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Abstract 

In this paper, the mechanical behavior of semi-crystalline polymer films in finite elastoplastic strains 

is investigated. A 3-phase constitutive model has been specially developed in a previous paper and 

validated for various materials in both uniaxial and biaxial uniform hot drawing. In the present study, 

the numerical implementation of this 3-phase model in a finite element software is outlined in the 

perspective of using this model in more general non-uniform cases of complex geometries and/or 

loadings. In the present case, only polyethylene (PE) films at room temperature are considered. First, 

uniaxial tensile experimental tests are performed so as to calibrate the model parameters. Then, for 

validation purposes, two series of experimental tests are conducted on tensile specimens with 

central holes and Double Edge Notched Tensile (DENT) specimens. During these tests, Digital Image 

Correlation is used to analyze the strain (or displacement) field history during loading. Finally, 

numerical computations are performed with the help of the finite element software including the 3-

phase model previously implemented (cohesive elements are also needed for the simulation of the 

crack propagation in DENT specimens). In both cases, the comparison between the experimental and 

numerical force-displacement curves, together with the comparisons between the experimental and 

numerical strain fields at different times, give very satisfactory results. 
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1. Introduction 

The demand of multi-functional materials has significantly increased over the past years. In the 

particular field of food packaging, multi-layer blown films offer a great potentiality since they can 

simultaneously address many performance criteria (in terms of mechanical, optical and gas-barrier 

properties, for example) in combination with an easy processability. Among others, the combination 

of polyethylene (PE) and ethylene vinyl alcohol (EVOH) has recently shown a particular interest. 

Indeed, PE is an excellent barrier to moisture and provides a good mechanical strength, whereas 

EVOH presents a very good barrier effect to oxygen, aromatics and oils [1]. 

Modeling the mechanical behavior of such multi-layer films is an important objective for 

industrial applications. It has been clear for a long time that standard elastoplastic formulations are 

not suitable for describing the behavior of semi-crystalline polymers, due to their complex 

morphology. Over the past decades, many constitutive models were thus proposed in the literature 

to simulate the mechanical behavior of semi-crystalline polymers, among which one can identify 

phenomenological and physical models. Dealing with the physically-based approaches, many 

network models were first suggested (among which the classical 8-chain model), emphasizing the 

rubber-like properties of the amorphous phase of semi-crystalline polymers [2,3]. Then, based on 

these fundamental ideas, numerous formulations were proposed with the aim of simulating the 

(thermo-)mechanical response of amorphous or semi-crystalline polymers [4-6]. In particular, many 

models were developed as a generalization of the 8-chain model for predicting the large strains, 

time- and/or temperature-dependent elastoplastic response of ultra-high molecular weight 

polyethylene, as reviewed in [7]. Lee et al. [8] developed a specific model in order to study the large 

plastic deformation and texture evolution in isotropic high-density polyethylene. Dupaix and Boyce 

[9] developed a constitutive model in order to capture the rate-dependent stress-strain behavior of 

poly(ethylene terephthalate)-glycol at and above the glass transition temperature. Richeton et al. 

[10] modified the 8-chain model so as to simulate the behavior of poly(methyl methacrylate) and 

polycarbonate, taking into account the influence of relaxation in polymer chains. 

In many cases, two models are used in parallel to represent the combined effect of amorphous 

chains and crystalline skeleton. Following this idea, Gueguen et al. [11] investigated the elasto(-

visco)-plastic behavior of semi-crystalline polymers using a micromechanically-based formulation, 

considering two phases (crystalline and amorphous) with independent yield processes. Ayoub et al. 

[12] studied the mechanical stress-strain response of polyethylene under finite strains using a two-

phase representation of the microstructure. The constitutive response of both crystalline and 

amorphous phases was experimentally determined and the model was validated over a wide range 

of crystallinities. In a slightly different way, the evolution of void fraction and shape during uniaxial 

stretching of semi-crystalline and amorphous polymers was analyzed by Ponçot et al. [13], in order to 

derive their true intrinsic mechanical behavior. Two multi-phase models, which also take into 

account the degree of crystallinity, were developed and implemented in a finite element software by 

Regrain et al. [14] in order to investigate the creep behavior of semi-crystalline polymers. In view of 

biomedical applications, Khan et al. [15] characterized the mechanical properties of a ultra-high 

molecular weight polyethylene and used a viscoplasticity theory based on overstress for creep 

modeling purposes. 



The yield behavior of semi-crystalline polymers was particularly studied by Farrokh and Khan 

[16]. Based on experimental predictions, they proposed an empirical equation in order to express the 

strain rate sensitivity of the yield value. In Rozanski and Galeski [17], the influence of swelling of the 

amorphous phase on the yield stress of semi-crystalline polymers was studied experimentally. The 

yield behavior of high-density polyethylene under multiaxial loading conditions was examined by 

Hachour et al. [18]. The relevance of several classical yield criteria, involving both the deviatoric and 

hydrostatic stresses, was verified for various stress states. 

Lastly, let us cite Srivastava et al. [19] who developed a large-deformation, thermo-

mechanically-coupled elastic-viscoplastic theory so as to investigate the mechanical behavior of 

polymers at temperatures below and above the glass transition. Likewise, Uchida et Tada [20] 

analyzed the deformation mechanisms of semi-crystalline polymers at microscopic, mesoscopic and 

macroscopic scales and built a computational procedure relating each scale to the others with a view 

to simulating iteratively the global mechanical response. Except the last ones, most of the previous 

models have only been used and thus validated in the context of uniaxial drawing. As an example, 

Maurel-Pantel et al. [21] developed an original and promising thermo-mechanical elastic-viscoplastic 

large deformation constitutive model in a 3D framework, based on a previous 1D visco-hyperelastic 

model initially developed for amorphous rubbery polymers, but up to now, it was not implemented 

in a finite element code. 

Recently, a special (rate-independent) elastoplastic model was introduced by Zeng et al. [22], 

with the objective of catching both uniaxial and biaxial behaviors of semi-crystalline polymers (at low 

strain rates) in a unified way. The main features of this model are: (i) a 3-phase description of the 

morphology and hence of the constitutive behavior; (ii) a modified von Mises criterion based on a 

multi-axial factor. This simple model, involving just a few parameters to calibrate, has already shown 

its ability to reproduce both uniaxial and equi-biaxial behaviors (with their noteworthy double 

yielding points) of various polymers under different temperatures. The theoretical predictions have 

found to be in very good accordance with experimental results up to very large irreversible strains. 

In practice, the mechanical response of polymer films is not necessarily uniform. The presence 

of initial defects (such as holes or cracks) gives rise to stress concentrations. Even in the case of an 

unnotched sample, strain localization effects are likely to occur, transient ones for high strain rates 

[23] but also permanent ones for low strain rates [24-26]. Therefore, one has to focus not only on the 

global force-displacement curve (or local stress-strain curve) but also on the displacement (or strain) 

field throughout the sample in hand. From an experimental point of view, the measurement of 

displacement fields, even at moderately high strain rates, is feasible today with modern high-speed 

camera systems [23]. The widespread use of Digital Image Correlation (DIC), and its coupling with the 

technology of high-speed cameras, may provide the desired displacement fields [25]. The basic 

concept of DIC was proposed in the eighties by Sutton et al. [27,28] and recent researches using this 

technique have been performed, regarding the evaluation of local displacements in polymeric 

materials [18,29,30]. From a numerical point of view, the use of a finite element software allows one 

to predict the general non-uniform response of polymer films including possible defects. 

In light of this, the present paper aims to analyze the uniaxial response of various unnotched 

and notched specimens of a polyethylene blown film. More specifically, three kinds of samples will 

be used: unnotched rectangular specimens, rectangular specimens with a hole at the center, and 



Double Edge Notched Tensile (DENT) specimens. The unnotched specimens (with a uniform 

response) will be used for the calibration of the 3-phase model. Then, the case of open-hole 

specimens, which is experimentally and geometrically easy to handle, allows one to deal with multi-

axial stress/strain states and high stress concentrations, and it represents an intermediate stage 

between the simple case of unnotched specimens and the more complex analysis of DENT 

specimens, where stresses become singular near the crack tips. The problem of crack propagation in 

DENT specimens will be studied lastly, so as to illustrate one of the major failure modes of such 

polymer films. 

On one hand, experimental tensile tests will be performed and post-processed with the help of 

2D Digital Image Correlation. On the other hand, the 3-phase model developed by some of the 

authors [22] will be implemented in a commercial finite element software. Numerical computations 

will be performed for all kinds of samples (involving not only the 3-phase model but also specific 

cohesive elements at the expected place of the crack evolution in the case of DENT specimens) and 

the results will be confronted to experimental curves and fields, in order to evaluate the efficiency of 

the present model in such extreme multi-axial conditions. 

 

2. Experimental data 

2.1 Materials 

The materials considered in this study are a low density polyethylene (LDPE), grade FE 8000, 

from Total Petrochemicals (France), and a metallocene ethylene-hexene copolymer (m-LDPE), grade 

Exceed 2018CA, purchased by ExxonMobil Chemicals (USA). The main characteristics of the raw 

materials are reported in Table 1. 

 

Table 1. Material properties 

Materials Supplier Reference 

Melt flow 

index 

(g/10 min) 

Density 

(g/cm
3
) 

Melting 

temperature 

(°C) 

LDPE 

TOTAL 

PETROCHEMICALS 

(France) 

FE 8000 0.8 0.924 111 

m-LDPE 
EXXONMOBIL 

CHEMICALS (USA) 

Exceed 

2018CA 
2.0 0.918 118 

 

2.2 Manufacturing process 

A three-layer film (LDPE / LDPE / m-LDPE) was manufactured at 180°C on a three-line co-

extrusion device (Collin) equipped with a blow die of inner diameter 50 mm and gap width 0.8 mm 

(see the main characteristics in Table 2). The blow-up ratio was fixed at 3.4 and the maximum 

deviation of the film thickness about the average value was ± 10 µm. 

 



Table 2. Characteristics of the co-extrusion line and manufacturing conditions 

Layer 

Screw Extrusion conditions 

Diameter D (mm) Length Thickness (µm) 
Extrusion 

temperature (°C) 

Internal (m-LDPE) 25 25 D 20 180 

Central (LDPE) 30 30 D 40 180 

External (LDPE) 25 25 D 20 180 

 

2.3 Mechanical testing 

Experimental tensile tests have been performed on a Lloyd LR 50K material-testing machine 

mounted with a 100 N-force cell at a constant crosshead speed of 50 mm.min
-1

, at room moisture 

and 25°C, according to the ISO 527.3 standard. Three types of specimen were tested: unnotched, 

open-hole and Double Edge Notched Tensile (DENT) ones (two initial crack lengths were considered 

in the last case). Four samples were tested in each case (to check reproducibility) with in-plane 

dimensions reported in Figure 1 and a thickness varying from 61 to 88 µm. 

 

Fig. 1. Geometry of tensile specimens: (a) unnotched, (b) open-hole and (c) DENT 

 

2.4 Digital Image Correlation processing 

Many methods provide displacement or strain maps on deformed surfaces (digital image 

correlation, photoelasticity, moiré interferometry, speckle interferometry, etc.). Among them, the 

Digital Image Correlation (DIC) method is probably one of the most popular due to its 

implementation ease and the development of commercial softwares. 

Figure 2 shows the scheme of a mechanical test with the DIC device used in this study, where 

the focal axis of the camera needs to be centered and orthogonal to the sample. Without going into 

details, the implementation of the DIC method involves the following steps: 



• Creation of an artificial speckle: a black fine pencil was used to create a random and 

contrasted speckle; 

• Lighting of the specimen: a pair of cool white lights have been used to prevent the material 

from heating; 

• Focus adjustment; 

• Acquisition: images were acquired from the beginning to the end of the test with an 

acquisition frequency of 10 fps; 

• Post-processing: the kinematic analysis is based on an incremental correlation (with an 

incremental calculation mode): each image is compared to the previous image rather than 

the reference image (this is more satisfactory in cases of pattern breakdown or extremely 

high strains, as in our case). 

 

Fig. 2. Schematic experimental set-up 

 

3. Constitutive model 

3.1 Context and objectives 

The 3-phase model which will be subsequently used for the numerical simulation has been 

introduced in an earlier study dealing with similar semi-crystalline polymer films [22]. It allowed to 

describe properly the different double yielding points encountered in both cases of uniaxial and 

biaxial drawing, for polyamide 6 and polyethylene films at 90°C. It will be employed here for other 

polyethylene films at room temperature, in the more general context of non-uniform multi-axial 

stress/strain states, in order to show the ability of such a model to deal with polymer films of various 

geometries under arbitrary loading conditions. In the sequel, the main theoretical features of the 3-

phase model (based on physical considerations and experimental observations) are first recalled, 

together with the calibration procedure (see [22] for a more detailed presentation). Then, the 

following computations require the use of a finite element program and thus the preliminary 

numerical implementation of the model formulation in a calculation code, which appears to be the 

main challenge of this study and which will be therefore presented in details at the end of this 

section. 

 



3.2 Theoretical formulation 

3.2.1 Basic components of the 3-phase model 

Semi-crystalline polymers are merely composed of many crystalline blocks which are almost 

randomly distributed in an amorphous medium, so that the material appears to be almost 

homogeneous at the macroscopic scale. Owing to the lamellar structure of such materials, crystalline 

blocks are inter-connected by either very short intra-lamellar chains or inter-lamellar ones (standing 

for the amorphous phase) which are assumed to be either middle-sized or rather long. In the 

literature [31-33], semi-crystalline polymers are thus often viewed as 3-phase materials, including 

interfacial regions between successive purely crystalline and amorphous zones. In the present model, 

the three following constitutive behaviors are represented, according to the phase or the average 

distance between crystalline blocks. 

 

• Case 1 

When the distance between crystalline blocks is very short, most of the chains located 

between these blocks are connected or even embedded thereto. This first phase can thus be 

considered as purely crystalline and an elastoplastic constitutive model is retained in this case, with 

the von Mises criterion and a linear isotropic hardening, in the framework of generalized standard 

materials (the typical uniaxial stress-strain behavior is depicted in Figure 3(a) that displays the 

Young’s modulus 1E , the tangent elastoplastic modulus 1TE  and the associated yield stress 1σ ). 

 

• Case 2 

When the distance between crystalline blocks is medium-sized, most of the chains are only 

partially connected to the surrounding blocks, in such a way that the mechanical response of the 

corresponding phase is rather governed by the presence of numerous entanglements between 

couples of chains. 

In this case, the typical mechanical behavior under uniaxial tension is expressed as shown in 

Figure 3(b), displaying a new Young’s modulus 2E , a new yield stress 2σ  and perfect plasticity. The 

maximum admissible stress 2σ  is proportional to the limit force corresponding to the incipient 

slippage between two arbitrary entangled chains under stretching, and also to the density of 

entanglements involved in the uniaxial behavior. 

In multi-axial conditions, a modified von Mises equivalent stress is defined as follows: 

 
K
VM

VM

σσ =′  (1) 

where VMσ  refers to the classical von Mises criterion, which has been retained as the sliding 

phenomenon between entangled chains is supposed to be governed by shear effects and distortion, 

and K  is a multi-axial factor specially defined so as to take into account the change in the number of 



entanglements brought into play with the deformation mode (in any multi-axial state, a new 

threshold stress may be defined which would be proportional to the sum of all these entanglements, 

regardless of their orientation, hence the expression (1) of the modified equivalent stress). 

According to simple geometric considerations, K  is defined as the scaled sum of the positive 

principal strains Iε  which are the ones and only strains in the principal axes that contribute to the 

interlocking of entanglements: 

 

I
I

I
I

K
ε

ε

max

∑
=         ( )0≥Iε  (2) 

This multi-axial factor K  evolves continuously and even linearly between 1=K  and 2=K  

corresponding to the two limit cases of uniaxial and equi-biaxial states, respectively. 

 

(a) Case 1     (b) Case 2 

 

Fig. 3. Stress-strain curves under uniaxial tension 

 

• Case 3 

When the distance between crystalline blocks is long enough, the chains located between 

these blocks are mostly unconstrained. In these conditions, a network model such as the 8-chain 

model is a satisfactory solution to simulate the macroscopic mechanical behavior. This model is 

based on the so-called Langevin model introduced in the 1940's, in the context of non-Gaussian 

statistics, in order to deal with large stretches in amorphous materials up to the limiting end-to-end 

distance given by the length of the chains [2,3]. It is characterized by two material parameters, 

namely the density RC  and the limit of extensibility of a chain N  [34]. 

 

3.2.2 Full model 

The global constitutive response of the material is interpreted as follows in a 3D framework. At 

the macroscopic scale, the semi-crystalline polymers considered are supposed to be homogeneous 

and roughly isotropic. The global model encompassing the three behaviors presented above is 



depicted in Figure 4, in the style of a rheological model. Models for cases 1 and 2 are assumed to 

bear the same stress so that a series arrangement is retained. The model for case 3 initially 

corresponds to a much softer behavior which is paralleled with the others. This configuration has 

shown to be the most natural and adequate representation, capable to reproduce the predominance 

of either phase according to the deformation range. The mechanical behavior of the full model can 

then be deduced from the constitutive laws of the three different phases, by combining strain and 

stress tensors additively. 

 

 

Fig. 4. Global representation of the mechanical model for semi-crystalline polymers 

 

Initially developed on the basis of a constitutive behavior divided in three distinct parts, in 

practice, the final model turns out to rely ultimately on only two sub-models associated to the two 

branches in parallel in the rheological scheme. Indeed, dealing with the elastoplastic components 

(cases 1 and 2), both elastic behaviors are not particularized and a unique Young's modulus 

)/( 212121 EEEEE +=−  is used for the serial arrangement (renamed case 1-2), in the framework of 

the Saint-Venant-Kirchhoff linear elastic theory. Dealing now with plasticity, a single skate 

component is used in order to represent in a unified way the two plastic cases in series configuration. 

Let us mention finally that this model will be implemented within the context of a plane stress 

formulation, for thin films applications. It means that the global stress tensor must verify the plane 

stress condition. For simplicity purposes, we assume that both stress tensors (in cases 1-2 and 3) 

have a null transverse normal component, which is satisfied in practice. 

 

3.3 Calibration of the model parameters 

The model parameters for a given material are determined from a uniaxial tensile test and the 

corresponding experimental stress/strain curve (see Figure 5). Due to the very large strains 

encountered, true logarithmic (Hencky) strains are employed, as they are recognized to be the most 



physical strain measure [35]. These Hencky strains are additively decomposed into elastic and plastic 

parts, according to the classical Lee multiplicative decomposition of the deformation gradient. 

Kirchhoff stresses represent in principle the most reliable counterpart of logarithmic strains. In the 

present case, as volumetric changes are proved to be negligible, they practically coincide with the 

more classical true Cauchy stresses, which can thus also be employed for the description of the 

constitutive law. 

The first two parts of the curve (for Aεε ≤≤0  and BA εεε ≤≤ , respectively) are assumed 

to be linear, and their respective slopes E  and H  are obtained by linear regression. For Bεε ≥  in 

the vicinity of Bε  (while strains remain moderate), the response curve is also quite linear, so that a 

third slope 0E  can be deduced again, which corresponds to the initial elastic modulus of case 3. The 

set of elastoplastic coefficients (case 1-2) is then derived using the following relations: 

 021 EEE −=−  (3) 

 01 EHET −=  (4) 

 AA E εσσ 01 −=  (5) 

 BB E εσσ 02 −=  (6) 

where Aσ  and Bσ  represent the limit stresses on the uniaxial curve, separating the three successive 

linear parts and associated with strains Aε  and Bε , respectively (these stresses have not been 

reported in Figure 5 for clarity purposes). The three slopes (and thus the subsequent moduli and 

yield stresses) have been obtained with a rather reasonable correlation coefficient. In view of this, 

and thanks to the very low level of scattering in the uniaxial stress-strain experimental curves, the 

elastoplastic properties are identified in a representative and repeatable manner, with very low 

uncertainty. 

Afterwards, the maximum strain limε  and the corresponding limit stretch value 

( )limlim expελ =  are estimated by extrapolation of the uniaxial curve, and N  is simply obtained as 

follows [36]: 

 
2

lim

lim

1 2

3
N λ

λ
 

= + 
 

 (7) 

Using an arbitrary point ( )tt σε ,  on the stress-strain curve, with ( )teq ελ exp=  and 

2σσσ −= teq , one finally gets: 
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The limit of extensibility of a chain N  is proved to have little influence on the simulation 

results, as soon as it is sufficiently high (in a range of large values of N , limε  does not depend much 

on its specific value). By contrast, the density RC , whose identification is somewhat hazardous, will 

have a strong influence on the simulation results, as it will be discussed when validating the model in 

uniaxial drawing. 

According to experimental observations [22], the global behavior is assumed to be almost 

incompressible. Indeed, when large elastoplastic strains are involved, both models in parallel (1-2 

and 3) display such a behavior. On one hand (case 1-2), the elastic strains are negligible, and the von 

Mises type criteria used imply an incompressible plastic behavior. On the other hand, the 8-chain 

model is consistent with this hypothesis. However, for particularly small strains, the global behavior 

is governed by the elastic part of case 1-2, which is represented by a Saint-Venant-Kirchhoff’s law. A 

Poisson coefficient is thus needed for the model and it can be simply derived as the ratio between 

transverse and longitudinal strains in the onset of the uniaxial test. The effect of this Poisson's ratio 

can yet be neglected in most of the strain range considered, since it only concerns very small strains. 

What is more, the numerical value obtained is generally not so far from 0.5, which means that these 

elastic strains are also nearly incompressible. Anyway, the apparent contradiction between a slightly 

compressible material and a perfectly incompressible model in parallel is not an issue since only bi-

dimensional strains and stresses are further considered within the plane stress formulation retained. 

 

 

Fig. 5. Calculation of the model parameters using the uniaxial curve 

 



3.4 Numerical implementation 

The 3-phase model discussed above is then implemented in the commercial finite element 

software ABAQUS through a User Material (UMAT) subroutine, so as to deal with complex 

geometries and/or loadings. In further applications, the polymer films are inherently bidimensional 

(exceptionally thin) and only submitted to in-plane loads, so that the strain and stress states are 

practically uniform across the thickness. In such conditions, only 2D models can be considered, 

verifying the plane stress assumption. 

In the sequel, due to the high geometric and material non-linearities encountered, the 

problems are solved in an incremental way, using the Newton-Raphson iterative procedure, within 

the framework of an updated Lagrangian formulation. At each new iteration, a local integration is 

performed at each integration point so as to update the elastic/plastic strains and stresses, but also 

compute the consistent tangent constitutive tensor. The derivation of all these quantities from a 

given strain increment happens to be the main stumbling block of the numerical implementation. 

Due to the parallel configuration of the 3-phase model, the two sub-models (cases 1-2 and 3) 

are first treated separately, and the respective stresses and tangent tensors are then added so as to 

deal with the full model. 

 

3.4.1 Elastoplastic behavior 

Using ABAQUS standard notations, the elastic tangent tensor writes classically as follows, in a 

3D framework: 

 II
ε

σ ⊗+=
∂
∂

KGI2  (9) 

where G  and K  are the shear and bulk moduli, and I  and I  stand for the second-order and 

fourth-order unity tensors, respectively ( kjilδδ=ijklI  where ijδ  is the Kronecker symbol). The stress 

and strain tensors will be further decomposed in their deviatoric and spherical parts as follows: 

 Ieε volε
3

1+=  ISσ p−=  (10) 

In the framework of generalized standard materials (with only isotropic hardening), the von 

Mises criterion writes: 

 ( )pleq σ=  (11) 

involving the von Mises stress q  and the yield stress σ  depending on the equivalent plastic strain 

ple  (which is inherently deviatoric). The plastic strain increment is obtained from the evolution law 

which is written in a discretized way, according to the implicit Euler time integration scheme: 

 
q

e pl
t

pl
tt

plpl S
eee ∆=−=∆ ∆+ 2

3
 (12) 



Inserting Equation (12) in the elastic constitutive relation at current time and eliminating the 

stress tensor (by using criterion (11)) leads to a non-linear equation in 
ple∆  which is solved in an 

iterative manner. Once 
ple∆  is known, the computation of stresses and plastic strains is 

straightforward. Finally, the consistent elastoplastic tangent tensor (depending on the increment 

size) can be obtained by differentiating the previous stress-strain relation at current time (see [37] 

for more details): 

 SSII
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σ ⊗−⊗






 −+=
∂
∂

RQKQ
3

1
I  (13) 

with: 
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where ee ˆ:ˆ
3

2~ =e  ( eee ∆+= t
elˆ ) and 

pled

d
H

σ=  is the hardening modulus. 

The radial return mapping algorithm, presented above in the 3D framework, becomes more 

complex when considering the plane stress assumption, as the solution obtained with the 3D 

procedure does not verify a priori the plane stress condition and must be conveniently projected into 

the plane stress space. In practice, the normal out-of-plane strain increment can be expressed in 

terms of the in-plane strains by using the plane stress condition. It allows one to reduce the previous 

elastoplastic tangent tensor (13) to a new expression involving the 2D reduced tensors (among which 

the in-plane strains ε  and stresses σ ) classically written in matrix notation: 
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where: 

 
2

3

2
1

RpQK
P

−+
=  (16) 

The presence of two elastoplastic models in series configuration does not modify the general 

numerical approach but only changes the hardening modulus value depending on the current stress 

level. Similarly, the multi-axial factor involved in the modified von Mises criterion (case 2) can easily 

be introduced in the above expressions without changing the calculation process. 

 

3.4.2 Hyperelastic behavior 

The stress and tangent tensors will be expressed here as functions of the strain energy which 

generally depends on the three classical invariants of the strain tensor (or its deviatoric part). When 

considering the 8-chain model, the strain energy can be naturally expressed in terms of only the first 



invariant BI :1 =I  of the left deviatoric Cauchy-Green deformation tensor 
TFFB ⋅= , where 

FF 3

1−
= J  is the deviatoric part of the deformation gradient tensor F . However, due to the 

incompressibility of the hyperelastic phase, the jacobian determinant ( )Fdet=J  equals unity so 

that the overlines may be removed in the sequel. 

In the general 3D case, the variation of the strain energy density simply writes as follows: 

 ( )volpJU δεδδ −= eS :  (17) 

using the same definitions as before for the spherical and deviatoric strains and stresses. According 

to the previous assumptions, and observing that eBBI δδδ :2:1 ==I , one can derive the 

deviatoric stress tensor by considering an arbitrary variation of the deviatoric strain eδ : 
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With the help of variational calculations (see [37] for more details), one can express the 

associated deviatoric tangent tensor as follows: 

 








 ⊗−







⊗

∂
∂+

∂
∂








 ⊗−=








 ⊗−








∂
∂

∂
∂








 ⊗−=






 ⊗−
∂
∂=

∂
∂

IIBBHII

IIB
e

IIII
e
S

ε

S

3

1
:2:

3

1
2

3

1
::

3

1
2

3

1
:

2
1

2

1

1

II

III

I

U

I

U

I

U

 (19) 

with eBBeeH δδδ ⋅+⋅=: , namely ( )jkiljkiljlikjlikijkl BBBBH δδδδ +++=
2

1
. Conversely, 

0=volδε  so that the equivalent pressure (which appears in Equation (17)) can not be directly 

determined in the same way. 

Under the plane stress assumption, the strain and stress measures may be reduced to 2D 

tensors (which will be underlined in the sequel), excluding thus the normal out-of-plane component 

(in z -direction). In this case, the equivalent pressure simply writes zzSp =  and the in-plane stress 

components can be derived from the preceding 3D expression of the deviatoric tensor (18): 
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Finally, zzB  can be deduced from the incompressibility condition ( ) 1det =B : 

 ( )Bdet

1=zzB  (21) 

so that the tangent tensor takes the following form: 
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with ( )jkiljkiljlikjlikijkl BBBBH δδδδ +++=
2

1
. 

 

4. Results: calibration, validation and discussion 

4.1 Calibration of the model parameters in uniaxial drawing 

First and foremost, the experimental tensile tests performed on unnotched specimens are 

used for calibration purposes. The procedure discussed above is applied to the corresponding stress-

strain curve (one single curve is arbitrarily retained for the calibration, since all the tested specimens 

give very similar results). The following parameters are identified: MPa53.51 =σ , MPa102 =σ , 

MPaE 9.20721 =− , 3.18=N , MPaCR 45.2= , MPaET 4.1221 =  and 4.0=ν . 

Once the model parameters are known, they can be introduced in the finite element program. 

The uniaxial drawing of a rectangular specimen is then simulated (the dimensions of the specimen 

are chosen arbitrarily, since the uniform stress-strain response does not depend on the geometry). 

Furthermore, only one rectangular linear finite element is used (with as few nodes as possible and 

reduced integration), for efficiency purposes. 

A very good agreement between the experimental and numerical results is naturally expected, 

since material parameters were chosen in order to closely fit the uniaxial test response. Figure 6 

displays both numerical and experimental curves, for validation purposes. From small up to 

moderate strains, the simulation results really fit the experimental ones very well. When the strains 

become much larger, the two curves slightly differ due to the strain softening phenomena. In the 

present case, the arbitrary point ( )tt σε ,  used for the calibration of the 8-chain model has been 

chosen in the first half of the curve. The value of parameter RC  has proved to be the same whatever 

the point in that particular range, and it gives rise to a numerical curve nearly coincident with the 

experimental one as long as moderate strains are considered. In the following applications, the strain 

level is such that no special effort has been made in order to better match the experimental and 

numerical results in very large strains. 

 



 

Fig. 6. Comparison between experimental and simulation results in uniaxial drawing 

 

4.2 Open-hole specimens under uniaxial tension 

4.2.1 Experimental results 

Four different specimens (with various thicknesses) have been stretched in the longitudinal 

direction. During the mechanical tests, the global tensile force and the length variation (maximum 

displacement in the longitudinal direction) are recorded: the corresponding force-displacement 

curves are plotted in Figure 7 (for comparison purposes, the force was divided by the current 

thickness). 

The same typical behavior is observed for all the specimens. In the first stage of deformation, 

the force-displacement curve is almost linear, until it reaches a limit value (corresponding to the 

incipient plasticity). At such points, a few oscillations occur, with successive force peaks and 

subsequent slight decreases. These oscillations identify with a kind of Piobert-Lüders plateau and the 

corresponding mechanical response can be viewed as a necking phenomenon whose initiation would 

be facilitated by the presence of the hole in the specimen, owing to the non uniform deformations 

throughout the specimen. Then, the force increases again and finally reaches something like a 

plateau, where the force hardly changes until collapse. Large discrepancies are noticed between the 

different limit force values, even when reduced to a common thickness (with a maximum relative 

difference of about 20 %). These discrepancies are naturally due to unavoidable imperfections 

related to the geometry (thickness variations, size and position of the central hole) or the boundary 

conditions. 
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Fig. 7. Experimental force-displacement curves of open-hole specimens under uniaxial tension 

 

The displacement fields within the specimens have been recorded during the tensile tests 

using the DIC method, though the corresponding strain distributions will only be displayed later, 

together with the simulation results for comparison purposes. 

 

4.2.2 Modeling hypotheses 

The model used for the numerical computations and displayed in Figure 8 only involves one 

quarter of the central part of the open-hole specimen, for obvious reasons of symmetry. The 

thickness of one of the tested specimens is arbitrarily retained for the calculations, namely 70 µm. 

Symmetry conditions are naturally applied onto the two cut edges. The longitudinal external edge is 

free as well as the circular edge around the hole. The end of the specimen is submitted to a uniform 

enforced displacement, in accordance to the experimental loading conditions. The simulations are 

carried out up to a maximum displacement of 10 mm. It corresponds to a global elongation of 20 mm 

for the entire specimen, which is roughly the maximum value reached experimentally before failure. 
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Fig. 8. Geometric model and mesh for the open-hole tensile tests 

 

Two-dimensional 6-node triangular finite elements are used, with quadratic shape functions 

and full integration (namely 3 integration points per element). Preliminary convergence tests have 

been performed and the mesh depicted in Figure 8 was finally obtained. It is particularly fine in the 

vicinity of the circular hole, where stresses show the greatest variations, and coarser anywhere else, 

as stresses become more and more uniform as one moves away from the central hole. Particular 

attention is paid to the regularity of the mesh, especially around the hole, where excessive distortion 

may appear in finite strains. 

For comparison purposes, two simulations are performed. Whereas the first one naturally 

involves the 3-phase model previously presented, the second one considers a standard elastoplastic 

model instead, which is based on the classical von Mises criterion and an isotropic hardening. The 

corresponding moduli and yield stresses are identified thanks to the same experimental uniaxial 

curve (with similar linear regressions). 

 

4.2.3 Validation and discussion 

The simulation results are first confronted to the experimental ones through the force-

displacement curves. In Figure 9, the global force required to stretch the global specimen is plotted 

versus the corresponding longitudinal elongation of the full specimen. The four experimental curves 

of Figure 7 are redrawn and the two simulation curves (corresponding to the 3-phase and standard 

models, respectively) are added for validation purposes. 

All the curves perfectly coincide during the elastic stage. Thereafter, the agreement between 

the simulation curve associated to the 3-phase model and the set of experimental curves is quite 

acceptable. The general shape of the curve is very similar (except for the oscillations, corresponding 

to incipient plasticity, which are not represented by the present model) and the limit admissible force 

(before failure) predicted by the numerical computation lies in the interval of the stabilized forces 

deduced from all the experimental tests. 



 

Fig. 9. Comparison between experimental and numerical results of open-hole specimens under uniaxial tension 

 

By contrast, the simulation curve related to the standard model is totally different. A peak 

force is first noticed at a force level similar to the limit forces previously discussed. Then, a strong 

drop is observed so that the calculated force falls down to no more than 25 % of the experimental 

values. The large discrepancies between the simulation curves that essentially occur in large strains 

are certainly due to the two main differences between the two constitutive models in hand. The 

presence of the 8-chain component in the 3-phase model is surely responsible for the higher strength 

of the material in very large strains. But it is worth mentioning that at such strain levels, both 3-phase 

and standard models are equally able to reproduce the uniaxial response of unnotched specimens 

(when properly calibrated). Actually, the best explanation for these discrepancies is due to the multi-

axial nature of strains and stresses in the open-hole specimen. Even for moderate strains, the 3-

phase model is better able to describe the experimental behavior due to the favorable influence of 

the multi-axial factor. This analysis confirms the high quality of our 3-phase model and the relative 

importance of each phase in such a multi-axial context. 

Figure 10 depicts Hencky strain distributions in the longitudinal direction at two particular 

loading levels, obtained both experimentally (with the DIC method) and numerically (with the finite 

element model). Similar color scales have been applied in both experimental and numerical graphs 

so as to best compare the contoured maps of the longitudinal strain. From a qualitative point of 

view, the numerical and experimental deformed shapes are very close to each other, and the 

numerical graphs compare well with the experimental ones (in terms of color pattern), especially in 

the most deformed state. The main difference lies in the vicinity of the hole. The very large strains 

obtained with the numerical calculations (depicted in red) are not observed experimentally since the 
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post-processing calculations performed in the framework of the DIC method do not allow one to 

evaluate the strain values near the edges. 

 

  

 (DIC/maximum displacement = 3.216 mm) (FE/maximum displacement = 3.216 mm) 

   

 (DIC/maximum displacement = 20 mm) (FE/maximum displacement = 20 mm) 

 

Fig. 10. Comparisons between DIC and FE results of open-hole specimens under uniaxial tension: longitudinal strain 

distributions for various enforced displacements 

 

For a more quantitative comparison, the longitudinal Hencky strains have been plotted along 

the transverse symmetry axis, as seen in Figure 11. The strain profiles obtained both experimentally 

and numerically are in very good accordance. At some distance from the hole, the results show a 

very good agreement with each other. When getting close to the hole, the experimental values 

either underestimate the numerical solution or are just not available. 

Furthermore, as regards von Mises stresses, the maximum value appears constantly around 

the hole, specifically on the transverse symmetry axis, and the corresponding stress state is purely 

uniaxial in the longitudinal direction. What is noticeable is that this local stress is three times as large 

as the nominal longitudinal stress (which is uniformly obtained far from the hole), as observed 

analytically with an infinite plate in small strains and linear elasticity. 

 



 

 

Fig. 11. Comparisons between DIC and FE results of open-hole specimens under uniaxial tension: longitudinal strain 

distributions for various enforced displacements (along the horizontal symmetry axis) 

 

4.3 Double Edge Notched Tensile (DENT) specimens 

4.3.1 Experimental results 

Two different initial crack lengths have been considered during the experimental tests. In the 

first case where l = 10 mm (see Figure 1), the experimental force-displacement curve of an arbitrary 

specimen (whose thickness is 71 µm) serves as a reference for the calibration of the cohesive 

parameters which are here necessary for the description of the crack propagation. The plotted force 

and displacement still represent the global tensile force applied to the specimen and the 

corresponding length variation. Considering then the smallest initial crack length (l = 20 mm in Figure 

1), two force-displacement curves are operated for validation purposes, corresponding to two 

specimens with different thicknesses (for comparison purposes, the force is divided by the current 

thickness). All these curves will be displayed in the next figures together with the simulation curves. 

Strain distributions measured experimentally using the DIC method will also be presented in the 

validation subsection. 

 

 



4.3.2 Modeling hypotheses 

Among the possible alternative methodologies, the cohesive element method is used to model 

the crack propagation in the DENT specimens, as it is the most appropriate in this context where the 

crack path is known a priori. Let us focus on the remaining ligament which will be modeled by a 

cohesive zone whose width is arbitrarily set to 0.1 mm (which is identical to the width of the 

rectangular space representing the initial crack, see Figure 12). A specific constitutive behavior is 

required for this cohesive zone, whose criteria and evolution laws will be chosen among the ones 

available in ABAQUS software. 

 

Fig. 12. Geometric model and mesh for the DENT tests 

In practice, an elastic damage model is employed, regardless of the 3-phase model used for 

the rest of the specimen. The constitutive behavior of the cohesive elements can be schematically 

described by a set of traction-separation curves, as depicted in Figure 13, one for each direction. In 

each case, the nominal stress 
0t  is expressed as a function of the associated (relative) displacement 

δ . Here, due to the present geometric and loading configuration, the opening mode is highly 

dominating so much so that the tangential behavior will be ignored in the sequel and no multi-axial 

damage criterion will be needed, neither for the initiation nor for the evolution. The first part of the 

traction-separation curve is linear, characterized by an elastic modulus 
CE , until the nominal stress 

reaches a maximum yield value 
0
nt  corresponding to the critical displacement 

0
nδ . Damage initiates 

at this point and failure occurs when the stress vanishes, corresponding to the final displacement 
t
nδ  

and the total dissipated energy 
CG  (represented by the area under the traction-separation curve). A 

linear softening behavior is finally retained for the damage evolution law, so that the second part of 

the curve is also linear, as illustrated in Figure 13. 



Traction 

 

Fig. 13. Typical traction-separation curve of a cohesive element 

The model used for the numerical computations only involves one half of the central part of 

the DENT specimens, for obvious reasons of symmetry. The thickness of one of the tested specimens 

is arbitrarily retained for each of the two calculations, namely 71 µm for the calibration and 85 µm 

for the validation case. Symmetry conditions are naturally applied onto the cut edge. The longitudinal 

external edges are free, on both sides of the crack. One end of the specimen is fixed while the other 

one is submitted to a uniform enforced displacement, in accordance to the experimental loading 

conditions. The simulations are carried out up to maximum displacements far beyond the 

experimental values corresponding to the final collapse of the specimens. 

The rectangular cohesive zone (where the crack propagates) is meshed with one layer of 4-

node rectangular cohesive elements (with bi-linear interpolation), so that the mesh of the remaining 

part of the specimen is made of 3-node linear triangular finite elements, for compatibility purposes. 

The final mesh is particularly refined in the vicinity of the initial crack tip and along the crack path, 

where stresses supposedly show the most important variations and excessive distortion is expected 

in finite strains. 

 

4.3.3 Calibration of the cohesive parameters 

The experimental curve plotted in Figure 14 (with l = 10 mm) serves as a reference for the 

calibration of the cohesive properties. Only three new parameters are needed in order to describe 

the cohesive behavior discussed above. First, the elastic modulus 
CE  is set to 207.9 MPa, which 

corresponds to the initial elastic modulus previously obtained, in order to comply with the 3-phase 

model definition. Anyway, this parameter was found to have no particular effect on the global 

results. The maximum stress 
0
nt  greatly affects the crack propagation “speed”, whereas it has 
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virtually no influence on the maximum global force in the force-displacement curve. By minimizing 

the difference between the experimental and numerical curves in a least square sense, one obtains 

the optimal value 
0
nt  = 25 MPa. The failure energy 

CG  must be necessarily higher than the elastic 

strain energy involved in the first linear part of the traction-separation law. Conversely, excessive 

energy values may lead to convergence problems, due to an important distortion of the elements 

adjacent to the cohesive zone. Within a range of intermediate values, the energy does not influence 

so much the force-displacement response, so that an average value of 4 MPa is finally retained. 

Figure 14 shows the adequation of the experimental and numerical curves, when using the 

parameters defined above. 

 

4.3.4 Validation and discussion 

Henceforth, a numerical computation is performed with l = 20 mm and the simulation 

response curve is first compared to the associated experimental ones in order to validate the 3-phase 

model as well as the choice of the cohesive properties in such extreme conditions. The numerical 

solution is plotted in Figure 15 together with two experimental curves corresponding to two different 

thicknesses (for comparison purposes, the force was divided by the current thickness). The general 

shape of the curves is similar from both experimental and numerical points of view. The only 

differences appear at the end of the test (just before failure), where the numerical model 

underestimates the ultimate resistance against cracking. 

 

Fig. 14. Calibration of the cohesive parameters 
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Fig. 15. Comparison between experimental and numerical results of DENT tests 

 

Figure 16 depicts again Hencky strain distributions in the longitudinal direction at one 

particular loading level, obtained both experimentally (with the DIC method) and numerically (with 

the finite element model). Similar color scales have also been applied in both experimental and 

numerical graphs. From a qualitative point of view, the numerical and experimental deformed shapes 

are somewhat similar, but the crack lips remain particularly horizontal in the numerical simulation 

whereas they do not in practice. The numerical computation gives rise thus to longitudinal strains 

that are significantly concentrated in a small region (green zone) and rapidly drop down to very small 

strains (blue zone), while they decrease more gradually in reality as suggested by the broad spectrum 

of colors observed with the DIC method. 

  

 (DIC/maximum displacement = 15.57 mm) (FE/maximum displacement = 15.57 mm) 

Fig. 16. Comparison between DIC and FE results of DENT specimens: longitudinal strain distributions for an arbitrary 

enforced displacement 
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Fig. 17. Comparison between DIC and FE results of DENT specimens: longitudinal strain distributions for an arbitrary 

enforced displacement (along the vertical symmetry axis) 

 

For a more quantitative comparison, the longitudinal Hencky strains have been plotted along 

the longitudinal symmetry axis, as seen in Figure 17. The strain profiles obtained both experimentally 

and numerically are in rather good accordance. The maximum longitudinal strain along this vertical 

path is observed at the center of the specimen and similar values are obtained by experimental and 

numerical approaches. However, the two curves displayed in Figure 17 confirm the fact that the 

strains derived from the numerical simulation are too much localized in the center of the specimen, 

near the crack tips. In order to overcome the difficulties related to the highly localized plastic 

deformations, one possible solution could be to develop a non-local model, incorporating the strain 

gradient effects, as recently performed by Voyiadjis et al. [38]. 

 

5. Conclusions 

In this paper, the mechanical behavior of polyethylene films has been investigated in the 

framework of finite elastoplastic strains. An original 3-phase model, particularly devoted to semi-

crystalline polymers between their glass transition and melting temperatures, has been implemented 

in a finite element program. This constitutive model partly consists in two so-called “crystalline” and 

“amorphous” phases, represented by classical elastoplastic and hyperelastic behaviors, respectively. 

However, it differs from other models in that it contains a third transitional interphase, which is 

represented by a perfect plastic model with a new threshold stress based on a “multi-axial factor” as 

a function of the deformation state. The objective of the present paper is then to show the ability of 

this new model, and particularly of this intermediate phase, to explain the most significant features 

of the experimental behavior in several applications. 
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Three series of experimental tests have thus been performed on unnotched, open-hole and 

Double Edge Notched Tensile rectangular specimens, respectively. The first tests, carried out on 

unnotched specimens in uniaxial tension, allow one to calibrate the material parameters to be used 

in subsequent finite element analyses. Then, the other problems are computed using a 2D finite 

element model in finite strains including the above constitutive model, and the experimental results 

are used for validation purposes, among other things. 

In both cases of open-hole and DENT specimens, the experimental tests are conducted until 

failure of the specimens and the finite element computations are continued up to similar loading 

levels. Force-displacement curves are plotted first, in order to analyze the global response of the 

specimens. A good agreement is observed in both cases between experimental and simulation 

results, much better than when using a standard elastoplastic model calibrated on the same uniaxial 

curve. Furthermore, the experimental tests are post-processed with the help of 2D Digital Image 

Correlation. The results are compared to the strain distributions obtained through the numerical 

simulations. Again, the agreement is very satisfactory between the model results and the 

experimental ones. 

The constitutive model used in this study has thus proved to be able to reproduce efficiently 

and accurately the biaxial behavior of semi-crystalline polymers in presence of stress concentrations 

or, better yet, of singularities due to the presence of cracks, up to very advanced deformation states. 
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