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Abstract—This paper presents a numerical and experimental 

study of RCS of canonical and complex targets using Gaussian 

Beam Summation (GBS) method. The purposed GBS method has 

several advantages over ray method, mainly on caustic problem. 

To test and evaluate the performance of the chosen method, we 

start the analysis of the RCS using GBS, the asymptotic models 

Physical Optic (PO), Geometrical Theory of Diffraction (GTD) 

and the rigorous Method of Moment (MoM). Then, we show the 

experimental validation of the numerical results using well 

calibrate measurements of radar targets. These experimental 

measurements have been carried out in our anechoic chamber (at 

ENSTA Bretagne). The numerical and experimental results of 

the RCS are studied and given as a function of various 

parameters: polarization type, target size, Gaussian beams 

number and Gaussian beams width.  
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I.  INTRODUCTION 

The simulation of the electromagnetic scattering and the 
RCS of a canonical or a complex target are used in the 
implementation of radar target detection. Each simulation 
requires the implementation of numerical resolution of the 
differential equations relative to the behavior of the wave. In 
the radar frequency domain and in the case of the scattering 
from an object (with large size), both asymptotic and rigorous 
methods have been developed. The asymptotic method (PO, 
TGD, TUD) reduce the operation number of solving of high 
frequency equations as for large objects [1, 2, 7]. The rigorous 
methods such as MoM are based on an integral formulation, 
and they are served to validate the new asymptotic approach. 
The asymptotic method using the hypothesis of locally plane 
wave and high frequency approximation are based on the 
principle of rays. The application of the type of these methods 
in a complex propagation scenario is often limited by the 
transaction between highlighted and shadowed region and the 
caustic problem (except the PO method). To overcome this 
problem, we have chosen a method which is called Gaussian 
Beam Summation (GBS) [3, 4, 5, 6] [8]. Then, we have applied 
the GBS method to model the variation of the RCS section of a 
canonical object which can be extended to the case of a 
complex scenario. In addition, the main reason for choosing the 
method is justified by the fact that the GBS eliminate several 
limitation of the ray asymptotic approach, in particular the 
difficulties connected with evaluating the wave field in singular 
regions. 

The main goal of this work is to investigate the different 
mechanisms of electromagnetic wave scattering at canonical 
and complex objects using GBS method and validate the 
numerical simulation results by experimental measurements.  

II. FORMULATION OF GBS METHOD 

V. Cerveny [5, 8] and M.M. Popov [6] have developed a 
new approach for calculation of wave fields in high frequency 
approximation. This method named Gaussian Beam approach. 
The physical principle of Gaussian Beam approach consists in 
a compatible step assembly. In fact, consider an 
electromagnetic wave propagating in a homogeneous and 
isotropic medium which is being excited by a point source. In 
the GBS method, the final field in an observation point results 
from a fan of rays distributed in his vicinity. For each ray we 
derive a Gaussian beam propagating along the ray. Then we 
sum the contribution of each Gaussian beam to the receiver 
over all rays from the fan [9]. Suppose that the point source is 
situated at the origin and some wave process is described by 
the Helmholtz equation with a propagation velocity v. We 
solve the Helmholtz equation in the vicinity of rays. For any 
selected ray , we shall introduce a ray-centered coordinate 
system, q1, q2 and s connected with  (see Fig. 1) where s 
corresponds to arc length (curvilinear abscissa) along the ray. 
A solitary Gaussian beam as a localized asymptotic solution to 
the Helmholtz Equation calculated at the receiver point, with 
local coordinates s, q1, q2 inside asymptotically small 
neighborhood of the central ray is given by [6]. 

Fig. 1. Ray-centered coordinates q1, q2, and s of point M situated in the 

vicinity of ray . Point M is situated in plane  perpendicular and crossing  

at point S. The origin O is at s=s0.  
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Where τ(s) is the travel time from the source along the 
selected ray, v is the propagation velocity, qT represents the 
transpose of the vector, the quantities Q and P are 2 x 2 matrix 
called “dynamic quantites” satisfying the system ODE (2) in 
variations, called “dynamic ray tracing equations” (DRT) 
[10].In homogeneous medium with wave speed v supposed 
equal to the celerity denoted c here, the DRT can be written as: 
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To solve this above DRT system (2), the initial conditions 
must be specified at an arbitrary point s = s0 on the central ray. 
We must solve this system of differential equations for Q and P 
with appropriate initial conditions. They must guarantee the 
following three conditions along the whole rays [11]: (det[Q]  
0), the (P×Q-1) is symmetric matrix, even though P and Q are 
not symmetrical, and Im(P×Q-1) is a positive-definite matrix  

Here, we use Hill’s [12] initial data for the Green’s 
function. The initial values for Q and P are respectively:  
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In (3), ω0 is the initial half beam width at the frequency f = 

ωr/2π, I is the identity matrix (2×2). Using the initial 
conditions in (3), we can find the general solution of (2), and 
can be written as follows: 
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In the case of homogenous media, by using (4) in (1), we 
return to the representation of the amplitude u of the Gaussian 
beam in 3D: 
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Using the geometrical configuration illustrated in Fig.1, and 

introducing the spherical coordination system (r, θ, ), we can 
deduce the following factor (in 6) as function of the distance (r) 
between the transmitter and the receiver:  

 ( ) ( )ϕϕ cos.;sin.
0

2

2

2
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rssandrqq =−=+   (6)     

An exhaustive discussion of the dependence of the 

Gaussian beam solution with beam with ω0 is given in [13] and 
[14]. The formulation of the total amplitude at the receiver is 
given by the integral over all Gaussian beams characterized by 
their takeoff angle, denoted , from the source is given by the 
following equation: 

  ( ) ( ) δϕϕ dtqqsuMu
s

sfg
.,,,.

21
Φ=  (7)     

Where,  is a quantity, generally complex-valued, which 
remains constant along the considered ray but may differ from 
ray to ray. It is called complex weight function. And the 
function u (s,q1,q2) is the Gaussian beam connected with the 
ray. 

In (7) the domain  is centered on the central ray, it delimits 
the beams propagating in the neighbor of the central ray, 
chosen in such way that the Gaussian beam u (s,q1,q2) outside 
this domain do not contribute effectively to the wave field.  is 
a cone with a vertex angle . 

 [ ]πϑϑϕϕδ 2,0,..sin ∈= ddd                                           (8) 

For homogeneous medium, the ray asymptotic solution of 
the Helmholtz equation is given by the following equation: 
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Where r the distance to an observation point M. 

The GBS integral, in (7), may be evaluated asymptotically 
using the saddle-point method. Thus, this result must coincide 
with the above ray asymptotic solution in regular region. 
Matching both asymptotic solution of (7) and (9) we can 
determine the complex weight function . Integral (7) is 
evaluated by numerical quadrature with regular increment . 
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After the formulation of the scattered filed using GBS 
method ((7) and (10)), we analyze the influence of the main 
parameters of the Gaussian beam on the variation on the field 
amplitude. Then, we compare the solution based on Gaussian 
beam with the analytical solution given by (9).  

Fig. 2. Comparison between ray asymptotic solution Gaussian beam 

summation method for N=133, 200, 400, 600 the beam width is 15 . 

Fig. 2 compares the amplitude of field calculated by GBS 
method and ray asymptotic solution of the Helmholtz equation 
for a frequency equal to 10GHz, a beam width ( 0) equal to 
15  (where  is the wavelength) and for different values of 
beams number (N): N = {133, 200, 400 and 600}. This 
simulation (Fig.2) has been realized as function of the distance 
(r in km) from the source to the receiver. Magenta, red, green, 
blue and lines correspond to the GBS solution for different 
beams number, respectively 133, 200, 400 and 600 over which 
the summation is down. The black line represents the ray 
asymptotic solution. We can observe, that the beam density in 
the vicinity of the central ray offers satisfactory accuracy. In 
fact, when the number of beam is more than 200, the GBS and 
the ray asymptotic are in good agreement. So, as with the usual 
techniques of ray tracing, a high beam density (200 for this 
case) is necessary for high accuracy. In Fig.3, we compare the 
percentage error between the ray asymptotic solution and the 
GBS method. We can see that for sufficient beam density, 
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N=400, the relative error remains below 4% even at 10 km 
from the source. In addition, one should note that the 
computations by GBS method exhibit no singularities when 
passing by the source point (r=0), unlike the ray asymptotic 
solution. The proof of this result relies on the theory of systems 
of linear first order differential equations [15]. 

Fig. 3. Percentage error between the ray asymptotic solution and the GBS 

approximation of the Helmholtz's wave equation. 

To estimate the RCS of a canonical target using the GBS 
method, we need to calculate the complex weight function. In 
our proposed methodologies, we can identify the complex 
weight function by comparing the solution established in (7) to 
those of physical optics (PO). PO determines the field scattered 
from a scatter by assuming that the field on the surface of the 
scatter is the geometric surface field. Since the asymptotic 
high-frequency treatment of superposition integral (7), should 
yield the same results as the standard ray method in regular 
regions [11], the complex weight function is determined by 
matching the solutions of (10) obtained by the stationary phase 
method and the geometrical optics solution [16]. Finally 
equation (10) is used for the numerical computation. 

III. NUMERICAL AND EXPERIMENTAL RESULTS: VALIDATION 

AND EVALUATION 

The validation of the numerical simulation results have 
been done in the monostatic configuration (where the 
transmitter and the receiver are in in the same position), which 
is located in an anechoic chamber (8m x 5m x 5m) at ENSTA 
Bretagne (see Fig.4).   

(a)                                       (b)                         (c) 

Fig. 4.  (a) General description of experimental setup, (b) Target plate, (c) 

Radar sphere calibration. 

The characteristics of various components of measurements 

system are: 

• All walls are covered with absorbent material.

• A computer controls the Vectorial Network Analyzer

(Anritsu 37347D) which operates in the frequency range

from 40MHz to 20GHz and the positioning system.

• The NEWPORT positioning system with an angular

resolution equal to 0.01° and an angle vary between -90°

and 90°.

• An elevation motor for adjusting the height of the target.

In Fig.5, we show the RCS variation of a rectangular flat 
plate of sides (1 m × 1 m). 

Fig. 5.  Monostatic RCS of a flat plate, in vv polrization, computed using 

GBL method, GBS,PO and MoM, for beam width 0 = 2 . 

In this simulation (Fig.5), we set the azimuth angles i to 
zero; the incident angle i varies from 10  to 10  and the other 
acquisition parameters are: f = 10GHz, the beam width 0 = 2 , 
beams number N = 200. The GBS are compared with its 
variety approach GBL (Gaussian Beam Launching), the 
asymptotic PO model, and the rigorous MoM method (in 
FEKO). Comparing the curve of RCS using GBS is in blue 
line, GBL technique in bred line with the other models; we 
observe that they match rigorously the PO solution and MoM 
for the main beam. In fact, PO and MoM accurately models the 
main beam, and the modeled peak width and location match 
GBS and GBL methods. GBS and GBL accurately model the 
main beam, without mitigation, the diagrams are also 
consistent, and the modeled peak width and location match the 
PO solution.  

From the simulation results (in Fig.5) we can conclude that 
the GBS method model very well the variation of the scattered 
field in the specular direction. The deviation outside specular 
direction can be considered through broadening the range of 
validity of the GBS by taking into account the edge diffraction. 

Fig. 6. Compraison between GBS, the numerical models and the 

experimental measurements in hh polrarization: (30cm x 30cm). 
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Fig. 7. Compraison between GBS, the numerical models and the 

experimental measurements in vv polrarization: (30cm x 30cm). 

To consider the edge diffraction contribution, we need to 
use the method of the Geometric Theory of Diffraction (GTD) 
[17]. In fact, the diffraction field when incident field strikes the 
edges is calculated from the GTD and is accounted in the 
complex weighing function in the integral (7). In Fig.6, and 
Fig.7 we compare the GBS method with experimental 

measurements. For a beam width of ω0 =2λ, a beam number 
equal to 200, an incident angle i varies from 60  to 60  and a 
frequency of 10GHz, the size of flat plate is (10  x10 ). 

 The comparison between GBS, with accounting and 
without accounting the edge diffraction contribution, is shown. 
Comparison is also performed with PO and MoM. From this 
comparison results we can see that when the diffraction is 
accounted we obtain values of the RCS which get closer to 
those given by the experimental measurements and the rigorous 
MoM method. In addition, the experimental RCS 
measurements show non-symmetry between the angle of -10° 
to 0° and 0° to 10°. This is due to the separation between the 
transmitting and receiving antennas which equal 2° (quasi-
monostatic configuration). 

The experimental validation results shows that GBS give a 
higher accurate representation of the scattered field and offer 
very interesting perspectives for complex targets such as cavity 
and corner for example (see Fig.8). 

Fig. 8. RCS of rectangular dihedral corner reflector (f = 10GHz): 

Experimental and numerical models.  

IV. CONCLUSION AND FUTURE WORK 

In the present paper, we have applied a new technique in 
the electromagnetic scattering from a radar targets. In the GBS 
technique, the total field at the receiver is represented by the 
integral over all Gaussian beams propagating in the neighbor of 
the receiver. We have carried out the theoretical formulation of 
the GBS technique and a study of influence parameters (beams 
number and beams width). Then, we have introduced a 
numerical simulation of the electromagnetic scattering by a flat 
plate using GBS method. In addition, we have presented the 
experimental measurements of RCS of canonical and complex 
targets. The results of RCS using GBS method were compared 
and validated by the experimental measurements. The study of 
the RCS of different complex objects (such as dihedral and 
trihedral corner reflectors,…) using GBS method is one of the 
perspectives of the work presented in this paper 
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