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Chain of set inversion problems; Application to reachability analysis

This paper deals with the set inversion problem X = f -1 (Y) in the case where f : R n → R m depends on a parameter vector p ∈ R q which is known to be inside a box [p]. We show that for a large class of problems, we can obtain an accurate approximation of the solution set, without bisecting in the pspace. To do this, symbolic methods are required to cast our initial problem into a chain of set-inversion problems, the links of which have some nice properties with respect to p. As an application, we consider the problem of computing the set of all initial states of an uncertain discrete-time state system that reach a target set Y in a given time.

I. INTRODUCTION

Reachability analysis is a classical problem in control theory [START_REF] Aubin | Set-Valued Analysis[END_REF] [2][3] [START_REF] Bouissou | Computation of parametric barrier functions for dynamical systems using interval analysis[END_REF] and has several applications, for instance (i) to validate some properties of cyber-physic systems [START_REF] Konecny | Enclosing the behavior of a hybrid system up to and beyond a zeno point[END_REF] [START_REF] Taha | Acumen: An open-source testbed for cyberphysical systems research[END_REF], (ii) to ensure the safe configuration during the landing [START_REF] Bayen | Aircraft Autolander Safety Analysis Through Optimal Control-Based Reach Set Computation[END_REF] or (iii) to avoid collisions [START_REF] Desilles | Collision analysis for an UAV[END_REF] with other aircrafts. Reachability analysis allows us to guarantee that the system with a given control law will always reach a target [START_REF] Aubin | Viability Kernels and Capture Basins of Sets Under Differential Inclusions[END_REF]. In this paper, we deal with the problem of computing the set X 0 of all initial states x 0 = x(0), of a discrete time system such that at time k the state x( k) is inside a given set Y.

We assume that the system is described by

x(k + 1) = f (x(k)), (1) 
where x(k) ∈ R n is the state vector and f : R n → R n is the evolution function of the system. If we define the function

ϕ k = f • f • • • • • f k times , (2) 
we have

X 0 = (ϕ k) -1 (Y) (3) 
which corresponds to a set inversion problem [START_REF] Jaulin | Guaranteed nonlinear parameter estimation via interval computations[END_REF]. Note that the set inversion problem is considered as much easier than the direct image problem [START_REF] Mullier | General inner approximation of vector-valued functions[END_REF]. Equivalently, we could have written

X 0 = f -1 (X 1 ), X 1 = f -1 (X 2 ), . . . , Xk = Y (4)
and the computation of X 0 amounts to solve a chain of set inversion problems. In both cases, the problem can be solved using a Set Inversion approach [START_REF] Jaulin | Guaranteed nonlinear parameter estimation via interval computations[END_REF] based on interval analysis. Set inversion and interval analysis are more and more used in the context of nonlinear estimation [START_REF] Jauberthie | Set-membership identifiability: definitions and analysis[END_REF] [13] [START_REF] Raissi | Interval state estimation for a class of nonlinear systems[END_REF] [15] [START_REF] Dit Sandretto | Certified calibration of a cable-driven robot using interval contractor programming[END_REF].

Assume now that there exists an unknown input vector u(k) ∈ [u] in the system which may correspond to a control or a perturbation. We now have

x(k + 1) = f (x(k), u(k)).
(

) 5 
Thus the initial feasible set X 0 becomes also uncertain: it depends on the sequence u(k). Define the function ϕ k as follows.

ϕ 1 (x(0), u(0)) = f (x(0), u(0)) ϕ k+1 (x(0), u(0 : k)) = f (ϕ k (x(0), u(0 : k -1)) , u(k))
where u(0 : k-1) denotes the sequence {u(0), . . . , u(k-1)}.

If we define

X ⊂ 0 = {x 0 |∀u(0 : k -1) ∈ [u] k , ϕ k(x(0), u(0 : k -1)) ∈ Y} X ⊃ 0 = {x 0 |∃u(0 : k -1) ∈ [u] k , ϕ k(x(0), u(0 : k -1)) ∈ Y}, we have X ⊂ 0 ⊂ X 0 ⊂ X ⊃ 0 . (6) 
The sets X ⊂ 0 and X ⊃ 0 are classically called the minimal and the maximal backward reach set [START_REF] Jaulin | Modeling Techniques for Uncertain Systems[END_REF]. Both sets X ⊂ 0 and X ⊃ 0 are difficult to compute, mainly due to the fact that existing methods cannot characterize from inside the penumbra [START_REF] Desrochers | Computing a guaranteed approximation the zone explored by a robot[END_REF] which corresponds to the set X ∂ 0 = X ⊃ 0 \X ⊂ 0 . Moreover, even to characterize inside X ⊂ 0 or outside X ⊃ 0 , existing interval methods will need to bisect inside the box [u] k to control the accuracy of the characterization. This is not satisfactory due to its large dimension. Note that there exists numerical methods [START_REF] Mitchell | Application of level set methods to control and reachability problems in continuous and hybrid systems[END_REF] to compute an outer approximation of the maximal backward reach set X ⊃ 0 , or an inner approximation of the minimal backward reach set X ⊂ 0 , but the main difficulty in inside the penumbra, i.e., to compute accurately, an inner approximation of X ⊃ 0 and an outer approximation X ⊂ 0 . The main contribution of this paper is to show that by rewriting the problem as a chain of set inversion problem, we will be able to characterize, with an arbitrary accuracy the feasible set X 0 , without any bisection of [u] k. An inner approximation of the penumbra X ∂ 0 = X ⊃ 0 \X ⊂ 0 , which corresponds to the uncertainty of the approximation, will also be computed. This was not possible before except for some specific cases such as when the system is linear [START_REF] Girard | Computation and stability analysis of limit cycles in piecewise linear hybrid systems[END_REF].

The paper is organized as follows. Section II formulates the set inversion problem in the case where it depends on a parameter vector p which is assumed to be inside a box [p]. Section III introduces the specific case where the function to be inverted is a link function. This will allow us to build, in Section IV, a large class of set inversion problems that can be solved efficiently, without any bisection inside the parameter space. Test-cases related to reachability analysis are presented in Section V. Section VI concludes the paper.

II. PROBLEM

Consider the set inversion problem

X = f -1 (Y) (7) 
where f : R n → R m , and Y is a subset of R m . Solving a set inversion problem consists of characterizing the solution set X from inside and from outside. We consider the uncertain case where f depends on a parameter vector p ∈ R q . The function should thus be written as f (x, p), but for simplicity of notation when we will compose functions to form a chain, we will often write f p (x). In such a case, the solution set X also depends on the value of p and is denoted by X(p). We have:

X ⊂ ⊂ X(p) ⊂ X ⊃ , (8) 
where

X ⊂ = p∈[p] f -1 p (Y) = {x|∀p ∈ [p], f p (x) ∈ Y} X ⊃ = p∈[p] f -1 p (Y) = {x|∃p ∈ [p], f p (x) ∈ Y} .
The set X ∂ = X ⊃ \X ⊂ is called the penumbra [START_REF] Grimson | Recognition and localization of overlapping parts in two and three dimensions[END_REF] and contains the unknown boundary of X.

Denote by (P(R n ), ⊂) the powerset of R n equipped with the inclusion ⊂ as an order relation. The powerset P(R n ) is a complete lattice with respect to ⊂. The meet operator corresponds to the intersection and the join to the union. The pair [X ⊂ , X ⊃ ] is an interval in P(R n ) which is called a thick set and denoted by X . A thick set partitions R n into three zones: the clear zone X ⊂ , the penumbra X ∂ = X ⊃ \X ⊂ and the dark zone R n \X ⊃ . A thick set X is a sub-lattice of

(P(R n ), ⊂), i.e., if A ∈ X ,B ∈ X , then A ∩ B ∈ X and A ∪ B ∈ X .
Notation. The set inversion problem we want to solve will be written as

X = f -1 [p] (Y) (9) 
and will be called a thick set inversion problem.

To characterize X with an arbitrary accuracy, i.e., to characterize the sets X ⊂ and X ⊃ , existing interval methods, will need to bisect with respect to the p-space, which makes them inefficient. Moreover, they are not able to prove that a box is inside the penumbra. It has been show recently [START_REF] Desrochers | Computing a guaranteed approximation the zone explored by a robot[END_REF] how it can proved that a box is inside the penumbra. It will be shown in Section III that, in the specific case where the function f p (x) is a link function (i.e., for all x, and for any box [p], the set f [p] (x) is a box), bisections on [p] can be avoided. We now illustrate how this can be done on a simple example.

Example 1. Consider the thick set inversion problem

X = f -1 [p] ([y])
where

f p (x) = p 1 p 2 p 3 p 4 x 1 x 2 . ( 10 
) Assume that [p] = [2, 3] × [2, 5] × [4, 5] × [-6, -1] and [y] = [5, 19] × [-7, 11]. Take a box [x] = [0, 1] × [2, 3] and let us
show how is can be proved that it is inside the penumbra. Note that for simplicity, we have taken all intervals with a constant sign, but the method can be made much more general if we use modal interval analysis [START_REF] Goldsztejn | Modal intervals revisited: a mean-value extension to generalized intervals[END_REF] [23] or symbolic interval arithmetic [START_REF] Jaulin | Resolution of nonlinear interval problems using symbolic interval arithmetic[END_REF]. Inside [x], we have

f (x, [p]) = p - 1 x 1 + p - 2 x 2 , p + 1 x 1 + p + 2 x 2 p - 3 x 1 + p - 4 x 2 , p + 3 x 1 + p + 4 x 2 = p - 1 x 1 + p - 2 x 2 p - 3 x 1 + p - 4 x 2 , p + 1 x 1 + p + 2 x 2 p + 3 x 1 + p + 4 x 2 = f - [p] (x), f + [p] (x) which corresponds to a box. If x ∈ [x] = [0, 1] × [2, 3], f -(x, [p]) belongs to the box f - [p] ([x]) = 2 • [0, 1] + 2 • [2, 3] 4 • [0, 1] -6 • [2, 3] = [0, 2] + [4, 6] [0, 4] + [-18, -12] = [4, 8] [-18, -8] (11) and f + (x, [p]) belongs to the box f + [p] ([x]) = 3 • [0, 1] + 5 • [2, 3] 5 • [0, 1] -1 • [2, 3] = [0, 3] + [10, 15] [0, 5] + [-3, -2] = [10, 18] [-3, 3] . ( 12 
) Since f - [p] ([x])∩[y] = ∅ and f + [p] ([x]) ⊂ [y]
, we conclude that [x] is inside the penumbra. This is illustrated by Figure 1. Fig. 1.

For [x] = [0, 1] × [2, 3] the set f + [p] (blue dots) is inside [y] whereas f - [p] (red dots) is outside. We conclude that [x] is inside the penumbra
In the specific case where the function f p (x) is a link function (see Section III for more details), for all x, the set

f [p] (x) is a box, denoted by f - [p] (x), f + [p] (x) , with lower bound f - [p] (x) ∈ R m and upper bound f + [p] (x) ∈ R m .
These two bounds can be described by an algorithm and two inclusion functions can be obtained for them using the rules of interval computation [START_REF] Kearfott | Rigorous Global Search: Continuous Problems[END_REF]. This means that if x ∈ [x], we can obtain, under the form of an algorithm, two boxes f -

[p] ([x]) and f + [p] ([x]) such that f - [p] ([x]) ∈ f - [p] ([x]) and f + [p] ([x]) ∈ f + [p] ([x]).
To characterize the thick set X of the thick set inversion problem X = f -1

[p] (Y), we start with a huge box (large enough to contain X ⊃ ) and we cut it into several other boxes all stored inside a list L. For each box [x] of L, and in we compute the two boxes f -

[p] ([x]) and f + [p] ([x]
). From these two boxes, we are able to test if

[x] ⊂ X ⊂ or if [x] ∩ X ⊃ = ∅ or if [x]
is included inside the penumbra. If nothing can be concluded, the box [x] is bisected and the two resulting boxes are stored inside the list. The treatment is applied to all boxes of the list until all boxes become too small (i.e., with a width smaller than a threshold ε). Note that, if we are able to conclude that a box [x] is inside the penumbra, no bisection would occur.

For Example 1, the method generates Figure 2 (right) which is an approximation of a thick set with the inner part (red), the outer part (blue) and the penumbra (orange). A classical interval method would not able to characterize the penumbra and yields Figure 2 (left). Since the resulting algorithm bisects in the x-sp ace, its complexity is exponential with respect to the dimension of x. Its application is thus limited to low dimensions. If do not bisect on the p-space (as we suggest in this paper using chains and link functions), the complexity with respect to p can be considered as polynomial. 

III. LINK FUNCTIONS

This section considers the case of thick set-inversion problems in the case where the functions to be inverted have some good properties. These functions will be the links to build more complex functions to be inverted.

Definition 2. Link function. If, for a box [p] ⊂ R q , the set f [p] (x) = f (x, [p]) = {y ∈ R p | ∃p ∈ [p] , y = f p (x)}
is a box, then the function f is said to be a link. Links will be composed later in Section IV in order to build a chain. If m = 1 then the function f (x, p) becomes scalar. Note that all f (x, p) that are scalar and continuous with respect to p, are links.

Due to their specific box-shaped structure, link functions can be inverted with respect to x without bisections with respect to the uncertain parameter box

[p]. Example 3. The function f (x, p) = 20e -x1p -8e -x2p (13) 
is a scalar link function, due to the continuity of f with respect to p. Now, to get a computable expression for f (x, [p]), we need to compute the extremum of the function inside the interval

[p] = [p -, p + ]. Since ∂f (x, p) ∂p = 0 ⇔ -20x 1 • e -x1 p + 8x 2 • e -x2 p = 0 ⇔ e (x2-x1) p = 2x2 5x1 ⇔ p = 1 x2-x1 ln 2x2 5x1 , (14) 
inside the interval [p] = [p -, p + ], f (x, p), may have the extremum ȳ = f (x, p). As a result, if we define y -= f (x, p -), y + = f (x, p + ), we have

f (x, [p]) = [min{y -, y + , ȳ}, max{y -, y + , ȳ}] if p ∈ [p] [min{y -, y + }, max{y -, y + }] if p / ∈ [p]
Equivalently,

f (x, [p]) = f - [p] (x), f + [p] (x) (15) 
where

f - [p] (x) = min{y -, y + } if p / ∈ [p] min{y -, y + , ȳ} if p ∈ [p] (16) 
and

f + [p] (x) = max{y -, y + } if p / ∈ [p] max{y -, y + , ȳ} if p ∈ [p] ( 17 
)
Note that both f - [p] (x) and f +

[p] (x) belong to R. If x ∈ [x], we have f - [p] (x) ∈ f - [p] ([x]) = min{[y -] , [y + ]} if [p] ∩ [p] = ∅ min{[y -] , [y + ] , [ȳ]} otherwise and f + [p] (x) ∈ f + [p] ([x]) = max{[y -] , [y + ]} if [p] ∩ [p] = ∅ max{[y -] , [y + ] , [ȳ]} otherwise where [p] = 1 [x2]-[x1] ln 2[x2] 5[x1] [ȳ] = f ([x] , [p] ∩ [p]) [y -] = f ([x] , p -) [y + ] = f ([x] , p + ). ( 18 
)
Definition 4. Vector components. The family of vectors {p 1 , p 2 , . . . , p ℓ } correspond to vector components of the vector p if each p i is a subvector of p and the indexes are all disjoint. For instance if p = (p 1 , . . . , p 9 ), then {p 1 , p 2 }, where p 1 = (p 2 , p 9 ) and p 2 = (p 8 , p 1 , p 3 ), correspond to vector components of p. Note that the two index sets {2, 9} and {8, 1, 3} are disjoint. The fact that index sets are disjoint implies in independencies between parameters. The conservatism related to the dependency effect, well known in interval analysis [START_REF] Moore | Methods and Applications of Interval Analysis[END_REF], is thus avoided. In practice, this will allow us to avoid bisection in the {p 1 , p 2 , . . . , p ℓ }-space. Proposition 5. Consider ℓ scalar link functions, f i (x, p i ) , where vectors {p 1 , p 2 , . . . , p ℓ } are vector components of the vector p. The function

f (x, p) =    f 1 (x, p 1 )
. . .

f ℓ (x, p ℓ )    ( 19 
)
is a link.

Proof: Consider the box [p] and its box components

[p 1 ] , . . . , [p ℓ ]. The set f (x, [p]) is the Cartesian product of ℓ intervals: f (x, [p]) = f 1 (x, [p 1 ]) × • • • × f ℓ (x, [p ℓ ]) (20) 
which corresponds to a box.

Example 6. The function

f (x, p) = p 1 x 1 x 2 + p 1 p 2 sin(x 2 ) p 3 x 1 + p 3 p 4 cos(x 1 )x 2 (21) 
is a link. Now, if we replace p 3 by p 2 , a dependency occurs between the two components of f and the function is not a link anymore.

Consequence. If f p (x) is a link, for all x, the set f [p] (x) is a box. If x ∈ [x]
, the lower and upper bounds of the box

f [p] (x) is included inside the boxes f - [p] ([x]) and f + [p] ([x]
). As a consequence, the methodology explained in Section II can be applied to find an inner and outer approximations of the thick set X = f -1

[p] (Y), with an approximation of the penumbra. Example 7. Consider the problem of estimating the parameters q 1 and q 2 of the model y(q, t) = 20e -q1t -8e -q2t .

We assume that 10 measurements y i have been collected at time t i . The uncertainties on the pair (t i , y i ) is represented by intervals as represented by the table below and Figure 3 (left). We are interested by the thick set

Q = q ∈ R 2 |∀i, y(q, t i ) ∈ [y i ] . If we set f [t] (q) =    y(q, [t 1 ]) . . . y(q, [t 10 ])    [y] = [y 10 ] × • • • × [y 10 ] [t] = [t 1 ] × • • • × [t 10 ]
then, we have

Q = f -1 [t] ([y]),
which is thick set inversion problem with the link function f [t] (q) to be inverted. The inversion yields the approximation of Figure 3 (right). 

ϕ p (x) = f ℓ p ℓ • • • • • f 2 p2 • f 1 p1 (x) (22) 
where {p 1 , p 2 , . . . , p ℓ } are vector components of p and the f k p k are links. Note that the parameter vectors p 1 , p 2 , . . . , p ℓ are independent. This implies that the pessimism due to the dependency effect will not take place during the resolution. Moreover, the fact that f k p k are links implies that pessimism due to the wrapping effect (of a set by a box) will not exist.

Example 9. The function

ϕ p (x) = sin(p 3 x 2 1 ) + p 4 p5(p1e x 2 +p1p2x1x2) p3x 2 1 ( 23 
)
is not a link. Indeed, p 3 occurs on both components of ϕ p . Now, if we define

f 1 p1 (x) = p 1 e x2 + p 1 p 2 x 1 x 2 p 3 x 2 1 ( 24 
)
f 2 p2 (z) = sin(z 2 ) + p 4 p5z1 z2 (25) 
with p 1 = (p 1 , p 2 , p 3 ) and p 2 = (p 4 , p 5 ) then, we have

ϕ p (x) = f 2 p2 • f 1 p1 (x). (26) 
Since both f 2 p2 , f 1 p1 are links, ϕ p (x) is a chain. Consequence. Solving a thick set inversion problem X = ϕ -1

[p] (Y) in the case where ϕ is a chain can be done by solving several thick set inversion problems, without any bisection inside the box [p]. Rewriting a chain as a composition of link functions can probably be done by symbolic methods, but we do not know any approach or algorithm to perform this task. Of course, we should not allow the dimension of the intermediate spaces to be arbitrary large compare to the dimension of x if we want to be efficient.

The following section provides some test-cases of the thick inversion of chains, applied to reachability problems.

V. TEST-CASES Test-case 1. Consider the linear system

x(k + 1) = A • x(k) (27) 
where

A(k) ∈ [2.5, 3] [2, 3] [4, 4.5] [-3, -2] ( 28 
)
plays the role of the parameter vector p. Assume that we want to reach the target

Y = [4, 20] × [-8, 12] (29) 
at time k = 3. Solving the chain of thick set inversion problems yields the approximation of the thick sets X (0), X (1), X (2), X (3) as depicted on Figure 4. Note that X (3) corresponds to the box Y. We first compute the thick set X (2) = f -1

[A] ( X (3)). Note that X (3) is here a thin set (i.e., a classical set) whereas X (2) is thick (i.e., with a penumbra). Then we compute X (1) = f -1

[A] ( X (2)) and finally, we compute 

X (0) = f -1 [A] ( X ( 

VI. CONCLUSION

In this paper, we have presented a new interval based approach to compute the set X 0 of initial states that will reach a target Y in a finite time. The dynamic system that is considered is discrete time and uncertain (the uncertainties are represented by intervals). The principle is to transform the problem into a chain of set inversion problems composed with links, i.e., a function with nice properties for set inversion.

Among the problems that remain to be solved, we need (1) to find symbolic methods for the decomposition of a chain into links with low dimensions; (2) to extend the approach to continuous systems described by differential equations and to study how the penumbra can be characterized from inside in such a case; and (3) to solve the chain of set inversion problems in parallel and not sequentially as done here.
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  1)). At each step, the penumbra inflates, due to the accumulation of uncertainties. The frame boxes are [-0.6, 0.8] × [-0.4, 1] for X (0), [-1.5, 3]×[-2.5, 2.2] for X (1),[-4, 8]×[-3, 10] for X (2), and [-5, 27] × [-15, 20] for X (3).
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 41 Fig. 4. Approximation of the sets X(0), X(1), X(2), X(3)Test-case 2. Consider the nonlinear systemx 1 (k + 1) x 2 (k + 1) = x 1 (k) + x 2 2 (k) • u 1 (k) 1 2 • x 1 (k) • x 2 (k) + u 2 (k)
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