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Incremental clustering of sonar images using self-organizing maps

combined with fuzzy adaptive resonance theory
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a ENSTA Bretagne, Lab-STICC (UMR CNRS 6285), 2 rue Francois Verny, 29806 Brest Cedex 9, France
b LINEACT/CESI, Saint Nazaire, France
c Islamia College University Peshawar, Pakistan

In this paper we introduce a new unsupervised segmentation algorithm for textured sonar images. A Dynamic

Self-Organizing Maps (DSOM) algorithm capable of incremental learning has been developed to automatically

cluster the input data into relevant classes of seabed. DSOM algorithm is an extension of classical Self-

Organizing Maps (SOM) algorithm combined with Adaptive Resonance Theory (ART) technique. The proposed

approach is based on growing map size during learning processes. Starting with a minimal number of neurons,

the map size increases dynamically and the growth is controlled by the vigilance threshold of the ART network.

To assess the consistency of the proposed approach, the DSOM algorithm is first tested on simulated data sets

and then applied on real sidescan sonar images. The results obtained using the proposed approach demonstrate

its capability to successfully cluster sonar images into their relevant seabed classes, very close to those resulting

from human expert interpretation.

1. Introduction

Image segmentation is an important step in the image analysis

chain. It addresses the problem of dividing an images into homo-

geneous groups of pixels based on a similarity measure. In terms of a

priori knowledge, two families of image segmentation algorithms can

be distinguished: the supervised and the unsupervised approaches. The

supervised algorithms rely on training phase, which is based on a

precise and comprehensive a priori knowledge of the type or label of

the training data. The widely used supervised algorithms are based on

Maximum a Posteriori (MAP) or Maximum Likelihood (ML) technique

(Duda et al., 2001).

Seafloor classification is the segregation of sonar images of seabed

into separate physical entities or classes. It is very useful and active

area of research in the field of seabed mapping, marine geophysics,

geological survey, exploring underwater natural resources, marine

habitat and underwater acoustics. Similar to the segmentation of

ordinary natural images, the segmentation of sonar images with

supervised algorithms requires ground truth data. In practice such

ground truth is difficult to acquire (underwater video, dredge or core

data sampling) and therefore labeling the seabed types often reduces to

a few discrete locations. The supervised approach gives satisfactory

results only when a comprehensive training set is available. If the

training set lacks a particular kind of seabed, it will be unknown to the

classifier and the classification will be reduced to the closest known

sediment class. As it is not always feasible to have seabed ground truth

classes and to know the entire seabed types before the training phase,

an unsupervised algorithm capable to determine clusters according to

statistical similarity and independently to the expert interpretation is

suitable for sonar images. Recent progress in underwater robotics has

been aimed at developing autonomous underwater vehicles (AUVs),

which allow automatic data collection and interpretation with on board

processing techniques and unsupervised algorithms for classification

(Wynn et al., 2014). Hence, the unsupervised algorithms can be

implemented in real time on these AUVs to fully automate the seabed

classification of unknown areas.

The unsupervised approaches exploit the resemblance between

statistics features estimated from images, with no a-priori knowledge

about data labeling or number of classes. In this case, clustering

algorithms are used to gather pixels or regions in similar groups.

Approaches to unsupervised learning include: clustering algorithms

(e.g., ISODATA, K-means, mixture models and hierarchical clustering)

(Hastie et al., 2009; Acharyya, 2008), blind signal separation generally

used for dimensionality reduction and features extraction (e.g.,

Principle Component Analysis (PCA), Independent Component

Analysis (ICA)) (Acharyya, 2008) and neural network models using
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unsupervised learning. Among these models, Self-Organizing Maps

(SOM) developed by (Kohonen, 1982) and Adaptive Resonance Theory

(ART) developed by (Carpenter and Grossberg, 1988) have been

chosen as they have successfully solved many different kinds of

problems in various research fields (for example (Kohonen et al.,

1996; Carpenter et al., 1998; Kim et al., 2001)).

In this work, a new approach for unsupervised segmentation of sidescan

sonar images is proposed. Our approach is based on the mixture of two

neural network algorithms: the SOM and ART algorithms. The SOM

algorithm is a powerful tool for clustering and data mining. It has been used

for mapping high-dimensional data into generally one, two or three

dimensional feature map (Kohonen, 2013). One of the important char-

acteristic of SOM algorithm is its ability to preserve the topology of input

space using neighborhood function. It means that input data which is

similar in term of features distance will be close after projection by SOM

algorithm. This topological preservation of data allows best visualization

and identification of data clusters. The SOM algorithm is classically

presented as two-dimensional (2D) grid of neural nodes. A group of close

nodes on the grid is a cluster and represent a certain class of the given data.

However, classical SOM algorithm has some limitations i e. . the size of the

grid and the number of nodes have to be predetermined, whereas the

proposed method dynamically increase the size of the neural map that

incrementally characterize the detection of new classes systematically. The

problem of determining the size of the grid in SOM depends on the size of

the data and the structures of the clusters. In this regard, many approaches

exist to determine the size of the grid, for example: Sammon's projections

or empirical methods (Sammon, 1969), which are based on the cardinality

of the input data (e.g. N5 , where N is the number of observations),

another approach given in (Vesanto and Alhoniemi, 2000) is used to create

a large grid with additional stages of clustering. But in practice, many

experiments and simulation need to be conducted to define the appropriate

size of the map. In the case of unknown structure of the data, an

incremental or dynamic structure of the grid is suitable.

The remainder of this paper is organized as follows. Section 2

introduces the related works for dynamic neural network. Section 3

reviews the SOM and Fuzzy ART algorithms and then describes the

proposed DSOM algorithm for incremental clusters detection.

Experimental results are shown in Section 4 and finally conclusion is

given in Section 5.

2. Related works

Artificial Neural Networks (ANNs) are computational models

(inspired by the functioning of cerebral cortex) which are capable of

extracting meaning, detecting trends and patterns in complex data of

heterogeneous nature (Hansen and Salamon, 1990). The SOM is one of

the well known algorithm of ANN models and it is widely used in

numerous applications for visualizing (visualization of high dimen-

sional data into low dimensional views), clustering problems without

the knowledge of class memberships and image classification. Several

works used SOM algorithm on various fields of research. For example,

(Kinnunen et al., 2012) uses the SOM algorithm for unsupervised

objects discovery. In remote sensing, for hyperspectral imagery, (Liu

et al., 2010) proposed an approach based on SOM and fuzzy member-

ship for decomposition of mixed pixels. Several authors have success-

fully applied different approaches of ANN to the problem of seafloor

classification (Muller et al., 1997; Stewart et al., 1994; Bourgeois and

Walker, 1919; Maillard et al., 1992; Vink et al., 2000). Similarly, the

use of fuzzy ART algorithm for the segmentation of acoustic image is

implemented by (Vink et al., 2000). To overcome the limitation of the

fixed size grid of the classical SOM algorithm, several dynamic neural

network models have been proposed.

The Neural Gas Algorithm (NGA) developed by (Martinetz et al.,

1993) is an unsupervised neural network, which successively add units

(or nodes) to an initial small network by evaluating local statistical

measures gathered during previous adaptation steps.

Another algorithm called Growing Cell Structures (GCS) developed

by (Fritzke, 1994) is based on the basic approach of NGA with fixed

topology dimensionality (2-D or 3-D). In (Alahakoon et al., 2000), the

authors proposed a Dynamic Self-organizing Maps with controlled

growth (GSOM) for knowledge discovery. The advantage of GSOM is

the control of the size of the grid using spread factor. The spread factor

in this case is independent of data dimensionality and can be used as

threshold to create different maps with different dimensionality.

3. Dynamic Self-Organizing Maps (DSOM)

The proposed algorithm is based on the combination of two neural

network models : SOM and Fuzzy ART algorithm. Before presenting

details of the proposed DSOM algorithm, a brief overview of the SOM

algorithm and Fuzzy ART theory are given.

3.1. Self-Organizing Maps (SOM)

The SOM algorithm converts a complex non linear high dimen-

sional input data into low dimension representation using geometric

relationships of the input space (Kohonen, 1998).

A typical SOM network consists of two layers neural architecture i.e.

input neural layer and output neural layer as given in Fig. 1. Each p

dimensional input vector x x xx = ( , ,…, )k k k k p
T

,1 ,2 , , in the input layer X is

fully connected to all neurons in the output layer

y j mY = { : = 1, 2,…, }j
2 , where m is the order of the neural map in

the output layer, which allows the self-organization.

The directed link between the input layer X to the output layer Y is

given by synaptic weight vector w w ww = ( , ,…, )j j j j p
T

,1 ,2 , (where

j m∈ {1, 2,…, }2 is the index of jth node of the output neuron) from

input layer X to output layer neuron yj. These weights (which can be

any real number) are updated iteratively by the learning algorithm

based on the neighborhood.

The learning principle of the SOM algorithm is to pick an input

vector xk and find the corresponding, so called winner node y j* ( j* is

the index of the winning neuron), by finding the index of the nearest

weight vector with j w x* = argmin −j j k .

Afterwords, the winner node y j* is promoted by adjusting its

corresponding weights w j* towards the nearest input vector xk. In

order to ensure that vectors close in distance and topology in the input

space are associated with nearby neurons on the map, not only w j* gets

adjusted but also the weights of all nodes in the neighborhood of y j* are

also adjusted. The weight vector adjustment is done by the following

equation:

t t α t V j j t tw w x w( + 1) = ( ) + ( ). ( , *, ). [ − ( )]j j k j (1)

Where t represents the time-step and α t( ) is learning rate, it is a

decreasing function given by:

α t α t T( ) = (1 − / )0 (2)

Fig. 1. Schematic SOM network.
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where T is the number of iterations of learning process and α0 must be

in [0, 1].V j j t( , *, ) is neighborhood function, it represents the influence

in term of distance between the winner node y j* and its neighbors yj
during the learning process. V j j t( , *, ) is given by:

⎡

⎣
⎢

⎤

⎦
⎥V j j t

d

σ t
( , *, ) = exp −

2 ( )

2

2 (3)

where d2 is the Euclidean distance between the winner neuron and its

neighbors and σ t( ) is the width of the neighborhood function calculated

by:

σ t σ σ σ( ) = [ / ]max max min
t T/ (4)

where σmax is equal to (number of neurones/2), σmin equal to 1/2.

3.2. Fuzzy ART algorithm

Fuzzy ART algorithm (Carpenter and Grossberg, 1988) is an

unsupervised learning algorithm based on ART theory introduced by

Grossberg in 1976 and Fuzzy logic developed by (Zadeh, 1965). It is a

neural network model which is capable of rapid learning, recognition

and establishment of categories (classes) in response to arbitrary

inputs. A typical fuzzy ART network consists of three layers; the first

layer is only used to represent the input data, the second layer called

matching layer consists of competition process to select the winner

neuron with the largest response and the third layer contains selected

neurons which represent different categories or clusters. The inputs are

matched to these categories using vigilance threshold. If the input and

the given category acceptably matches then the given category is

chosen and search process ends. If the input is different from the

given category (less then the vigilance parameter threshold), the wining

neuron is inhibited and new process of search is initialized among the

remaining neurons of the second layer. The Fuzzy ART algorithm is

given by the following steps for all input samples data presented to the

network.

Step 1. Moore (Moore, 1989) described a category proliferation

problem that can occur in some Fuzzy ART systems when the input

data are not normalized. Normalization of the p dimensional inputs

vector a a aa = ( , ,…, )k k k k p
T

,1 ,2 , , a( ∈ [0, 1])k i, is achieved by processing

each incoming vector ak as follows:

k Nx a a= / , = 1, 2,…,k k k (5)

Step 2. Compute the choice function T x( )j k for each input vector xk and

weight wj using:

T β j mx x w w( ) = ∧ /( + ), = 1, 2,…,j k k j j
2

(6)

where ∧ : is the Fuzzy AND operator (Zadeh, 1965) defined by:

a ba b( ∧ ) = min{ , }i i i ; the norm . of a given n dimensional vector v

is defined by: vv = ∑
i

n
i=1
; wj : is the weight vector that connects

the input layer with the output layer (neural map network), and β: the

bias defined in ART algorithm, this value must be within the range

[0, 1], although values very close to zero are best (Carpenter and

Grossberg, 1988).

Step 3. The winner neuron is selected from the activated neurons

function T x( )j k using the following equation:

j T j mx* = arg max( ( )), = 1, 2,…,
j

j k
2

(7)

Step 4. Determine if resonance occurs by checking if the winner node

meets the vigilance threshold ρ ∈ [0, 1], which controls the number of

categories (clusters), a high value of ρ gives higher number of clusters

and inversely a low vigilance value minimizes category proliferation,

i e. : If,

ρ
x w

x

∧
≥

k j

k

*

(8)

update the weights using:

t γ t γ tw x w w( + 1) = ( ∧ ( )) + (1 − ) ( )j k j j* * * (9)

where γ ∈ [0, 1] is learning parameter.

Else, set the value of T x( )j k to 0.

Step 5. Repeat steps 3 and 4 until a chosen node meets the vigilance

threshold.

3.3. The proposed DSOM algorithm

The proposed DSOM algorithm is based on four major steps given

below and presented in the Fig. 2:

1. Data processing

The input data is normalized using complement coding, which

preserve amplitude information by representing both the input data

and its complement. The complement of vector xk denoted by xk
c is

given by:

x x= 1 −k
c

k (10)

By applying complement coding to the input vector xk of p dimen-

sions result in to a p2 dimensional vector given by:

x x x x x xX x x= ( , ( ) ) = ( , ,…, , , ,…, )k k
T

k
c T T

k k k p k
c

k
c

k p
c T

,1 ,2 , ,1 ,2 , .

2. Initialization phase

The network is initialized with four nodes (a grid of 2 × 2) with

random values from the input vector space. The choice of the

number of nodes to initialize the network is justified to implement

a 2D lattice structure.

3. Growing phase

Fig. 2. Synoptic of DSOM algorithm process.

3



This is the major step of the proposed DSOM algorithm. The

growing process is first based on Eqs. (6), (7) and (8) described in

the steps 2–4 of the Fuzzy ART Algorithm.

If the inequality in the Eq. (8) is satisfied then the grid map is not

extended, but updating of the weights vectors is computed using the

Eq. (11) described in the SOM algorithm.

t t α t V j j t tw w X w( + 1) = ( ) + ( ) × ( , *, ) × ( ∧ ( ))j j k j (11)

It must be noted that the size of weight vector wj is extended to p2

dimensions in accordance to the size of Xk. Similarly, if the inequality

in the Eq. (8) is unsatisfied, new nodes are added to the grid map. In

order to keep a square grid, a row and a column of neurons are added

and the new weights are computed using Eq. (12) for the row added

neurons and Eq. (13) for the column added neurons, respectively.

i j i j i jw w w( , ) =
1

2
[ ( − 1, ) + ( − 2, )]add add add (12)

i j i j i jw w w( , ) =
1

2
[ ( , − 1) + ( , − 2)],add add add (13)

where iadd and jadd denote the updated number of rows and columns.

4. Stopping Process

The stopping process occurs if all the sample data inputs are

presented to the network and the maximum number of iterations is

reached.

3.4. Quality assessment of DSOM based mapping

Several measures have been used to evaluate the quality of the SOM

algorithm and can be extended to study the mapping quality of the

DSOM algorithm. Typically two evaluation criteria are used :

Quantization and Topographic Errors (Kiviluoto, 1996; Uriarte and

Martin, 2005). The Quantization Error (QE) measures the average

distance between each input data and the weight of its winner neuron

also called best matching unit (BMU). The QE evaluate the fitting of the

neural map to the input data space. The smaller the quantization error,

the smaller the average of the distance from vector data to the neural

map. The QE used in this work is calculated using:

∑QE
N

x w=
1

− , j = 1, 2,…,N
k

N

k j

=1

*

(14)

Fig. 3. Datasets used for experiment. (a) Aggregation dataset, (b) Compound dataset.

Fig. 4. Threshold vigilance parameter versus Quantization Error (QE) and Alpha Topographic Error (TEα).
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where N is the number of data vectors and w*
j is the BMU.

The second quality measure i.e. the Topographic Error(TE), de-

scribes the topological order of the neural grid and measures how

continuous mapping from the input space to the grid neural map. This

error measures the proportion of all data vectors for which first and

second BMUs are not adjacent vectors. Thus, lower the topographic

error is, better the SOM preserve the topology. Different Topographic

Error(TE) methods are proposed in the literature (Kohonen, 1982;

Bauer and Pawelzik, 1992; Bezdek and Pal, 1995), the classical TE

measure is given by:

∑TE
N

U x=
1

( )
k

N

k

=1 (15)

⎧
⎨
⎩

U x( ) =
1 if 1 and 2 BMUs are not adjacent

0 otherwise
k

st nd

In the case of a rectangular lattice the BMU has only four neighbors

and the error de-evaluate rectangular maps (Uriarte and Martin, 2005).

In addition, it has been observed that in many cases nearby diagonal

neurons are the reason why error increases in rectangular maps. This

happens because diagonal units represent nearby data although they

are not neighbors. Consequently, (Uriarte and Martin, 2005) suggest a

new measure for rectangular maps to improve the deficiency of the

topographic error. This topographic error called Alfa Topographic

Error (TEα) takes into account different kind of new neighbors. The

TEα is based on assigning weights to different kind of new neighbors as

given in Eq. (16), where Z ≠ 0 is the weight of diagonal neighbor. In the

proposed procedure, the rectangular lattice of neural network is

adopted. The value of Z is chosen equal to 2 . This choice is justified

by the distance of the BMU to the diagonal neighbor. The case of Z = 1

means that the first and second BMUs are not adjacent neither

diagonals neighbors.

∑TE
N

α x=
1

( )α

k

N

k

=1 (16)

⎧

⎨
⎪

⎩
⎪

α Zx( ) =
1 if 1 and 2 BMUs are not adjacent

1/ if 1 and 2 BMUs are diagonals

0 otherwise

k

st nd

st nd

The growing process of the DSOM algorithm is controlled by the

vigilance parameter given in Eq. (8). For the vigilance parameter a fixed

value is used, that empirically minimize the QE and the TEα.

4. Experimental results

The objective of a clustering algorithm is to discover grouping of

structures inherent in the data. In this section, experimental tests are

performed to show the capability of DSOM algorithm for discovering

incremental clusters. Two types of experiments are conducted, the first

one is the application of the DSOM algorithm for clustering of two

Fig. 5. Dynamical clustering using DSOM algorithm of Aggregation dataset for iterations:(t = 0 (Random grid initialization), t = 100, t = 20,000 and t = 40,000).
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types of synthetic datasets. The second experiment demonstrates the

application of the proposed DSOM algorithm on real sonar images.

4.1. Application to synthetic data

To establish the importance and applicability of the proposed

DSOM, data-sets containing features and characteristics which are

known to create difficulties and complications are used for clustering in

real scenarios such as uneven size and shape of clusters, clusters with

slender links, etc. The data used for experiment are two datasets shown

in Fig. 3. The dataset in the Fig. 3(a), called Aggregation data used in

(Gionis et al., 2007), contains 7 clusters, 788 vectors in 2-dimensions.

The second one is Compound data shown in Fig. 3(b) and contains 399

vectors, in 2-dimensions with 6 clusters used by (Zahn, 2007). These

are benchmark datasets used in standard clustering algorithms for

testing the performance and accuracy of the clustering algorithms.

The first step in the test consist of the choice of the vigilance

parameter ρ. This parameter is very important for the growing process

step. It allows to control the number of nodes in the neural grid,

whereas a high value gives a higher number of neurones and inversely

low vigilance values minimize neurones proliferation. The quantization

and the topographic errors are used to select an optimal value of

vigilance parameter. The optimal value is the one that minimizes both

topographic and quantization measures. Fig. 4 represent the graphs of

the quantization and topographic errors of DSOM algorithm applied on

Aggregation and Compound datasets for different values of ρ between

[0, 1].

In Fig. 4, we can see for both Aggregation and Compound datasets,

the QE is equal to 1 for values of ρ between [0, 0.3]. In this case, the size

of the neural grid is the same as that of the initialized grid 2 × 2 (no

expansion of the grid). But for the values of ρ between [0.4, 1], the QE

decreases and the grid size is incrementally extended. On the other

side, the behavior of the TEα error is inverse to that of the QE error. For

values of ρ in [0, 0.3] the TEα is constant and increases for values of ρ

between [0.4, 1]. The intersection of the two measures (QE and TEα)

give the optimal value of the vigilance parameter ρ. From the Fig. 4, the

optimal values of vigilance parameter for Aggregation dataset is

ρ = 0.65 and ρ = 0.62 for Compound dataset.

In the Fig. 5 and 6, the results of the application of DSOM algorithm to

the synthetic datasets Aggregation and Compound are presented. The

map grid is shown for different time step iterations, t=0 represent the

initialization of the DSOM algorithm with random map grid of 2 × 2.

Similarly, for iteration (t) equal to (100, 20,000 and 40,000) the map grid

size is extended and adapts its geometric form to the topological form of

the input data. For example, in the case of the application of DSOM

algorithm to Aggregation data (see Fig. 5), the neural grid is initialized by

a neural map size of 2 × 2 neurons at t = 0, then dynamically the size of

the map is growing. The map size at t = 100 is 5 × 6 neurons and the final

grid map size grid 11 × 12 at t = 40,000.

4.2. Application to sidescan sonar images

In these experiment dataset of real sonar images are used to asses

the capabilities of the proposed algorithm in creating clusters.

Fig. 6. Dynamical clustering using DSOM algorithm of Compound dataset for iterations:(t = 0 (Random grid initialization), t = 100, t = 20,000 and t = 40,000).
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Fig. 7. Example of sonar image acquired by Klein 5000 sidescan sonar system and three types of seabed: a) Silt, b) Rock, c) Ripples.

Fig. 8. a) Sonar image obtained from Fig. 7, (Fig. 1), b) Classification results using DSOM, c) Classification results using classical SOM with neural map of 10 × 10.
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4.2.1. Sonar data presentation

The data used is obtained during the BP02 (Battle- space

Preparation) experiments carried out by the SACLANT Undersea

Research Center in La Spezia, Italy. The system used is the Klein

5000 sidescan sonar operating at 455 kHz. The sensor can work on two

modes of resolution (low and high). In low resolution mode, the along-

track resolution is 20 cm and the maximum range is 150 m on each

side of sonar which gives a swath of 300 m. In high resolution mode,

the along-track resolution is 10 cm and the maximum range is limited

to 75 m (i.e. a swath of 150 m). In both modes, the across-track

resolution is 3 cm. In our case we only use images acquired in high

resolution mode.

An example of high resolution sonar image is shown in Fig. 7 with

along-track resolution of 10 cm and across-track resolution of 3 cm, the

total size of the image in pixel is 4221 × 450 making the total along

track distance is approximately 4200 m or 4.2 km. In this image,

different types of seabed can be observed: homogeneous area in the top

right of the Fig. 7 is representing silt type sediment. Similarly, sand

ripples, rock sediments and other more complex areas can be observed

and distinguished.

4.2.2. Feature extraction

The proposed approach is tested on sonar images presented in

Fig. 7. The conditions of acquiring a sidescan sonar image near the

bottom allow the appearance of seabed textures. Several methods of

texture analysis are proposed in the literature, in the proposed work,

different features computed from texture analysis and spectral analysis

of sonar images are used as input vector to DSOM algorithm. The

details about the features used for sonar images in this work are given

in Nait-Chabane et al. (2013).

The texture analysis of sonar image are based on the Gray Level Co-

occurrence Matrix(GLCM). GLCM features are a second-order statis-

tical tool used for texture analysis of images proposed by Haralick

(Haralick et al., 1973). The GLCM of an image is obtained by

calculating the number of transitions for each pair of gray level (i,j)

of a given distance (d) and angular direction (θ). In this work, the

following Haralick features are used: Entropy, Contrast, Heterogeneity,

Homogeneity, Correlation, Maximum of probability, Kurtosis and

Elongation Factor.

The second set of features, extracted from sonar images are based

on 2D Fourier analysis. Fourier analysis can be used to study the

properties of textured scenes, for example the power spectrum reveals

information on the coarseness/fineness (periodicity) and directionality

of a texture. Texture directionality is preserved in the power spectrum

because it allows directional and non-directional components of the

texture to be distinguished. Three features calculated directly from the

amplitude spectrum of the 2D Fourier transform are: mean of the

Fourier amplitude, variance of the amplitude and power of the

amplitude (i.e power spectrum). Three other features are calculated

from the power spectrum of 2D Fourier transform. Fourier power

spectrum is separated into three spectral bands: low pass, medium pass

and high pass frequencies power. The detail about these features can be

found in Nait-Chabane et al. (2013).

4.2.3. Sonar images clustering

To improve the dynamic learning in case of new seabed, first, an

image Fig. 8.a is tested by DSOM algorithm then, new areas of the

sonar image in Fig. 9(a), Fig. 10(a) and Fig. 11(a) are gradually added

during the application of the DSOM algorithm. The images in [Fig.

Fig. 8(a), Fig. 9(a), Fig. 10(a) and Fig. 11(a)] belong to the red

rectangular block of Fig. 7 and labeled by a0.1, b0.1, c0.1 and d0.1

respectively.

The result of the DSOM algorithm is a discrete map of neurons

where each node or neuron has a given position in the map with

corresponding weight vector of the same dimension as the features

vector. The DSOM algorithm transforms the high dimension feature

Fig. 9. a) Sonar image obtained from Fig. 7, (Fig. 1), b) Classification results using DSOM, c) Classification results using classical SOM with neural map of 10 × 10.
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vector into a two dimensional discrete map of neurons subject to a

topological constraint with particularity of neighborhood preserva-

tion. The classical approach for color attribution is chosen randomly

using three weights (R, G, and B, G, and B). An Euclidean distance is

used to attribute the color of each neuron in the map. The neurons

that are close in distance will have close colors on the map. To

overcome the problem of color attribution and to have a physical link

between the color and the seabed type, a solution based on

application of Principle Components Analysis (PCA) is used. PCA

is applied to reduce the dimensionality of the weight space to only

three components. The application of PCA in this case can be seen as

a projection of the neuronal map on the input space. This projection

allows to have a link between the position of neuron and a given

color defined by features vector values. The first three axes of PCA

result represent more than of 90 percent of total variance and define

the Red, Green and Blue (RGB) color table. More details of the

solution presented about the color attribution of neural map is given

in (Nait-Chabane and Zerr, 2014).

Fig. 12 show the results of neural maps grid obtained by DSOM

algorithm with correspondent color for each neuron. Similarly,

Fig. 12 a( ), b( ), c( ) and d( ) represent the grid map of the application of

DSOM algorithm on images in Fig. 8(a), Fig. 9(a), Fig. 10(a) and

Fig. 11(a).

Each neuron with its correspondent color represent a given class.

Each input data of sonar images is assigned to correspondent neuron

according to Euclidean measure.

Fig. 8(b), Fig. 9(b), Fig. 10(b) and Fig. 11(b) present the classification

results of the proposed DSOM on Fig. 8(a), Fig. 9(a), Fig. 10(a) and

Fig. 11(a). The results give a good classification of sonar seabed and the

DSOM algorithm manages the gradual addition of new sonar images area.

If the image shown to the DSOM neural map is already seen, the grid size

does not change and a color already used for that same seabed is assigned.

However, if the new presented area has not been seen by the DSOM, the

size of the grid changes and a new color is created for the seabed.

A comparison of sonar images classification is finally made between

proposed DSOM algorithm and classical SOM algorithm with a predefined

Fig. 10. a) Sonar image obtained from Fig. 7, (Fig. 1), b) Classification results using DSOM, c) Classification results using classical SOM with neural map of 10 × 10.
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map size of 10 × 10. The classification results of the application of SOM

algorithm are given in the Fig. 8(c), Fig. 9(c), Fig. 10(c) and Fig. 11(c). It

clearly show that the results obtained by the classical SOM algorithm are

similar to those given by a DSOM when SOM is feed with the predefined

number of neurons. Despite the initialization of DSOM algorithm with

only 2 × 2 neurons, the incremental characteristic of the proposed

approach allows the detection of new classes (new seabed). The SOM

algorithm converges to a DSOM algorithm if the number of neurons

(classes) is known to the SOM approach.

Fig. 13 is another example of application of the proposed DSOM

Fig. 11. a) Sonar image obtained from Fig. 7, (d.1), b) Classification results using DSOM, c) Classification results using classical SOM with neural map of 10 × 10.
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algorithm. Fig. 13.a shows the high resolution sonar image (hor-

izontally placed) acquired using Klein 5000 sidescan sonar operating

at 455 kHz, with along-track resolution of 10 cm and across-track

resolution of 3 cm. The total size of the image in pixel is 2520 × 450,

making the total along track distance of around 2520 m or 2.52 km.

Fig. 13.b show the classification map resulted by applying the

proposed DSOM algorithm over Fig. 13.a. It can be observed from

the resulted grid map in Fig. 13.b that the proposed DSOM has

clustered the seabed into different colors. That is, regions with

similar features and characteristics are dynamically mapped to one

color while regions with different features are mapped to different

colors.

4.3. Computational complexity

The task of assigning the data to cluster is achieved by finding the

distance between the datapoint and the weight of each neuron and by

assigning the data neurons whose weight vector is closest. This distance

calculation process is performed during the learning process for all the

data point and every iteration. The computation for each learning step

is order of O(N), where N is the number of candidates for the winner

neuron and the overall computational complexity of the proposed

DSOM is order of O(KN) as for each learning step to realize adequate

numerical precision the quantity of iterations should be at least some

multiple of N.

Fig. 12. Neural map grid obtained using DSOM algorithm on the test images shown in Fig. 8.a, Fig. 9.a, Fig. 10.a and Fig. 11.a.

Fig. 13. a) Sonar Data, b) Proposed DSOM Classification map.
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5. Conclusion and future work

In this paper, we investigated a new dynamic approach for clusters

detection. The proposed approach is based on the combination of Self-

Organizing Maps and Fuzzy ART algorithms. To test the algorithm

clustering capabilities, experiments are conducted on simulated data

and real sonar data. The results obtained are promising and highlights

the capabilities of the proposed DSOM. The distinction and the

innovation of the proposed DSOM is based on the construction of

dynamic size of neurons that incrementally characterize the detection

of new classes systematically, without the need of providing predefined

number of classes unlike SOM. As a continuation of the proposed work,

in future, the robustness to discover new cluster autonomously in real

time and in complex situation will be analyzed, which will ensure the

reliability under complex situations and difficult terrain.
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