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Abstract: 

In this investigation, a new experimental technique in which the deformation, damage 

mode, and the temperature are measured simultaneously during a high strain rate on laminated 

composites materials. The composites consist of unidirectional E-glass fibers reinforced 

epoxy polymer composites used in industrial applications. The experimental setup consists of 

a compression Split Hopkinson Pressure Bar (SHPB), a high-speed infrared camera and a 

high-speed Fastcam rapid camera. Specimens, with cubic like a shape, are impacted at 

different strain rates ranging from 200 to 2000s-1. During impact test, the specimen surface is 

controlled and monitored with the infrared camera which provides thermal images in time 

sequence and with high-speed camera which acquires the damage progressive in specimens. 

Experimental results show that the damage throughout specimens differs and the temperature 

change depending on the damage mode and their maximum exceed 219°C.  

Keywords: Hopkinson Bars; Dynamic compression test; Composite materials, Damage, Heat 

dissipation.  
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1. Introduction

Composite materials were used in various industrial applications including aircraft, 

civil infrastructures, military and systems for the recovery of renewable energies like wind 

turbine blades due to superior mechanical properties. But using composite structures for these 

applications are generally subjected to high deformation causing damage of constituents in 

different forms, which in turn cause heat dissipation [1]. Hence, a thermomechanical analysis, 

with control of the temperature profile during loading test, was needed in order to better 

describe the dynamic behavior.  

Monitoring of the composite response during dynamic load is possible with an infrared 

imaging system. In particular, the infrared camera can be used to account for thermal effects 

which develop during an impact event. For fiber reinforced polymers, the infrared imaging 

system has been mainly used for damage evolution assessment [2]. Some preliminary results, 

which were obtained by monitoring with the infrared camera the thermal behavior of glass 

fiber/polymer composites under impact load, were presented by Meola and Carlomagno [3]. It 

has been proved that the choice of the appropriate sampling rate makes possible to appraise 

thermo-mechanical effects under low energy impact. An experimental procedure was 

developed by Kordatos et al. [4] in order to determine and to control the crack growth rate 

using thermographic mapping of the material. The obtained results concerning crack growth 

were found to be in agreement with measurements obtained by the conventional techniques. 

Temperature measurements of specimens during a tensile SHB have been proposed by Noble 

and Harding [5]. A maximum temperature measured is in the range of 240-310°C at a 

nominal strain rate of 1600 s-1. For polymeric materials, Arruda et al. [6] studied the variation 

of the temperature in polymethyl methacrylate (PMMA) deformed at low to moderate rates 

using an infrared method. This technique of characterization has also been introduced by 

Buckley et al. [7], Garg et al. [8], Lerch et al. [9], Li and Lambros [10], Mulliken [11], Pan et 

al. [12] and Regev and Rittel [13] in order to study the heat dissipation which occurs in 

various polymer materials as PC, PMMA, PVC, BMI, BPA and epoxy neat polymers.  

One of the recent examples is the research of Meola et al. (2016) [14], where used the 

infrared thermography in order to measure the temperature increases in a laminate specimen 

during Charpy pendulum impact test. Tested composite materials, involving different polymer 

matrix reinforced with natural flax fibers, were impacted at 10 and 12 Joules of energy and 

the surface opposite to impact direction is monitored with the infrared camera. The results 
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show that through the visualization of thermo-elastic/plastic effects, it is possible to gain more 

information’s useful for the comprehension of the damage mechanisms into matrix and flax 

fibers reinforcement. This experience shows an abrupt rise in temperature of the composite, 

from 149 to 161°C, accounting for fibers breakage. A central hot was appeared in the 

impacted zone and continues to grow and evolves into an L-shaped structure leaning along the 

fibers oriented at ± 45°.  

Investigation the damage evolution in the impacted material, during the drop test, 

based on active infrared thermography was also studied by Li et al. [15]. The change of heat 

thermal was presented by the surface temperature recorded in the form of a thermal image. It 

can be observed that the damaged zone generate a higher temperature distribution compared 

to other zones of specimens. A hot spot was also observed around the impacted surface. 

Various investigations focused on the behavior of metallic materials. Temperature 

measurement during deformation of composite specimens at high strain tensile rate has been 

mostly done at several points by using infrared detectors. One example is the research by 

Gilat et al. [16], where an infrared camera was used to measure the temperature increase in a 

specimen subjected to high strain rate tensile tests. Results from testing specimens made of 

stainless steel show that the temperature exceeds 300°C. Tensile tests with simultaneous full-

field temperature and deformation variations at the nominal strain rates of 0.01, 0.1, 1, 200 

and 3000 s
−1

 were recently presented by Seidt et al. [17]. The test duration varies from 57 s at

 

the lowest strain rate to 197 �s at the highest value of the strain rate and the results show the 

temperature rise at all strain rates. No relation between damage evolution and heat dissipation 

was presented by authors. The equivalent temperature for each strain rate is: 48, 140, 260 and 

375°C for 0.01, 0.1, 1 and 3000 s-1. Heat transfer vs the rupture of the neat polymer under 

dynamic compression was studied by Gagnon et al. [18]. The Infrared images provide 

information about the surface temperature of polymer that can be attributed to the stress 

response of the polymer and breaking of chemical bounds. For first impact wave, the polymer 

sample heats homogeneously and a localized heating on both sides of tested specimen takes 

place. The sample keeps heating as the specimens deform. Heat generation with temperature 

variation was identified by Pan et al. [19] for polyurethane polymer without reinforcement 

under dynamic compression. It is found that more heat was generated at higher strain rates 

because of larger deformation. No evolution of temperature vs type of damage is proposed by 

authors.     
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Several works have studied the variation of the temperature during high rate 

compression tests using sophisticated contact technique [20]. This technique consists to use a 

specific instrumentation of thermocouples embedded into specimens in order to monitor in 

situ the temperature values under dynamic loading. Chou et al. [21] firstly measured the 

temperature rise during tests using embedded thermocouples. Rabin and Rittel [22] developed 

a technical analysis of the time response of solid embedded thermocouples and Rittel [23] 

used the embedded thermocouple technique to investigate the temperature rises of 

polycarbonate at high strain rates. Michael et al. [24] used a thermocouple method to measure 

the temperature rise that occurs in the center of specimens undergoing high deformation. If 

considering the contact technique, it should be noted that it can be intrusive when inserting 

the thermocouple at the heart of the specimen [25-26], and using this technique, no 

information regarding damage evolution can be obtained. Due to experimental difficulties, the 

coupling between the effects of strain hardening, strain rate, and the temperature measurement 

on the damage of unidirectional laminated composites is rarely discussed for Hopkinson bars 

compression tests. It has already been demonstrated the usefulness of an infrared camera to 

control the low velocity impact event of static loading for polymeric and metallic materials, 

but none of them has studied the heat dissipation phenomenon generated by damage 

mechanisms during compression SHPB tests for laminate.  

The intention, now, is to go on in the investigation attempting to gain more 

information on the laminated composites by considering Epoxy polymer matrix reinforced 

with E-glass fibers and subjected to high strain rate compression. The novelty of the study 

concerns the heat dissipation vs damage evolution during the dynamic compression tests. This 

technique was initially used for static, fatigue, drop and high strain tensile tests. The dynamic 

compression presents the various type of damages in which full field temperature 

measurement can help in determining the variation of heat dissipation vs damage evolution. In 

this investigation, infrared camera and high-speed camera are used with the help of split 

Hopkinson bars in order to measure full-field deformation, full-field temperature and to 

control of damage evolution during a high rate compression test. The attention is devoted to 

two main aspects: (1) Analysis of temperature variation during impact test to gain more 

elements about their effect on damage initiation and propagation and (2) evaluation of the 

effect of strain rate on heat dissipation and damage in laminated composites subjected to 

dynamic compression with Hopkinson bars. 



5 

2. Experimental analysis

2.1. Description of specimens

Composite laminates used in this study consists of 2400 Tex E-glass fibers embedded 

in an epoxy polymer matrix. The reinforcement consists of a plain weave fabric with 90% 

warp yarns and 10% weft yarns. The resin is an EPOLAM pre-polymer, EPOLAM 2020 

hardener and 2020 accelerator from Axson. Panels of 500mm x 500mm were made by 

infusion process, Figure 1a, with 40 unidirectional layers, stacking sequence of [±60]20 and an 

overall thickness of 13mm. The resin distribution over the whole laminate is aided by resin 

flowing easily through the tissue plies at ambient temperature.  

The square specimen was cut into cubic shape, Figure 1b, with dimensions listed in 

Table 1. Static compression tests are conducted on cubic samples in order to obtain the elastic 

properties of the lamina. In-plane loading (IP), parallel to the layers plane and out-of-plane 

loading (OP), according to the thickness (direction 3) were considered. Strain gages were 

placed on the various facets of samples at different angles to measure the strain inside the 

specimen, Figure 2. Each test was repeated at least three times, and the results are recorded 

and averaged. The mechanical properties of specimens, obtained with static compression, are 

given in Table 2.  

(a) Infusion process (b) Specimen 

Figure 1: Manufactured panels and specimens. 

Thickness, 

(mm) 

Surface 

(mm
2
) 

Void fraction 

(%) 

Stacking 

sequence 

Fiber volume 

Fraction (%) 

13.00 (0.1) 13×13 (0.2) 1.78 [±60]20 55.0 (0.5) 

Table 1: Geometry and fiber mass fraction of samples, the standard deviation between 

brackets. 
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Test#1 Test#2 Test#3 Mean Std. Dev. 

E1 (MPa) 46140 46130 46381 46217 142 

E2 (MPa) 16120 16090 16048 16086 36 

E3 (MPa) 9100 9125 8961 9062 88 

G12 (MPa) 2150 2245 2277 2224 66 

G23 (MPa) 4499 4569 4552 4540 36 

G13 (MPa) 3430 3510 3560 3500 66 

νννν11112222 0,29 0,284 0,266 0,28 0,012 

νννν22223333 0,088 0,099 0,104 0,097 0,008 

νννν11113333 0,421 0,413 0,396 0,41 0,012 

Table 2: Mechanical properties of composites used for experimental characterization. 

Figure 2: Static compression test of cubic samples and fixtures system. 

2.2. Test procedure 

Tests are performed with the help of SHPB installed at the research center of ENSTA 

Bretagne, Figure 3, at different strain rate ranging from 200 to 2000 s
-1

. The SHPB mainly

consists of an incident and transmitted bars, made of hardened steel with a diameter of 20 

mm. The compression loading wave is generated by a striker impactor tube that impacts a 

flange at the far end of the incident bar. The full-field deformation during the impact tests is 

determined by using strain gauges. The photograph shown in Figure 3 shows a view of the 

experimental test machines. All of the tests are carried out according to the fibers direction of 
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±60°. High-speed camera, with a maximal capacity of 100000 f/s is installed in front of 

impact chamber in order to track the initiation and propagation of damage. The thermal 

acquisition is measured with the help of FLIR SC7000 camera characterized by thermal 

resolution of 25 mK and acquisition frequency fixed to 2 kHz. The data recording is treated 

by Altair software. The specimens, with a cubic shape, are placed between bars as shown in 

Figure 4. 

Figure 3: SHPB tests with full-field deformation and temperature measurements. 
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Figure 4: Specimen dimensions and fixture system. 

3. Results and discussion

To ensure the reproducibility of experimental data, 5 tests will be carried out for each 

impact pressure (strain rate). The tests were performed at ambient temperature. The dynamic 

responses and the thermal dissipation are controlled as a function of damage initiation and 

evolution.  

3.1. Dynamic response of composite panels 

In this dynamic compression tests, a cubic sample is placed between the two bars with 

same diameter 20mm. The striker, incident and transmitted bars have a length of 0.8, 3 and 

2m, respectively. These bars are correctly aligned and are able to slide freely on the base. The 

composite is not attached to the bar in order to prevent perturbations of measurements due to 

additional interfaces. The signals were treated with Maple Software using Fast Fourier 

Transformation to obtain the evolution of dynamic characteristics: Stress-strain, strain rate, 

load and velocities. The specimens were subjected to different impact pressure, and the 

resulting signals were recorded by a digital oscilloscope. For each test, a minimum of five 

tests were achieved for each pressure in order to verify the test reproducibility. Figure 5 gives 

an example of the typical signals obtained during a test carried out with the Hopkinson bars. 

This figure shows an example of the obtained signal as a function of impact time for a striker 

velocity equal to 12.5 m/s. It should be noted that the obtained curve is similar to one of 

Hopkinson bars which composed with the incident, transmitted and reflected waves. Upon 

impacting the input bar, the striker creates a compressive wave that traveled along the input 

bar. In the case shown below, the incident and the transmitted signals are given at the center 

of each bar. After 0.15ms, from the time impact, the compressive wave arrives at the middle 

of the input bar. At 0.58ms, a fraction of the wave is reflected at the input-bar free surface as a 

tensile wave. Due to the gap between the two bars, the input bar took approximately 0.1ms to 

reach the output bar and the duration of the transmitted wave was shorter than the incident 

wave. The duration of the incident wave is 0.4ms.  
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Figure 5: Typical incident, reflected and transmitted pulse, [±60]20 and P=0.9bar (831 s
-1

).

Furthermore, the input signals (in voltage) are converted to the average stress of the 

specimen via multiplying by the stress scale factor. Then the strain rate versus time and 

stress–strain curves can be obtained. Figure 6 shows the strain rate - time histories using 

different impact pressures (or different impact energy). These tests are conducted at 

laboratory temperature. The magnitude and duration of waves increase with the impact 

pressure. It is seen that the pulse is approximately 0.35ms long for 1.6bar and characterized 

by a trapezoidal shape, with a flat region, and by a decaying tail.  

Figure 6: Strain rate vs. time for different impact pressures. 



10 

Figure 7 shows the Stress-Strain curve obtained by impacting the specimens 

approximately with the same impact energy, W=11J, to ensure the reproducibility of the 

experimental procedure. It appears that all of the curves have a mountain-like shape and 

exhibit approximately the same trends. The three tests found the same maximum stress, 210 

MPa, for the same strain, 1.65%.  

Figure 7: Reproducibility of experimental test. 

Now, the tests were done at strain rates ranging between 200 and 1500 s
-1

 at ambient

temperature. It follows from Figure 8 that the stress increases with increasing strain rate. The 

strain rate exerts a significant effect on the dynamic properties of composites subjected to 

Hopkinson bars.   
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Figure 8: Stress–strain curves, T =24
�
C. 

We can also note that for strain rates less than 255 s
-1

, the damage is not present. On

the other hand, when the strain rate exceeds 800 s
-1

, the damage becomes important and

appears. Therefore, strain rate more than 800 s-1 was used in order to control the evolution of 

damage vs heat dissipation and vs temperature profile.  

3.2. Evaluation of damage mode in tested specimens 

This section is concerned with analysis and discussion of the apparition of damage in 

the specimens during impact tests. Considering, for example, the case of specimens impacted 

with 0.8 and 1.6 bar, corresponding to 800 and 1430s-1, respectively. Figure 9 shows the 

impacted specimens. In these cases, three types of damage were observed: delamination, 

cracks in the plies direction and debonding. It appears from this figure that, for different strain 

rates, the damaged zone has the V-letter like-shape and propagates in the direction of fibers. 

The damaged zone becomes important for high strain rate, 1430 s
-1

, and this case is

considered and analyzed for thermal analysis. 

The evolution of damage in impacted specimens generates a shearing mode between 

the V zone and the rest of the specimen. Under the dynamic compression, there is also a 

buckling mode of the external layers resulting in local delamination for 800s-1 (0.8bar) and 

total delamination of ply for the case of 1430s-1 (1.6bar). The history of damage is given in 

Figure 10 for different impact times. At the end of the test, a great deformation is observed in 
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the transverse direction and generates a separation of N-layers. The V-shape damage form can 

be observed in the incident bar side or in the transmitted bar side or both, Figures 10A, 10B 

and 10C. 

(a) P=0.8bar (800s-1) (b) P=1.6bar (1430s-1) 

Figure 9: Damaged zone under dynamic compression test with Hopkinson bars. 

(a) (b) (c) 

(A) First scenario of damage 

(a) (b) (c) 

(B) Second scenario of damage 

(a) (b) (c) 

(C) Third scenario of damage 

Figure 10: The visual image of different modes of damage under Hopkinson bars. 
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The damage kinetics of [±60]20 laminate is summarized in Figure 11. The different 

damage modes observed are:  

• ���� Formation of the 1st damaged zone (V shape, Shear mode: local buckling, fiber 

kinking and matrix crack). 

• ���� “V” emerges by the creation of delamination.

• ���� Formation of the 2sd damaged zone (V shape).

• ���� Delamination (layers block separation) and total failure.

Figure 11: Damage history of [±60]20 cubic sample at high impact pressure. 

3.3. Damage evolution vs heat dissipation 

In order to characterize the dependence of the thermal dissipation on the damage, 

dynamic compression tests with SHPB apparatus are carried out with the positioning of the 

infrared camera to view the specimen surface opposite to that of impact. As mentioned, the 

purpose of this was to determine what the damage type including delamination and cracks 

generate a higher thermal dissipation. Sequences of thermal images are acquired at 2 kHz 

frame rate during an impact event. Each sequence of thermal images is post-processed in 

order to extract the corresponding temperature variations. The variation of temperature is 

taken in seven positions; namely: higher-line (HL), Middle-Line (ML), Lower-Line (LL), 

Right-Line (RL), Center-Line (CL), Left-Line (LeL) and Full-Window (FW), Figure 12.  
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HL : Higher Line 

ML : Middle Line 

LL: Lower Line 

RL : Right Line 

CL : Center Line 

LeL: Left Line 

FW: Full Window 

(a) Position of measurement 

(b) Geometry of measurement area 

Figure 12: Heat dissipation measurement area. 

An example of the temperature variation at the early part of the tests with the localized 

damage and heating during the deformation of specimens is illustrated in Figure 13. 

Quantitative data extracted from the thermal images is displayed and plotted. The temperature 

variation along the ML of the specimen before impact, 0 ms, and after first wave compression 

at 0.2768ms of impact time is compared. The first image, which was taken just before the 

impact, displays an overall uniform distribution of temperature being related to room 

temperature (24°C). At the arrival of the first compression wave, 0.2768ms, the specimen 

experiences a sudden cooling down (dark zones) because of the elastic material expansion 

[27]. In the thermal image of impacted specimens, a central hot spot appears being due to the 

dissipation effect with damage growth throughout impact direction. From the latter, it is 

possible to see that for 1430s
-1

 (1.6bar), at 0.2768ms, a rise in temperature is observed and

significant heat dissipation is present and the temperature exceeds 34°C.  

For the same specimen and for the 2nd compressive wave, a series of thermal images 

taken at different time instants for E-glass/Epoxy specimens tested with 11J of impact energy 

are shown in Figure 14. In the thermal images, it appears that the thermal profile takes also V-

letter like shape as the case of damage evolution. It is possible to see V shape with a slight hot 
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spot surrounded by a cold region. The maximum temperature is obtained in the damaged zone 

and exceeds 75°C. The cold region is formed by bending under the compressive load, while 

the hot spot indicates the formation of microcracks and initiation of the delamination [28].  

Figure 13: Thermal images recorded by the IR camera and the temperature history at ML, 1
st

compression wave.  

Figure 14: Thermal images recorded by the IR camera and the temperature history at ML, 2
nd

compression wave. 
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The temperature increases with impact time and reached its maximum peak, 190°C, at 

2.7680ms, Figure 15. Hot spots enlarge and another appears forming a unique hot zone 

localized in the two branches of V, meaning that some important damages have locally 

occurred in the V branch and shearing mode is developing between the V zone and the rest of 

the specimen. The final hot spot takes V-shape follows the delamination evolution and failure 

of plies. Temperature increases from 75°C to 190°C.   

Figure 15: Thermal images recorded by the IR camera and the temperature history at ML, 3
rd

compression wave.  

For more illustration, a contoured thermal and visual image of the specimens under 

dynamic compression at 1430s
-1

 is shown in Figure 16. For comparison, we have reported in

this figure a photo of the specimen at the same impact time to show the contoured zone for 

temperature and damage profiles and the dependence of heat dissipation to damage which 

appears on composites during dynamic loading. As can be seen, there is a good 

correspondence between the two areas: the thermal and the visible damage one. In two images 

(IR vs Camera pictures), the V-letter like shape is observed and the temperature field follows 

the damage evolution from 0.5536ms of impact time. In particular, only different hot spots are 

present until 1.6608ms, at which another hot zone configuration is appeared and localized in 

the center taking V-shape. Then, it is not surprising to see dependence between heat 
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dissipation and damage evolution. Going further on in time, all the hot spots coalesce forming 

a unique V-hot zone. A wider area warmed up is localized in the center of specimens with 

larger delamination occurred. 

t=0ms t=0.2768ms t=0.5536ms t=0.8304ms 

t=1.1072ms t=1.3840ms t=1.6608ms t=1.9376ms 

t=2.2144ms t=2.4912ms t=2.7680ms Tested specimen 

Figure 16: Thermal and visible images of the specimens impacted at 1430 s-1. 
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3.4. Temperature profile in damaged specimens 

To gain more information about the onset of temperature variation into specimens, the 

profile is collected in the different zones and a comparison is given, Figures 17 and 18. Six 

zones, perpendicular and parallel to the direction of compression, were considered as 

presented in Figures 17 and 18. The uneven distribution of temperature is obvious, and the 

heat peak is obtained in the center of the specimen where the cracks and delamination become 

important. In the area of crack defects, the temperature is higher than other areas obviously. 

Due to the structure of the composite specimen, damaged by dynamic compression tests, the 

distribution of heat becomes non-uniform throughout the specimen. Significant temperature is 

located in the damaged area and exceeds 186°C in a particular point for horizontal lines. For 

the perpendicular direction (vertical lines) the peak of temperature exceeds 162°C.  

Figure 17: Temperature history for horizontal lines. 

For FW zone, the variation of the minimum, the maximum and the mean of 

temperature during the dynamic compression test for the investigated specimens is reported in 

Figure 19. As can be seen, the specimen displays an abrupt rise in temperature, at 6ms, which 

can be attributed to the combination of different modes of damage observed using a rapid 

camera and given in [29]. For the full thermal image, the maximum temperature exceeds 

219°C.  
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Figure 18: Temperature history for vertical lines. 

Figure 19: Min, Max and Mean of the temperature profile in FW. 
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4. Discussion

Composite panels with 40 unidirectional layers, stacking sequence of [±60]20 and an 

overall thickness of 13mm were impacted at different strain rates using Hopkinson bars. 

Different damage modes were observed into tested panels as for example: local buckling, 

fiber kinking, matrix crack and delamination. The damage evolution has been investigated 

simultaneously by the high speed camera and infrared camera. Examination of thermal images 

clearly indicates the difference in temperature profile throughout impacted specimens. This 

difference depends mainly on the damage mode. The variation of temperature is taken in 

different positions of panels. At t=0.2768ms of impact time, corresponding to 1st compression 

wave, no surface damage is detected by high speed camera but a heat dissipation is present 

and the temperature exceeds 34°C. This change in temperature can be related to the initiation 

of damage and matrix cracking. For the same specimens, at t=1.384ms of impact time, the 

temperature continues to be increased and exceeds 75°C in the center of specimens. 

Inspection of this zone with rapid camera and SEM shows the fiber-matrix debonding and 

matrix cracking, Figure 20a. The fiber–matrix debonding leads to fiber–matrix sliding with 

friction between fiber surface and polymer which generates a hot spot and an increase in the 

temperature. The hot zone was localized in the specimen and surrounded the damaged area. In 

the area of crack defects, the temperature is higher than other areas obviously [30]. At t=2.768 

ms of impact time, rapid camera shows an important delamination with block separation and 

total failure, promoting more friction. At this stage, impact test causes the sliding of 

composite plies, Figure 20b, which generates a hot surface. In addition, severe friction 

between yarns, plies and the debris of composites also increases the material temperature. Lee 

et al. [31] and Cheeseman et al. [32] show that the yarn pull-out and the friction between the 

yarns themselves are responsible for how much energy is absorbed with heat release. 

Specimens at the ends of tests are illustrated in Figure 20c showing sliding and shear in 

composite plies. Total failure and breakage were obtained. From previous works, failure may 

occur with development of greater heat dissipation [27,33] and the impact energy was 

transformed to heat energy, which results in the instantaneous increasing of temperature 

variation in the local area [34]. For [±60]20, tested specimens, the equivalent thermal image 

indicates an elevation in the temperature of specimens from 75 to 190°C. According to [35, 

36] important deformation leads to the large temperature rise during the heating stage around

the cracked areas and the maximum heat was observed when crack depth is larger. 
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(a) Damage in constituents (b) Sliding of composite plies 

(c) Tested specimens showing composite sliding 

Figure 20: SEM analysis of damage mode in tested specimens.  

The characterization of heat generation in [±60]20 is significant to understand the 

damage evolution. To gain information about the heat dissipation vs damage evolution, Figure 

21 depicts the superposition of infrared and optical images for the damaged specimen. As can 

be seen, a hot zone, indicating maximum heat dissipation, appears at the center of the thermal 

image with a total rupture of plies as observed in the optical image. If the damage becomes 

more important; this is supported by the important heat dissipation and an abrupt temperature 

rise during the test. Therefore, moderate heat dissipation release occurs in the course of the 

fracture of specimens.  

The heat dissipation can be determined from the number of pixels associated with their 

respective temperature values. This is based on the fact that the color of every pixel indicates 
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its temperature value, Figure 22. It is found that there is an obvious rise in maximum 

temperature in the material. Transient heat generation cannot be overlooked in the polymer 

laminate composites under compressive dynamic tests. Since the glass transition temperature 

(Tg) of the epoxy polymer is only about 82°C [37], such highly heated effect in the tested 

composite would result in softening composites and weakened mechanical properties, which 

favorite the damage. During compressive impact test, an elevation of the temperature till 

219°C was obtained. When the temperature of specimens exceeds the Tg, the mechanical 

properties of epoxy deteriorate with changing the polymer state (from rubbery state to glass 

state) by the mobility of active chains and the chemical reaction. There is a significant 

relationship between molecular chains, the glass transition temperature and deterioration of 

mechanical properties [19, 35]. Finally, the results demonstrated in this work suggest that the 

damage of specimens under impact test generates an elevation of the temperature and the 

impact energy was absorbed by the specimen and dissipated as heat with the formation of 

matrix microcracks, delamination and rupture of fibers.   

Figure 21: Superposition of infrared and optical images. 
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(a) Zoom [20,70] °C (b) Zoom [70,120] °C 

(c) Zoom [120,170] °C (d) Zoom [170,220] °C 

Figure 22: Histogram of temperature distribution in the composite. 

5. Conclusions

An experimental setup in which simultaneous full-field deformation, damage and 

temperature measurements were done on the surface of a specimen during dynamic 

compression tests conducted at different strain rates using Hopkinson bars. The infrared 

thermal camera was used to detect defects and damage in [±60]20 glass fibers reinforced 
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epoxy polymer composites. From the obtained results some remarkable remarks can be made. 

Results show that:   

• During dynamic compression tests on the monitored surface, the composite

undergoes the first wave and then heating up because of dissipation of the impact

energy. The temperature profile indicates the variation occurs during a short time

and their visualization is possible with high-frequency imaging.

• The mechanical impact energy, dissipated as heat is spent in the formation of

different damage modes as matrix cracks, delamination, and rupture of fibers.

• For the case of higher strain rates, about 1430 s
-1

 (1.6bar), there is a drop of inter-

ply force, which causes a concentration of stress at the inter-ply zones and which

represents the initiation of the damage. This causes a temperature rise detected by

the infrared camera.

• When the damage becomes more important; this is supported by the abrupt

temperature rise observed in thermal images.

• A hot zone, or many, was observed and coincide with damage area taking the same

shape (V-letter in our tests). The whole warm zone was localized at the center of

the specimen and coincides with the permanent damage occurred in the composite.

• There is a general agreement between the damage observed as hot area during

impact test and the damage detected by rapid camera. With lock-in thermography

and the rapid camera shows a satisfactory agreement and allows for a correct

identification of size, location and shape of the created area of damage. V-letter like

shape is the principle damage form observed in specimens. For the thermal camera,

a hot spot with V-shape is also observed during the test with Hopkinson bars. The

hot area was localized in the intersection of the two branches of the V with

maximum temperature exceeds 219°C. Finally, this can be regarded as mutual

validation of the techniques for application in the detection of impact damage for

high strain rate using Hopkinson bars.
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