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Abstract—Change detection methods, consisting in detecting
potential changes between two images, representing the same
geographical area but acquired at different times, have been
widely used in sonar imagery. Such methods are very useful
to accurately monitor, potentially low, variations in complex
environments. Coherent methods, relying on both amplitude and
phase of the backscattered signal, are limited because of the
signals correlation that plummets with both frequency and tem-
poral baseline. In this paper, we propose an incoherent method,
only using the amplitude images, to solve the change detection
problem. This method relies on a robust mathematical expression
for the class conditional probability density functions of the
log-ratio image along with various Markov-based approaches to
provide a ternary change map, thus allowing to better understand
the changes that have occured on the seafloor.

Index Terms—Image change detection, synthetic aperture
sonar, Markov Random Field, Hidden Markov Chain, mine
warfare

I. INTRODUCTION

The detection of changes on the Earth surface is of high in-

terest for many institutions, in order to monitor land ressources

([1], [2]), marine ones [3] or underwater ones [4].

Change detection techniques have thus been widely used in

the remote sensing field ranging from satellite images [5] to

SAR data [6] through underwater acoustic ones [7].

In our specific context, Mine Counter Measures (MCM) op-

erations classically consist in detecting, locating, classifying,

identifying and neutralizing potential threats such as mine-

like objects lying on the seabed. The most common way to

detect (and classify) such objects is to process the surveyed

area by means of an Automatic Target Recognition chain [8],

[9], especially in case of newly surveyed areas. However, if

an area has already been imaged during a previous mission, it

can be of interest to compare this reference sonar track with

the one recently acquired in order to detect potential changes.

We can split such change detection methods into two

groups: coherent and incoherent-based ones. Coherent-based

methods rather rely on complex images to detect seabed

changes using both the amplitude and the phase of the signal.

The complex coherence [10]–[12] or the canonical correlation

analysis (CCA) [13] have been used in this context. The pro

of the use of the phase component is its ability to detect

tiny changes not visible in the amplitude of the backscattered

energy. However, to ensure a sufficient temporal correlation

between the reference and the repeated track, Lyons [14]

suggests not to work at a frequency higher than 30kHz and to

limit the time interval between the acquisition of both tracks

to few days.

Incoherent change detection methods only use the ampli-

tude images (amplitude of the backscattered energy) to find

changes. While symbolic or object-based approaches rely on

the extraction of features of interest (ATR detection [15],

[16], echo-shadow pairs [17], [18]) in both images before

matching them by considering their local arrangement, image-

based methods [7], [19] only consider pixels intensity to detect

potential changes by means of the computation of a difference

image.

To detect changes between the reference and repeated

tracks, Quidu [19] proposes either to threshold the absolute

value of the log-ratio image while getting rid of false alarms

through morphological mathematics and geometric constraints,

or to detect non-speckle areas within both tracks before

computing a difference image from those detections.

As it can elapse several months between the acquisition of

our reference and repeated tracks, coherence-based methods

are prohibited and we thus focus on incoherent-based ones.

The main contributions of this paper is the derivation of

an analytical expression for the class-conditional probability

density function (PDF) of the log-ratio image, based on

physical considerations, to further provide a ternary change

map, along with a novel method, combining multiple Hidden

Markov Chains, to yield a robust change detection mask.

In section II and III, we respectively detail our approach

to the change detection problem and derive a mathematical

formulation for the probability density functions of the

log-ratio image under different hypotheses. Markov Random

Fields and Hidden Markov Chains are then considered in

section IV. Results on real synthetic aperture sonar images

are provided in section V while conclusion and future work
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are drawn in section VI.

II. PROBLEM FORMULATION

A. Image superimposition

In the context of image registration and change detection,

the most widely used way of representing the result is the

superimposition of both images ([7], [10], [20]), one being said

the reference image while the other is named the repeated one.

Thus, in this paper, we follow the same approach, especially

when we deal with sonar tracks registration.

B. Change detection approach

When we perform change detection between two high-

resolution synthetic aperture sonar tracks, as we consider only

two classes (bottom reverberation and shadow), we can face

four different cases regarding both images at a given location:

• The area corresponds to bottom-reverberation (speckle

noise) in both images, thus the area remains unchanged

(i.e. no change label).

• An object exists on both tracks at the same location,

leading to the unchanged class (i.e. no change label).

• An object has appeared between tracks acquisition, and

a change of the first kind is considered (i.e. object

appearance label).

• An object has disappeared between tracks acquisition, and

a change of the second kind is considered (i.e. object

disappearance label).

To assign a label (“no change”, “object appearance” or

“object disappearance”) to each pixel of the surveyed area,

we rely on the computation of the pixel-wise log-ratio operator

LR, between the reference image X1 and the repeated one X2

(1).

LR = log
X1

X2
(1)

The log-ratio image has been chosen over the difference

one as it only consider relative change in pixels intensity.

Moreover, the ratio operator is more robust to calibration error

than the difference one [21].

The reference and repeated passes have previously been

projected into the Earth frame and co-registered [20].

C. Bottom-reverberation model

Areas corresponding to bottom-reverberation are corrupted

with high frequency noise called speckle. Such a phenomenon

comes from the fact that, after interacting with the seafloor,

the acoustic waves are no longer in phase, hence causing

constructive or destructive interferences [22]. The speckle is

often modelled by means of a Rayleigh distribution [23] or a

more general Weibull one [24] (Fig.1(a)).

However, as our sonar tracks are beforehand projected into

the Earth frame at a coarser resolution, we can expect bottom

reverberation areas not to follow such a Rayleigh law. In fact

as shown in Fig.1(b), the bottom reverberation class seems to

derive from this hypothesis. This can be well explained by

the mosaicking process. Indeed, as it consists in averaging

(a)

(b)

Fig. 1: (a) Histograms of raw sonar patches. (b) Histograms

of the same patches but projected into the Earth frame at a

slightly coarser resolution.

neighboring pixels, the central limit theorem states that the

resulting distribution will tend towards a normal law. Thus,

such a model is retained (2) for the bottom reverberation class.

p(x|r) ∼ N (µr, σ
2
r) (2)

where σr and µr respectively stand for the mean and

standard deviation.

D. Shadow model

Shadows, corresponding to uninsonified areas, use to be

model thanks to a Weibull [24] or Rayleigh [25] laws although

the Gaussian model has also been employed [23]. For the

same reasons as those previously formulated, a normal model

is adopted for the shadow conditional probability density

function (3).

p(x|s) ∼ N (µs, σ
2
s) (3)

Although normal models have been retained for both

classes, as the Shapiro test [26] yields a very small p-value

(p < 0.001), we can state that our experimental data are

likely to deviate from such a probability model. However,
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experimental results demonstrate that such an approximation

perform well in practise.

III. LOG-RATIO OPERATOR

As all cases have been listed in section II-B and normal

models are now assumed for both conditional-class PDFs

(II-C, II-D), we can now derive a mathematical formulation

of the log-ratio operator.
The log-ratio image can be rewritten,

LR = logX1 − logX2 (4)

Thus, once the PDF of the random variables Yi = f(Xi) =
logXi and Z = Y1 − Y2 have been computed, the class-

conditional probability density function of the difference im-

age can be expressed as,

fZ|Θ(z|Θ) =
1

2πσ1σ2

∫ +∞

−∞

e
−(ey

−µ1)2

2σ2
1 eye

−(ey−z
−µ2)2

2σ2
2 ey−zdy

(5)
where (µi, σ

2
i ) ∈ {(µs, σ

2
s), (µr, σ

2
r)}.

Solving for the integral yields,
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1
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× e
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„
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µ2
2

2σ2
2
+z

«

4A(z)
3
2

×
[

√
πB(z)e

B(z)2

4A(z)

(

erf

(

B(z)

2
√

A(z)

)

+ 1

)

+2
√

A(z)

]

, (6)

with

A(z) =
−σ2

2 − σ2
1e

−2z

2σ2
1σ

2
2

(7)

B(z) =
2σ2

2µ1 + 2σ2
1µ2e

−z

2σ2
1σ

2
2

(8)

In case of ternary change detection, the parameters associ-

ated to the three classes are:

• Object disappearance: Θdis = {µs, σ
2
s , µr, σ

2
r}

• Object appearance: Θapp = {µr, σ
2
r , µs, σ

2
s}

• No change: Θnoc = {µr, σ
2
r , µr, σ

2
r} or {µs, σ

2
s , µs, σ

2
s}

In case of normal distributions, the parameters
{

µr, σ
2
r , µs, σ

2
s

}

can be estimated by means of the well

known maximum-likelihood estimators (9).

µ̂ =

∑N

i=1 xi

N

σ̂2 =

∑N

i=1 (xi − µ̂)2

N − 1

(9)

For each class, an unique area is manually selected and

the previous parameters can be estimated. Such estimated

parameters can be kept fixed during the processing, as our

images intensity are normalized, or updated in an unsupervised

manner. However, as our three probability density functions

will share the same parameters, the latter is made difficult.

(a) (b)

(c)

Fig. 2: Theoretical probability density function versus experi-

mental histograms. (a) Reverberation area on both tracks. (b)

Shadow area on both tracks. (c) Shadow area on reference

track and reverberation area on repeated one.

A. Experimental validation

To assess the robustness of our approach, we have

firstly estimated the parameters corresponding to the bottom-

reverberation and shadow classes in a fully supervised manner

i.e. by manually selecting a snippet of interest in sonar

tracks. Then, the previous theoretical distributions of the

potential cases (cf. section II-B) have been superimposed with

histograms computed from the previous snippets (reference

and repeated tracks). Fig.2 illustrates the match between

histograms (computed on snippets) and our theoretical model.

The different cases which can be encountered are thus

restrained to three. Indeed, the two cases yielding the no

change label, i.e. when both areas are made up of shadow

(resp. reverberation), are indistinguishable.

IV. MARKOV-BASED APPROACHES

In order to obtain a smooth and robust change detection

mask, a regularization penalty has to be added to the maximum

likelihood term by taking into account the neighborhood

of each pixel. Different Markov-based approaches are thus

introduced in this section.

A. Markov Random Fields (MRF)

Let x = {xs}s∈[1,...,N ] and w = {ws}s∈[1,...,N ] respec-

tively be the observed (log-ratio values) and hidden associated

(labels) variables.

To be a Markov random field, our model must obey the

following Markov property:

p(ws|w \ {ws}) = p(ws|wNs
), (10)
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Fig. 3: First and second-order cliques considered in our MRF

model. We distinguish between horizontal, vertical, first kind

diagonal and second kind diagonal interaction. The MRF

model is thus fully described by four parameters β1, β2, β3

and β4.

which means that a label is conditionally independent of all

others variables given its neighborhood Ns.

The goal of the MRF model is to find the optimal labeling

ŵ ∈ Ω to maximize the posterior probability P (w|x). Ω is the

set of all the possible labelings. Under the pixels independence

assumption, we have:

ŵ = argmax
w∈Ω

PW |X(w|x)

= argmin
w1,...,wN

N
∑

s=1

− logPXs|Ws
(xs|ws) − logPW (w1, ..., wN )

(11)

As we only consider up to pairwise interactions in our

MRFs, the log-prior term can be replaced by its associated

pairwise potential:

logP (w1, ..., wN ) =
N
∑

s=1

∑

t∈Ns

ψ2(s, t) (12)

We define the set of cliques C = C1∪C2 where C1 and C2 are

respectively the singletons and doubletons cliques (Fig.3), with

their associated potentials ψ1 (13) and ψ2 (14) respectively

representing the data and regularization terms.

The singleton potential, as its name suggests, do not rely on

any contextual information but only on the observed variable

(x) to assign a label to a given site. Thus, it is defined as the

negative log-likelihood function (13) of (6):

ψ1

(

s
)

= − logP (xs|ws). (13)

According to Ising’s model, the potentials associated to

doubletons rather rely on the comparison between labels of

two neighboring sites s and t.

ψ2

(

s, t
)

=

{

0 if ws = wt

βs,t otherwise
(14)

βs,t is the penalty term to ensure a smooth final change

map, and depends on the relative position of node s and t

(Fig 3). The set of parameters regarding the prior model is

defined as β = {β1, β2, β3, β4} but can be restricted to a

single parameter β in case of an isotropic model.

Finally, the change detection problem aims at solving

Fig. 4: The Hilbert-Peano scan for squared images of size 2,

4, 8, 16, 32 and 64 pixels

ŵ = argmin
w∈Ω

[

∑

s∈C1

ψ1

(

s
)

+
∑

(s,t)∈C2

ψ2

(

s, t
)



 (15)

B. Hidden Markov Models

Markov grid models such as Markov Random Fields, are

well adapted to model computer vision problems. However,

such models being made of multiple loops where inference

methods are iterative ones, the inference algorithm can take

time to converge and we often cannot ensure to reach the

global optimum. In this section, we thus introduce the use of

HMM to perform change detection.

To model our change detection through Hidden Markov

Chains (HMC)([27], [28]), we must reshape our images to

one dimensional array. Instead of basically performing a ras-

terization, we rather rely on a Hilbert-Peano scanning strategy

[29] (Fig.4). Indeed, a pro of such a scan is that two spatially

close pixels will also be close in the provided chain.

Under the chain model, the joint probability can be ex-

pressed as

p(x1, ..., xn, w1, ..., wn) = p(w1)
(

N
∏

s=1

p(xs|ws)
)

(

N
∏

s=2

p(ws|ws−1)
)

,

(16)

The transition matrix (p(ws|ws−1)), denoted as C and

whose the unnormalized version is given (17), has been

designed following certain guidelines:

• p(ws = i|ws−1 = j) = p(ws = j|ws−1 = i)
• Both kinds of change are equiprobable.

• The next most expected state is to stay in the current one.

• The most expensive transition is to switch from a given

type of change to the other one.
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C =





βu,u βu,c1
βu,c1

βu,c1
βc1,c1

βc1,c2

βu,c1
βc1,c2

βc2,c2





=





1 0.2 0.2
0.2 1 0.05
0.2 0.05 1





(17)

It is also possible to refine such a transition matrix, still in

an unsupervised manner, by means of the Baum-Welch (or

forward-backward)[30] algorithm. Moreover, as considering

a unique neighbor can lack robustness, we rather rely on

the fusion of multiple HMCs. Indeed, the previous scan-

ning strategy is applied on four rotated versions (0◦, 90◦,

180◦ and 270◦) of the log-ratio image. Then, four different

inferences are performed thanks to the Viterbi’s algorithm

thus yielding four change detection maps (w1, w2, w3 and

w4). Such computations can be easily parallelized through

multithreading or multiprocessing techniques thus not adding

an extra computation time. The final change detection map

wfus is obtained by fusing the four previous results according

to the following rule,

wfus(s) =

{

w1(s) if wi(s) = w1(s) ∀i ∈ {2, 3, 4}
no change otherwise,

(18)

along with a morphological opening whose the structural

element is a disk of radius 1 pixel.

C. Inference

In our experiments, we have used a graph-cut based method,

the alpha-expansion move algorithm [31] to perform inference

on our MRFs. Regarding the inference within HMCs, the

maximization of (16) can thus be performed by means of

dynamic programming (Viterbi’s algorithm) [32] to yield the

global optimum through a single travel along the chain.

V. CHANGE DETECTION EXPERIMENTS ON REAL DATA

A. Real data

The available data consist in two pairs of synthetic aperture

sonar tracks. Such data have been acquired with a THALES

sonar sensor, where we rely only on the broadside aspect to

perform change detection. The carrier is also equipped with

an inertial navigation system whose data are fused with a

Doppler velocity log (DVL). For a given pair, once both sonar

tracks have been projected into the Earth frame, our non-

rigid multi-resolution registration algorithm described in [20]

is applied to geometrically align such tracks. For both pairs,

about three weeks elapsed between the reference and repeated

tracks sensing.

B. Results

The registration results of the first sonar tracks pair are

provided through three snippets pairs (Fig.5) as, because of

the seabed changes, the change detection area lacks some

distinctive features to show the efficiency of the registration

step.

Thus, snippets corresponding to the change detection area

are presented in (Fig.6 (a), (b)). Fig.7 shows change detection

results obtained with both MRF and HMC approaches.

Both approaches are able to detect the four mine-like objects

that have been removed from the seabed between both surveys.

The HMC model, due to its limited spatial context (single

neighbor) still provides a huge number of false alarms (Fig.6

(c)). However, our fusion rule is able to output a smoother

change mask where all object removals have been detected

(Fig.6 (d)), although two of the detected objects are split into

two distinct parts.

However, as we can see from the second sonar tracks pair

(Fig.8), the grazing angle difference causes false alarms as a

part of the longest shadow can be considered as an object.

Such an issue could be solved by comparing the ternary

change detection mask, with one of the sonar tracks, to detect

the connexity between objects (shadows) and thus remove

such false alarms. The change detection mask could also be

weighted according to the absolute difference between the

reference and repeated grazing angle maps.

Regarding the proposed methods, both MRF and HMC

could be applied, the former yielding a smoother change

detection mask than the latter but being slower to infer.

VI. CONCLUSION

Under the normal hypothesis to model both bottom-

reverberation and shadow classes in sonar tracks, we have

derived a mathematical formulation to model the (absolute)

log-ratio image. Such a formula has then been integrated in

different Markov frameworks (MRF and HMM) to finally yield

a ternary change detection mask allowing to provide more

information regarding the kind of change. This method has

been demonstrated to perform well on real data, to detect

changes between two high-resolution sonar tracks. We have

also shown that, as expected, the results are very sensitive

to re-navigation accuracy, a grazing angle difference between

both tracks leading to false alarms. In such cases, as only

relying on a single pixel to detect a potential change can be

too restrictive, we could rather rely on Conditional Random

Fields [33], where singletons potentials would be derived from

classifiers such as convolutional neural nets [34] in order to

learn a grazing/aspect angle invariance.
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