring elastic moduli �� are distributed such as: 

 

 �� = −�′′1��2. �� (6) 

 

Where �� is a constant defined by Equation 1. Figure 6 illustrates the shape of the distribution of 

the spring elastic moduli ��. 
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Figure 6. Distribution of spring elastic moduli ��. 

 

One-Dimensional Generalized Saint-Venant Model with an Added Single Spring 
 

The one-dimensional generalized Saint-Venant model can be completed with a single spring of 

elastic modulus �3  (Figure 7.a). This single spring then corresponds to an elementary Saint-Venant 

model characterized by an infinite threshold strain. In this case the quasi-reversible behavior, close to the 

origin and the load reversals, corresponds to an elastic modulus equal to the sum of all the spring elastic 

moduli, i.e. ∑ ������ + �3 (Figure 7.b). The intersections between the straight line corresponding to the 

residual elastic modulus �3 and the y-axis, for � > 0 and � < 0, are the limiting thresholds ±∑ ������ �� 

respectively, as illustrated on Figure 7.b. 

 

 
Figure 7. One-dimensional generalized Saint-Venant model completed with a single spring of elastic 

modulus �3 (a) and its mechanical response (b). 

 

THREE-DIMENSIONAL GENERALIZED SAINT-VENANT MODEL 

 

In the three-dimensional case, the friction sliders of the one-dimensional generalized Saint-

Venant model are represented by Von Mises-like yield surfaces. During the loading, it is necessary to 

consider the relative positions of these surfaces with respect to each other and the loading history. The 

yield surfaces are described in Ilyushin’s five-dimensional deviatoric space (see Zyczkowski et al. 

(1984)), in which they are represented by hyperspheres. The deviatoric part of symmetric second order 

tensors are described by five components vectors in an orthonormal frame of Ilyushin’s space (see 

Meggiolaro et al. (2016)). 

In the remainder of this paragraph, the three-dimensional elementary Saint-Venant model and the 

three-dimensional generalized Saint-Venant are introduced. The yield surfaces and their movements are 

illustrated in the classical two-dimensional deviatoric plane. 

 

Three-Dimensional Elementary Saint-Venant Model 
 

Figure 8 illustrates the extension of an elementary Saint-Venant model �  from the one-

dimensional case (Figure 8.a) to the three-dimensional case (Figure 8.b and Figure 8.c). We define the 

spring as an isotropic linear elastic behavior characterized by an elastic modulus �7 and we define the 

friction slider as a Von Mises-like yield surface, characterized by a threshold strain ��.  
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During the loading, the yield surface remains fixed in the stress space and its radius remains 

constant, equal to the product �� . ��  (Figure 8.b). In the strain space, the radius of the yield surface 

remains constant during loading. The sliding of the friction slider, in the one-dimensional case, results in 

the plastic flow in the three-dimensional case. This flow corresponds to the evolution of the position of 

the yield surface center in the strain space. This position is parameterized by the plastic strain vector ���88889 
(Figure 8.c). The elastic strain vector ���88889 can then be deduced from the total strain vector �9 by: 

 

 ���88889 	= �9− ���88889 (7) 

 

 
Figure 8. Elementary one-dimensional Saint-Venant model (a), three-dimensional stress-space (b) and 

strain-space (c) representations. 

 

The movement of the yield surface in the strain space is driven by the flow rule. In this study, the 

normality flow rule, which implies that the plastic strain increment is orthogonal to the yield surface, is 

adopted. To define this motion, a vector :89� is introduced, such as: 

 

 :89� 	= ���88889 + ��88889 (8) 

 

Where ��88889 denotes a total strain increment during the loading, i.e. the transition from an instant � 
to an instant � + �� (Figure 9). 

 

 
Figure 9. Illustration of the flow rule: ;:89�; ≤ �� (a), ;:89�; > �� (b). 



 

24th Conference on Structural Mechanics in Reactor Technology 

BEXCO, Busan, Korea - August 20-25, 2017 

Division I 

If the magnitude of vector :89� is less than or equal to the radius of the yield surface, i.e. ;:89�; ≤��, the behavior is elastic and the center of the yield surface remains fixed (Figure 9.a): 

 

 If ;:89�; ≤ �� then ����88888889 = 089 ; ����88888889 = ��88889 and ���88888889 = �� . ����88888889 (9) 

 

On the contrary, if the magnitude of vector :89�  is strictly greater than the radius of the yield 

surface, i.e. ;:89�; > ��, then the behavior is elastic-plastic. In this case, the center of the yield surface 

moves along an increment of plastic strain ����88888889, collinear to vector :89�. This flow is then orthogonal to the 

yield surface and complies with the flow rule normality (Figure 9.b): 

 

 If ;:89�; > �� then ����88888889 = =1 − �>
;?889>;@:89� ; ����88888889 = ��88889 − ����88888889 and ���88888889 = ��. ����88888889 (10) 

 

Three-Dimensional Generalized Saint-Venant Model 
 

The three-dimensional generalized Saint-Venant model is characterized by a discrete sequence of 

threshold strains ��, defined by Equation 2, and by a distribution of the elastic moduli ��, defined by 

Equation 6. Figure 10 illustrates, in the two-dimensional deviatoric strain plane, the different yield 

surfaces corresponding to the discrete sequence of threshold strains. In the initial state, all the yield 

surfaces are centered at the origin of the deviatoric strain plane (Figure 10.a). During loading, all yield 

surfaces undergo the same total strain (Figure 10.b). The yield surfaces whose threshold has been reached 

slide (white yield surfaces on Figure 10.b) and the yield surfaces whose threshold has not been reached 

remain fixed (gray-colored yield surfaces, see Figure 10.b). In the two-dimensional deviatoric strain 

plane, a point such that E on Figure 10.a may be parameterized by a vector �9, which depends on two 

parameters: radius A( and phase B(. Similarly, in the two-dimensional deviatoric stress plane, the pair 

(AC,BC) is the radius and the phase respectively of a stress vector �9. 
 

 
Figure 10. Illustration of yield surfaces in the two-dimensional deviatoric strain plane: initial state (a), 

state after a radial loading OC (b). 

 

For each yield surface, the flow rule defined by Equation 9 and Equation 10 is adopted. That 

results in an independent movement of these surfaces, with respect to each other. This is illustrated in 

Figure 11, which shows simulation results in the two-dimensional deviatoric strain plane of three distinct 

loading paths that lead to the same point C: OC, OAbC, OABC (Figure 11.a). Figure 11.b shows the 

positions of the yield surfaces at the end of path OA. Figures 11.c and 11.d show the positions of the yield 

surfaces at points B and b respectively. Figures 10.b, 11.e and 11.f illustrate the final positions at point C 

of the yield surfaces, for each of the three loading paths. These three figures, which show relatively 

different configurations, illustrate a fundamental property of the model: it is highly sensitive to the 

loading history. This is confirmed by Figure 12.a, which gives distinct responses OC1, OAbC2, OABC3, in 

the deviatoric stress plane, for the three considered paths.  
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The rheological diagram (A(,AC) (Figure 12.b) shows that the response of the two radial paths 

OA and OC1 merge, even if their orientation is different in the deviatoric plane. Moreover, this figure 

clearly shows that points C1, C2 and C3 differ in stress while having the same total strain (see Figure 11.a). 

Also, Figure 12.c shows a phase difference effect between the strain in the deviatoric strain plane and the 

stress response in the deviatoric stress plane. 

 

 
Figure 11. Simulations in the deviatoric strain plane of three loading paths: OC, OAbC, OABC (a); yield 

surfaces position at the end of: path OA (b), path OAB (c), OAb (d), OABC (e), OAbC (f). Model 

parameters: �� = 16	�EF, �� = 286	HEF, �3 = 1.6	�EF, 
 = 10, �� = 5	%. 

 

 
Figure 12. Simulation results related to Figure 11; stress responses OC1, OAbC2, OCBC3, in the deviatoric 

stress plane (a), corresponding to paths illustrated on Figure 11.a; responses in the rheological diagram 

(A(,AC) (b); deviatoric-plane phase difference between stress and strain (c). 

 

Description of Cyclic Hardening Law Added to the Three-Dimensional Saint-Venant Model 
 

To describe cyclic hardening or softening, the yield limit ��  is replaced by the yield limit �1K�, K�2 (Figure 13), where K� and K�	 are two cyclic hardening variables. The variable K� corresponds 

qualitatively to an indicator of cycle amplitude, while the variable K�  corresponds qualitatively to a 

cumulative indicator of the number of cycles. These two variables are calculated using an equivalent 

plastic strain of work hardening type, which considers the residual elastic modulus. The whole cyclic 

hardening law depends on three material parameters denoted by L�, F� and F�. 
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Figure 13. Illustration of the cyclic hardening law response in the case of a hardening material. 

 

IMPLEMENTATION IN FEM CODE AND SIMULATION RESULTS 

 

Tensorial Formulation of the Model 
 

The constitutive equation is expressed with Cauchy stress tensor M, Almansi strain tensor N and 

Lamé coefficients (O,P). The model is written in Jaumann’s co-rotational reference frame. This model can 

therefore take into account finite strains and finite rotations. The constitutive equation is in the form: 

 

 M =  O + �Q
R $ . ST1N2. U + ∑ �� . NVW���� + �3. N (11) 

 

Implementation in FEM Code, Model Parameters and Identification 
 

The three-dimensional Saint-Venant model has been implemented in FEM code Abaqus (Abaqus 

6.13 (2013)), using a user-subroutine UMAT. This subroutine contains 2 numerical parameters �� and 
, 

4 material parameters for the pure hysteresis part �� , X  (Poisson’s ratio), ��  and �3 , and 3 material 

parameters for the cyclic hardening law L�, F� and F�. 

The four parameters of the pure hysteresis part are identifiable with a reduced number of uniaxial 

tensile tests (5 tests, for repeatability, are sufficient). The three cyclic hardening parameters can be 

identified with alternating torsion tests using the cyclic hardening and cyclic consolidation curves. 

 

Validation of the Three-Dimensional Generalized Saint-Venant Model 
 

The three-dimensional generalized Saint-Venant model has been validated using confrontations 

with different experimental results. In this section, the pure hysteresis behavior without cyclic hardening 

is considered. An hourglass-type path in tension-torsion, performed by Aubin (2001) is considered 

(Figure 14.a). The four materials parameters have been identified with a monotonic uniaxial tensile curve. 

The simulation results, in bold lines Figure 14, reproduce in a very satisfactory manner the experimental 

data in dotted lines, either for the stress response (Figure 14.b), the response in the tensile direction 

(Figure 14.c) and the response in the shear direction (Figure 14.d). 

 

 
Figure 14. Simulated tension-torsion experiments (Aubin (2001)); strain path (a), stress (a), tensile (b) and 

shear (d) responses. Material parameters: �� = 145	�EF, Z = 0.3, �� = 530	HEF, �3 = 1410	HEF. 
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CONCLUSION 

 

A three-dimensional extension of the generalized Saint-Venant model is proposed. The adopted 

normality flow rule allows multiaxial loading simulations in the strain space. This multiaxial elastic-

plastic multi-surface model has a reduced number of parameters, easily identifiable by uniaxial tensile 

tests. A three-parameter cyclic hardening law is also proposed to capture the behavior evolution between 

the first load and the stabilized cycle. The model thus developed provides accurate results in the case of 

non-proportional loadings. Experimental tests are in progress and may complete this work, on the one 

hand to confirm the results obtained in pure hysteresis and on the other hand to validate the proposed 

cyclic hardening law. 
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NOMENCLATURE 

 \ or ] : Symmetric second order tensor \ or ] : Deviatoric part of a symmetric second order tensor 

F9 or 9̂ : Vector (can be a symmetric second order tensor written in vector form) 

F9 or 9̂ : Deviatoric part of a second order tensor written in vector form F or ^ : Scalar F or ^ : Scalar where the underlining recalls its deviatoric nature NW, N_ : Elastic part and plastic part of Almansi strain tensor respectively U : Second order identity tensor 
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