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Abstract

Cognitive radio

This paper presents new spectrum sensing algorithms based on the cumulative power spectral density (CPSD). The
proposed detectors examine the CPSD of the received signal to make a decision on the absence/presence of the
primary user (PU) signal. Those detectors require the whiteness of the noise in the band of interest. The false alarm
and detection probabilities are derived analytically and simulated under Gaussian and Rayleigh fading channels. Our
proposed detectors present better performance than the energy (ED) or the cyclostationary detectors (CSD).
Moreover, in the presence of noise uncertainty (NU), they are shown to provide more robustness than ED, with less
performance loss. In order to neglect the NU, we modified our algorithms to be independent from the noise variance.
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1 Introduction

Due to an increasing demand of wireless devices and the
limitation of natural spectrum resources, the cognitive
radio (CR) has been introduced to optimize the use of the
available spectrum [1]. In CR network, primary (PU) and
secondary (SU) users can share the same bandwidth. PU
is a licensed user, whereas SU is an opportunistic user. To
avoid any interference with the PU’s signal, SU can only be
active when PU is idle. Therefore, SU should continuously
monitor PU status (active or idle).

Many factors (such as low signal to noise ratio (SNR),
shadowing, channel fading, etc.) lead to a situation where
SU is no longer able to correctly diagnose the status of
the PU. To overcome this problem, new techniques for
cooperative spectrum sensing (CSS) have been proposed
[2, 3]. In the CSS context, several SUs cooperate to reach a
decision on the presence of the PU signal; a fusion center
(FC) should make the final decision. We can distinguish
two schemes of CSS: the soft and the hard combining
schemes. In the soft combining scheme, each SU sends
its own measured test statistic to the FC who performs a
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linear combination of all received test statistics and com-
pares the result to a threshold. With the hard combining
scheme, each SU compares its own test statistic to a pre-
defined threshold, makes his decision on the PU status,
and sends it to the FC, where a final decision is made by
combining the decisions of all the SUs using a predefined
strategy (such as OR, AND, or a majority strategy).

In the literature, many techniques have been pro-
posed to perform test statistics. Most known methods are
energy detection, cysclostationary detection, and wave-
form detection. The last one requires perfect information
about the PU signal [3, 4]. Hence, the use of this method
is limited to the case of cooperative relationship between
PUs and SUs.

Due to its simplicity and the fact that no prior informa-
tion about the PU signal is required, the energy detector
(ED) is widely used in spectrum sensing. ED consists of
measuring the energy of the received signals and com-
paring it to a predefined threshold based on the known
noise variance. Therefore, ED requires an accurate esti-
mation of the noise variance; otherwise, we can face a
SNR-wall problem, where the ED becomes incapable to
made a robust decision about the PU status, even with a
very large observation time [5, 6]. However, many studies
have been proposed to enhance the energy detector (ED)
performance and to overcome its limitations [5, 7-9].
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The cyclostationary features detection (CSD) [10] is also
widely used in spectrum sensing. CSD requires the knowl-
edge of the cyclic frequencies of the PU, in addition to a
long observation time and computing efforts. In [11], a
cooperative CSD is proposed, where each SU performs a
single cyclic-frequency detection and sends his decision
to a FC to make the final decision. The authors of [12]
analyzed theoretically the performance of the algorithm
proposed in [11] in multi-path and log-normal channels.
In [13], a blind CSD is proposed. This detector performs
the spectrum sensing without the knowledge of the cyclic
frequencies.

Although energy and cyclostationary detectors are
widely used in the field of spectrum sensing, various
other methods are also proposed [14—16]. The goodness
of fit (GoF) algorithm introduced in [14] compares the
empirical distribution of the received samples to a known
distribution of the noise (when PU is idle). If the empirical
distribution is not compatible with the known distribu-
tion of the noise then the PU signal exists. To enhance the
performance, [15] extends the algorithm of [14] by using
the square of the received samples instead of the samples
themselves.

By assuming the oversampling aspect of the baseband
received signal (i.e, number of samples per symbols
N; > 2), the autocorrelation for a non-zero lag only van-
ishes when the PU signal is absent and the channel is only
occupied by a white noise [16]. The corresponding test
statistic combines linearly the autocorrelation measures
for different non-zero lags before making a decision on the
PU status. The performance of this algorithm increases
with Nj.

In this paper, we propose new spectrum sensing detec-
tors based mainly on the cumulative sum of the power
spectral density (PSD) of the received signal®. It is known
that the PSD of a white noise is flat. However, PSD losses
this property with an oversampled PU signal. If the PU is
absent, the cumulative sum of the received signal PSD has
a close shape to a straight line. Whereas, a curved shape is
obtained when PU exists.

To enhance the robustness of our contribution, hard
and soft combining schemes are introduced. In those
two schemes, the spectrum is divided into two parts: at
first, the negative frequency points are considered while
the second part deals with the positive frequency points.
Hence, two test statistics are calculated based on the
cumulative PSD of each part, and they are then combined
according to the considered scheme.

The false alarm and detection probabilities are eval-
uated analytically under Gaussian and Rayleigh fading
channels. Our detectors are compared to ED and CSD
[8, 16]. Our detectors present a better performance than
the energy detector, even at Ny = 2 samples per sym-
bol, where the CSD detector provides a poor performance
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relatively to ED. Furthermore, our detectors are less sen-
sitive to the noise uncertainty than ED. In particular,
we demonstrate that our detectors can be modified to
become independent from the noise variance. This case
represents an important advantage in real scenarios.

The rest of this paper is organized as follows. In
Section 2, the system model and the spectrum sensing
hypothesis are presented, in addition to an overview of the
PSD and its estimation. Our proposed detectors based on
the cumulative sum of the PSD are discussed in Section 3.
Section 4 provides an analytic study on the statistical dis-
tributions of the test statistics as well as the calculus of the
false alarm and detection probabilities. In Section 5, the
probability of detection over Rayleigh flat-fading channel
is provided. The numerical results of our detectors will be
presented in Section 6. The effects of the noise uncertainty
problem on our detectors are shown in Section 7. To over-
come the noise uncertainty problem, this section presents
modified versions of our detectors which are indepen-
dent of the noise variance. At the end, a conclusion and
perspective section of our work is provided.

2 System model and generality

The spectrum sensing consists in making a decision on the
presence of PU in a bandwidth of interest (Bol). The PU
baseband signal, s(#), can be modeled as follows:

s(n) =Y bug(n — mNy) = s,(n) + js(n) (1)

b, are the symbols to be transmitted; g(n) is the shaping
window; Nj satisfies the Nyquist criterion; Ny = 3 > 2
samples per symbol (sps), where F; is the sampling fre-
quency and s,(n) and s;(n) are respectively the real and
imaginary parts of s(n). s(n) has a bandwidth B and an
even power spectral density (PSD). s(n) is assumed to
be complex-valued zero mean unknown deterministic?
signal [11, 12, 17-19].

The presence/absence of PU can be presented in a clas-
sic Bayesian detection problem. Under Hy, the PU is
absent, whereas under H; PU exists.

: Hy : y(n) = w(n) 2

Hi :y(n) = hs(n) + w(n)

where / is the complex channel gain. w(n) is N(0, 0142,),
where NV (m, V) stands for a normal distribution of a mean
m and a variance V. Further, w(n) = w,(n) + jw,(n) is an
i.i.d complex circular symmetric, i.e.,

E[w?(n)] = 0 and the real part, wp(n), and the imaginary
part, w,(n), of w(n) are independent Gaussian processes
with equal variance.

E [wf,(n)] —E [w;(n)] - 3)
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Where 0142, = E[|w(n)|?] and E[.] stands for the expec-
tation. Without loss of generality, we assume that s(#n) is
a unit power signal. In this case, the signal to noise ratio
(SNR), y, is defined as follows:

2
=2 (4)
A wrong decision about the channel status can affect
either the PU transmission or the efficient use of the
channel. In fact, a missed detection can cause a harm-
ful interference by the transmission of the SU in the
same band of the PU. A false alarm, however, decreases
the profit of the opportunity of the channel. Therefore,
the probability of detection (p;) should be increased as
much as possible, by keeping the probability of false alarm
(pfa) low. Neyman-Person’s detection method consists in
a trade-off between a high p; and a low py,.

2.1 Power spectral density

The power spectral density (PSD), P,(k), of a wide sense
stationary signal x(n) is the Fourier transform (F7T) of its
autocorrelation function, 7y, (m) [20]:

rae(m) = E [x(0)x* (1 — m) | (5)

Py(k) = FT {rxx(m)} (6)

Thanks to the whiteness of the noise, the autocorrelation
function of w(n) becomes

Fuw(m) = E [w(imw*(n — m)] = 628 (m) (7)

where 8 (m) is Kronecker’s function. Based on Eq. (7), the
PSD of the white noise, P, (k), becomes real, even and
constant over the frequency band [ —B; B], with an ampli-
tude o2. It is obvious that the cumulative sum of the PSD
becomes a straight line, with a slope o2.

According to the model (1), s(n) is a cyclostationary
signal characterized by its cyclic spectral density (CSD),
S%(k) [13, 18]:

o . 1 o\ o
SX(0) = FT(R@,m) = lim S (k- E) Sk (k+ E>
8)
where « is a cyclic frequency of s(n), Sy (k) = FT {s(n)}is
the FT of N received samples of s(1)3 and R(e, m) is the

cyclic autocorrelation function of s(#) and can be defined
as [18, 19]:

P
3
n
T 1 w . n
R(o, m) _thooN EN s(n)s™(n m)exp( ]27tozN)
n=—5+1

)
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According to Eq. (10), the PSD, Ps(k), of s(n) can be
evaluated for null cyclic frequency (i.e., = 0),

Py(k) = S3(k) = FT (R©O,m)} =  lim %|SN(/<>|2
(10)

Due to the fact that the PU signal is not an i.i.d. signal
(i.e. R(0,m) is not a Kronecker’s function), then its PSD,
P, (k), should be not constant on [ —B; B]. Based on this
fact, the distinguish between Hy and Hj can be realized
using the shape of the cumulative sum of PSD.

2.2 Estimation of the power spectral density
The PSD of the received signal y(n) can be estimated by
its periodogram as follows [20]:

. 1
Py(k) = N|Y(k)|2 (11)

where Y (k) is the discrete Fourier transform (DFT) of the
signal y(n) with N samples:

N
2

Y(k) = Z y(n) exp (—erck%)

_N_
n=5%5-1

(12)

Therefore, the estimated PSD of the signal is related to the
modulus of its DFT.

Since w(n) is a circular symmetric process, then its
DFT W (k) becomes also a zero mean circular symmetric
process [21-23].

3 Cumulative power spectral density-based
detector

The cumulative power spectral density (CPSD), v, (k),

of the received signal y(n) is defined, over a frequency

interval I =[v;I] Vk € I as follows :

k
Yy (k) =y Pyw), (13)

u=v

where f)y(u) is the estimated PSD of y(n) using Eq. (11).
Unlike ED, which makes the sum of energy on all fre-
quency points of PSD, CPSD makes the sum of the energy
on a given frequency points interval. The sense of varia-
tion of CPSD will be tested in order to make a decision on
the PU signal existence as detailed below.
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The expected value of ¥, (k),v < k < [, of w(n) can be
found as follows:

k
1
Elyw®] = < D E[IW ()]
p=v
1 k N N
-V
p=v n=1m=1

exp (—j2rr(n — m)%)]

E [w(n) w*(m)

N

=;[]Z S E[wonl?])

u=v n=m=1

:Na,,.%
1 2
=y (k=v+DNoj

=(k—v+1o? (14)

The last value shows that v, (k) increases linearly on
the frequency interval [v,/] with k till its highest value
I—v+ 1)01,%.

Let us define the normalized CPSD, I' (k), of y(n) by

Yy (k)

T == ez

(15)

Due to this normalization, under Hy, I'(k) still increase
to one. Thus, under Hy and thanks to the flat PSD of
w(n), the shape of I'(k) becomes closed to a straight line
R, ; k).

k—v+1
R(V, l,k) = m (16)

Under Hj, this constraint is not satisfied, since the PSD
of s(n) is not a constant, and I"(k) has higher values than
the one obtained under Hy due to the additional power of
s(n).

Figures 1 and 2 show I' (k) under Hy and H; for rectan-
gular and raise-cosine (roll-off factor = 0.5) pulse shaping
filters respectively, for various values of N; and different
SNR. The signal modulation is 16-QAM, and the number
of used samples is N = 10000. As shown in Figs. 1 and
2, the gap between the normalized CPSD shape under H;
and that under Hy increases with the SNR for both con-
sidered pulse shaping filters. In addition, the non-linearity
of the CPSD shapes grows with Ni. Therefore, we define
a test statistic 7" as the difference between I'(k) and the
reference straight line R(v, /; k). Accordingly, we introduce
two detectors:

1. T,: This detector is based on the CPSD, T, (k), of
f’y(k) for positive frequency points
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(ie, 1 <k < %), in this case, the corresponding
CPSD, v, (k), is defined as follows:

k
Yp(k) = Py(u) (17)
u=1

Accordingly, the normalized CPSD, I',(k) becomes

Yp(k)
N _1+1)02

(5 -

2 k
=Y Pu
22 y
NGWu:l

2

k
ooz 2 Y@l

W ou=1

Cpk) =

(18)

and the reference straight line R (1, %; k) is obtained
by

71

T}, detector aims at finding the difference between
', (k) and the corresponding reference shape

N

1)

2

k—1+1 2k

—_—= 19
¥_1+1 N (19)

R(1,%;k):
%
N
T - - » T
= (rp(k) R (1 5 k))
k=1
%
2k
T, = r - —
= (=)
k=1
5
N+2
=2 Tl ——— (20)
k=1
2. T,: This detector is based on the CPSD of all
frequencies of y(n) (i.e., % +1 < k< %),
similarly to T):
%
N N
T, = Z <ra(k)_R<_2 +1, 2;k>>
k=—%+1
¥
N+1
= ) Tab——— (21)
k=—%+1
Where I'; (k) can be found as follows:
1 k
_ 2
Fath) = 15— D 1Y) (22)

w u:—%—i—l
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3.1 Proposed combining detectors

In this section, two combining detectors are proposed.
The first proposed detector, T,,, aims at exploiting all
the frequency points of the signal y(n), by applying
two test statistics: the first one tests the shape of the
CPSD for positive frequency points (which is T},), and
T, tests the CPSD shape of the CPSD of the symmetric
of Py(k) part standing for the negative frequency points

(e, - ¥ +1 < k < 0).
%
N
T, = — .
i Z(F (k) R<1, 2,/<>)
k=1
N
N+2
=) Tulk) — (23)
k=1
where I';, (k) in this case is given by
Tu(k) = N2 - ZlY( u+ 1) (24)

Tw u=1

Since Ps(k) is symmetric and deterministic (as s(n) is
deterministic) and the components of W (k) are i.i.d. (as
it is shown in Section 4.1.1); therefore T}, and T, become
independent and have same mean and variance.

Once T, and T, make their own decisions, Ty, acting as
hard cooperative detector, processes those two decisions
using an OR rule.

T,y = OR(Dr,, D) (25)

where Dr, and D7, are the detection results of T, and T},
respectively.

The second proposed cooperative detector, 7,,, per-
forms the average, P,,, between the positive frequency
PSD and the symmetric of the negative frequency PSD of
the received signal. CPSD is then performed on P,,. The
averaging process smooth the PSD, since P;(k) is sym-
metric, and the components of P, (k) are independent as
shown in Section 4.

P, (k P,(—k+1 N
Patiy = 20 2y( D ks 5

T,y can be considered as a soft combining detector of T),

and T),.
N
Fav(k) - R (17 E; k)

N+2
:Z av(k)_T

(26)

(27)
where the first term of the previous equation becomes

Favk) = 15 ZPW) (28)

WM_
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4 Statistical analysis

Distributions of test statistics are essential in order to find
analytically the probability of false alarm py, and the detec-
tion probability p;. T, and T, have the same statistical
distribution since W (k) is i.i.d. and S(k) is deterministic
as s(n) is assumed to be deterministic. In the follow-
ing, we develop the distribution of T, under Hy and H
over a Gaussian channel, where the channel effect 4 is
assumed to be constant. Similarly, the distribution of T,
can be found. T, made its decision by applying the logi-
cal OR on the decisions of T, and T}, which have the same
distribution.

4.1 False alarm and detection probabilities of 7,

N
The distribution of T, depends on ) T',(k) as pre-
N

sented in Eq. (20). A simplification of the term Z,?zl [p(k)
can be obtained as follows (see Appendix 1):

p(k> o 2ZZIY<M)IZ

Wklul

0 M iz

2 ¥ N
:]\[2622(2—/<+1)|Y(k)|2 (29)
Y k=1

4.1.1 False alarm probability of T
Under H, the test statistic T}, is only related to the noise
w(n). Using Eq. (29), T, can be written as follows:

[ (5]

[rp (k) — R (1, %; k)} (30)
1

Being the discrete Fourier transform of a white noise w(n),
W (k) asymptotically follows a normal distribution since
it is the sum of independent terms. It is known that two
Gaussian variables are independent if they are uncorre-
lated [22]. As Ef] W (k)W*(k — m)] = E[ W (k)] Ef W*(k —
m)] = 0 (see Appendix (2)), then W (k) becomes i.i.d.

Being the sum of independent terms and according to
the central limit theorem, the distribution of T, tends
towards NV (o, Vo) under Hp. In this case, the probability
of false alarm pj‘?ﬂ of T, can be found as follows:

A — o
p}; =@ < vVo >
where Q() is the Q-function %, and A is the threshold
of comparison. Since E [|W(k)|2] = Namz, and based on

T, = (N k+ 1) W (k) 2

M= T [M]e=

k

31)
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Eq. (30), we can evaluate p¢ as follows:

MO—E[TP]
2 (N N +2
=N2022<2—k+1)15[|\v(k)|2]—I
W k=1
=0 (32)

In this case, the variance, Vo, of T, becomes (see Appendix 4)

(N +2)(N+1)
6N
4.1.2 Probability of detection of T,

Under Hy, Y (k) = hS(k) + W (k), then Eq. (29) becomes
as follows:

Vo _E[TZ] (33)

2
Lok = 1

T[]

—_

(I;[ —k+ 1) \hS(k) + W (k)|?

2
O'Wk

(34)

Since S(k) is deterministic and the terms of W (k) are
independent, the distribution of T, under H; tends also
towards A (u1, V1). In this case, the probability of detec-
tion pZ, of Ty can be found as follows:

A—p
=o(* )
d V1
11 and V7 should be evaluated in order to find p’; Under
Hi, |Y (k)% becomes

(35)

Y(I> = YR Y* (k)
= |hS(k)|? + |W (k)| + 2Re{hS(k) W* (k)}
(36)
where hS(k) = DFT{hs(n)} and Re{X} is the real part of

X. The mean value of T, under H; can be found as follows
(see Appendix 3):

p1 = by (37)
N
where b = 5 32 (5 — k4 1)|S(k)[?, and y is the SNR
as defined by Eq. (4).
Under Hj, the variance Vj is given by the following
equation (see Appendix 5):

8y

N 2
3 (2—k+1> ISK)* = Vo+ey

M iz

Vi=Vo+ —

k=1

(38)

N
X 2
where ¢ = % Yo (% —k+1) IS(K)|%.
T, is based on similar idea to T}, but it covers the N fre-
quency points instead of just positive frequency points (%
points). Since W (k) is i.i.d. and S(k) is deterministic, then
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by following the same process for p}’a and pZ, the probabil-
ity of false alarm pjﬁa and the probability of detection p? of
the detector T, can be found as follows:

A— ul
pZ;=Q(A_/:?)
JVE
where uj = 0; V§ = % + % + &; u§ = bgy, where

by = 1 Ype (N — k+ DIS(K)|% and Vi = V§ + cay,
where ¢, = % Zi\[zl(N —k+ 1)2|S(k)|2.

(39)

(40)

4.2 Probabilities of T,,

T, applies the OR rule between the decisions of T, and
Ty, then T, can be considered as a hard cooperative
detector of these two detectors. Since T, and T}, are inde-
pendent and have the same statistics as we defined previ-
ously, the probability of false alarm pf and the probability
of detection pJ} of Ty, can be found as follows [2]:

=1 (1)
sy =1-01-4)

4.3 Probabilities of T,
T,y can be developed following similar steps as Eq. (30).

N
2 /N Y (K2 + |Y(—k + 12
Ty = —— — —k+1
NQGMZ,];<2 i )

(41)

(42)

2
N +2

4

Under Hy, Y(k) = W(k), then T,, becomes the sum
of independent terms. Based on CLT, T,, asymptotically
follows NV (1§, V§") under Hy.

Under Hi, Y(k) = hS(k) + W (k) and S(k) is deter-
ministic, so Ty, is still following a normal distribution:
N (u$", Vi) under H.

The probability of false alarm, p% P> v and detection, p“", of
T,y are expressed as follows:

A= pugt
i=o(* 7
A —pufr
”?=Q(Jwv

Since W (k) is i.i.d. and Pg(k) is even, ug", V", u{’, Vi
can be found by following similar steps to uo, Vo, 11 and
Vi, we can find that ug” = wo, V§¥ = %, uy’ = w1, and
Vit=3

The theoretlcal and the simulated ROC curves of pro-
posed detectors are with good agreement as shown in

(43)

(44)

(45)
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Figs. 3a, b. Simulations were done under following con-
ditions: 16-QAM modulation, y = —12 dB, N = 1000
samples, and Ny = 4 sps.

As shown in Fig. 3a, T,, is the most efficient detector
for both considered shaping filters. For the simulations
of Section 6 under Gaussian channel, only T, and T,,
are compared to other well-known detectors. The rest
of simulations in this paper are done with a rectangular
pulse-shaping filter.

5 Probability of detection over Rayleigh fading
channel

In this section, we derive the detection probability over

the Rayleigh flat-fading channel. The false alarm probabil-

ity remains the same since it is independent of the channel

SNR -12 dB, N=1000 samples

1 = P>
B - _g_,—f’ﬂ - = =T -sim
L.op -7 P
0.9 7 /;2’ - — =T _-sim
> /0’/ Ta .
08r oA or SIM
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) .
06l QIA A Ta—AnaIytlc |
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< 051 B T, Analytic|y
1
0.4 g
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0.3
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0.1
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pfa
a
SNR=-12 dB, N=1000 samples
IR ET gt S e S |
ool . >- o :g, -
. -
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1750 . Ta )
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Fig. 3 Simulated vs. analytical results over Gaussian channel for
rectangular and raised-cosine pulse-shaping filters. a Rectangular
pulse-shaping filter. b Raised-cosine pulse-shaping filter: roll-off factor = 0.5
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gain /. The distribution of the SNR, y, in a Rayleigh
channel is given by [21]:

1
fy(V) = — €&Xp (‘Jf)
14 14

where y is the average SNR.

Over a Rayleigh channel, the probability of detection,
P, is found by averaging the probability of detection, py,
under Gaussian channel with respect to f,, ().

(46)

+o0
Par = /0 Pagfy (Y)dy (47)
Concerning our detectors, T, T, and T, their detection
probabilities over Rayleigh fading channel can be derived
similarly, since they have a similar probability of detection:
p= Q(ﬁ), where §, Viy,, and B are constants.

Hereinafter, we only derive er, the detection probabil-
ity of T, over a Rayleigh channel. Once er is derived, p%,
and pt‘z, the probability of detection of T, and T, can be
easily found.

Using Egs. (35), (46), and (47), pflr can be expressed as
follows:

o (el )

The above integral does not have an analytic solution.
Therefore, Taylor series of the first order are used to
approximate the argument of the Q-function, g(y) =

A—by
v Votcy

a () =g) +£ )y — o)

=g — )

(48)

,around Yo = A/b as follows (see Appendix 6):

(49)

where g; () is the first-order Taylor series approximation

of g(y).
The approximation of psr, ﬁflr is given by :

1 [to°
P == / Q<9(V - Vo)) exp (—)f)dy (50)
Y Jo 14

With 6 = g'(y0) = —ﬁ
find

. According to [24], we can

1
| exe @pmas = [exp (a9)Q(p)
2
“oe(a)elee )]
(51)

Using Eq. (51) and the fact that Q(—x) = 1 — Q(x), the
integral of Eq. (50) becomes

5 1 Y0 1
pflr = Q(—0yp) + exp (W _ J7>Q (0)/ _ 0)7)
(52)
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For the approximation p%, of p%, it can be found by
replacing the number of samples N/2 used in T}, by N
used in T,. Similarly to fer,the approximation p%’ of p’
can be derived as follows:

[5?; = Q(—0BwY0)

1 Yo 1
rov (g 7)ot —5) 6
where 0,, = b __
Vot

Yo is not modified in the expression of p%’, since T), and
T,, have the same mean under Hj.

The detection probability of T,, under Gaussian channel
is a non-linear combination of the probability of detec-
tion of T, and T,. Over a Rayleigh channel, the fading
coefficient, /, is the same for T, and T, pJ of Ty
becomes

=g [ (=) e (-2 )ar

o) e (- 2)

= — —— | X - -

v Jo Vo +cy P % v
A — by

Y [T A=br _r
i@ () oo (-5 ) o

As there is no analytic solution of Eq. (54), we solve it in
numerical way.

In Fig. 4, analytical results are very closed to simulation
results. T,, and T,, both achieve the best performance
among the proposed detectors, thus they will be com-
pared to the well-known ED and CSD under Rayleigh
channel.

SNR=-10 dB, N=1000 samples
1 T T T T T

_ o= b
3 e
S
0.8 & -
. T_simulati
0.7F o simulation
}{ 154 Tp -
osl LB :
: /é o T, simulation
)
a” 05 f o Tav heory
0.4 - o T, simulation
—— T, theory
0.3 T
or
0.2
0.1F

o i i i i i i i i i
0 0.1 02 03 04 05 06 07 08 09 1

pfa

Fig. 4 Simulated vs. analytical results over Rayleigh fading channel,
Ns =3 sps
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6 Performance evaluation

In this section, we compare the performance of our
detectors to that of the energy detector (ED) [8] and
the cyclostationary detector (CSD) [10], under Gaussian
and Rayleigh channels. Throughout the upcoming simu-
lations, A 16-QAM baseband-modulated PU signal with a
rectangular pulse-shaping filter is considered.

6.1 Performance analysis over Gaussian channel

Figure 5 presents the ROC curves under a Gaussian chan-
nel of various numbers of samples per symbol N;. Simula-
tions are done using N = 1500 samples and y = —12 dB.
According to that figure, the performance increases with
N;. For the limiting case, i.e,, when Ny = 2 sps, CSD
shows a poor performance relatively to Ty, Ty, and ED,
while T, outperforms all other detectors. However, Ty,
and T,, outperform ED and CSD for different values
of N;.

Figure 6 shows the variation of the probability of detec-
tion with respect to SNR for a constant py, = 0.1. The
number of samples is fixed N = 1000 samples, and var-
ious values are assigned for N;. T, and T,, reach higher
probabilities of detection than ED and CSD for similar
SNR and different values of N;. In addition, increasing
N leads to enhancing the performance of T,,, T,,, and
CSD. For example, T, reaches p; = 0.9 at SNR >~ —7 dB
for Ny = 2 sps, while the same probability of detection
is reached for SNR >~ —9 dB and SNR >~ —10 dB at
N; = 4 sps and Ny = 8 sps respectively.

6.2 Performance analysis over Rayleigh channel

Figure 7 shows the ROC curves under Raleigh fading
channel for Ny = 4 and N; = 8 sps, with N = 1000
samples and an average SNR of —5 dB.

Over Rayleigh fading channel, T,, and T, are still out-
performing ED and CSD. The same fading suffered by the
negative and the positive frequency parts of PSD affects
the performance of our detectors. This fact makes the
performances of ED and CSD closed to the proposed
detectors, as shown in Fig. 7, where the gap of per-
formance among our detectors, ED and CSD becomes
smaller comparing it to a Gaussian channel.

6.3 Complexity analysis

According to Eq. (29), T, needs % operations to
obtain |Y(k)|?> and % multiplication operations to
evaluate the product (%—k—i— 1)|Y(k)|2. Moreover,
T, performs N addition operations: %
tions to calculate (%—k—{— 1), % — 1 operations
to compute the overall sum and, at the end, one
addition operation is required to subtract A%. Fur-
thermore, to compute the Y(k), we need Nlogy(N)

operations using the fast Fourier transform (FFT)

opera-
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