
HAL Id: hal-01699322
https://ensta-bretagne.hal.science/hal-01699322

Submitted on 2 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spectrum sensing based on cumulative power spectral
density

Abbass Nasser, Ali Mansour, K. C Yao, H. Abdallah, H. Charara

To cite this version:
Abbass Nasser, Ali Mansour, K. C Yao, H. Abdallah, H. Charara. Spectrum sensing based on cumu-
lative power spectral density. EURASIP Journal on Advances in Signal Processing, 2017, 2017 (38),
�10.1186/s13634-017-0475-y�. �hal-01699322�

https://ensta-bretagne.hal.science/hal-01699322
https://hal.archives-ouvertes.fr


EURASIP Journal on Advances
in Signal Processing

Nasser et al. EURASIP Journal on Advances in Signal
Processing  (2017) 2017:38 
DOI 10.1186/s13634-017-0475-y

RESEARCH Open Access

Spectrum sensing based on cumulative
power spectral density
A. Nasser1,2*, A. Mansour1, K. C. Yao3, H. Abdallah2 and H. Charara4

Abstract

This paper presents new spectrum sensing algorithms based on the cumulative power spectral density (CPSD). The
proposed detectors examine the CPSD of the received signal to make a decision on the absence/presence of the
primary user (PU) signal. Those detectors require the whiteness of the noise in the band of interest. The false alarm
and detection probabilities are derived analytically and simulated under Gaussian and Rayleigh fading channels. Our
proposed detectors present better performance than the energy (ED) or the cyclostationary detectors (CSD).
Moreover, in the presence of noise uncertainty (NU), they are shown to provide more robustness than ED, with less
performance loss. In order to neglect the NU, we modified our algorithms to be independent from the noise variance.

Keywords: Spectrum sensing, Cumulative power spectral density, Noise uncertainty, Rayleigh fading channel,
Cognitive radio

1 Introduction
Due to an increasing demand of wireless devices and the
limitation of natural spectrum resources, the cognitive
radio (CR) has been introduced to optimize the use of the
available spectrum [1]. In CR network, primary (PU) and
secondary (SU) users can share the same bandwidth. PU
is a licensed user, whereas SU is an opportunistic user. To
avoid any interference with the PU’s signal, SU can only be
active when PU is idle. Therefore, SU should continuously
monitor PU status (active or idle).
Many factors (such as low signal to noise ratio (SNR),

shadowing, channel fading, etc.) lead to a situation where
SU is no longer able to correctly diagnose the status of
the PU. To overcome this problem, new techniques for
cooperative spectrum sensing (CSS) have been proposed
[2, 3]. In the CSS context, several SUs cooperate to reach a
decision on the presence of the PU signal; a fusion center
(FC) should make the final decision. We can distinguish
two schemes of CSS: the soft and the hard combining
schemes. In the soft combining scheme, each SU sends
its own measured test statistic to the FC who performs a
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linear combination of all received test statistics and com-
pares the result to a threshold. With the hard combining
scheme, each SU compares its own test statistic to a pre-
defined threshold, makes his decision on the PU status,
and sends it to the FC, where a final decision is made by
combining the decisions of all the SUs using a predefined
strategy (such as OR, AND, or a majority strategy).
In the literature, many techniques have been pro-

posed to perform test statistics. Most known methods are
energy detection, cysclostationary detection, and wave-
form detection. The last one requires perfect information
about the PU signal [3, 4]. Hence, the use of this method
is limited to the case of cooperative relationship between
PUs and SUs.
Due to its simplicity and the fact that no prior informa-

tion about the PU signal is required, the energy detector
(ED) is widely used in spectrum sensing. ED consists of
measuring the energy of the received signals and com-
paring it to a predefined threshold based on the known
noise variance. Therefore, ED requires an accurate esti-
mation of the noise variance; otherwise, we can face a
SNR-wall problem, where the ED becomes incapable to
made a robust decision about the PU status, even with a
very large observation time [5, 6]. However, many studies
have been proposed to enhance the energy detector (ED)
performance and to overcome its limitations [5, 7–9].
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The cyclostationary features detection (CSD) [10] is also
widely used in spectrum sensing. CSD requires the knowl-
edge of the cyclic frequencies of the PU, in addition to a
long observation time and computing efforts. In [11], a
cooperative CSD is proposed, where each SU performs a
single cyclic-frequency detection and sends his decision
to a FC to make the final decision. The authors of [12]
analyzed theoretically the performance of the algorithm
proposed in [11] in multi-path and log-normal channels.
In [13], a blind CSD is proposed. This detector performs
the spectrum sensing without the knowledge of the cyclic
frequencies.
Although energy and cyclostationary detectors are

widely used in the field of spectrum sensing, various
other methods are also proposed [14–16]. The goodness
of fit (GoF) algorithm introduced in [14] compares the
empirical distribution of the received samples to a known
distribution of the noise (when PU is idle). If the empirical
distribution is not compatible with the known distribu-
tion of the noise then the PU signal exists. To enhance the
performance, [15] extends the algorithm of [14] by using
the square of the received samples instead of the samples
themselves.
By assuming the oversampling aspect of the baseband

received signal (i.e., number of samples per symbols
Ns ≥ 2), the autocorrelation for a non-zero lag only van-
ishes when the PU signal is absent and the channel is only
occupied by a white noise [16]. The corresponding test
statistic combines linearly the autocorrelation measures
for different non-zero lags beforemaking a decision on the
PU status. The performance of this algorithm increases
with Ns.
In this paper, we propose new spectrum sensing detec-

tors based mainly on the cumulative sum of the power
spectral density (PSD) of the received signal1. It is known
that the PSD of a white noise is flat. However, PSD losses
this property with an oversampled PU signal. If the PU is
absent, the cumulative sum of the received signal PSD has
a close shape to a straight line. Whereas, a curved shape is
obtained when PU exists.
To enhance the robustness of our contribution, hard

and soft combining schemes are introduced. In those
two schemes, the spectrum is divided into two parts: at
first, the negative frequency points are considered while
the second part deals with the positive frequency points.
Hence, two test statistics are calculated based on the
cumulative PSD of each part, and they are then combined
according to the considered scheme.
The false alarm and detection probabilities are eval-

uated analytically under Gaussian and Rayleigh fading
channels. Our detectors are compared to ED and CSD
[8, 16]. Our detectors present a better performance than
the energy detector, even at Ns = 2 samples per sym-
bol, where the CSD detector provides a poor performance

relatively to ED. Furthermore, our detectors are less sen-
sitive to the noise uncertainty than ED. In particular,
we demonstrate that our detectors can be modified to
become independent from the noise variance. This case
represents an important advantage in real scenarios.
The rest of this paper is organized as follows. In

Section 2, the system model and the spectrum sensing
hypothesis are presented, in addition to an overview of the
PSD and its estimation. Our proposed detectors based on
the cumulative sum of the PSD are discussed in Section 3.
Section 4 provides an analytic study on the statistical dis-
tributions of the test statistics as well as the calculus of the
false alarm and detection probabilities. In Section 5, the
probability of detection over Rayleigh flat-fading channel
is provided. The numerical results of our detectors will be
presented in Section 6. The effects of the noise uncertainty
problem on our detectors are shown in Section 7. To over-
come the noise uncertainty problem, this section presents
modified versions of our detectors which are indepen-
dent of the noise variance. At the end, a conclusion and
perspective section of our work is provided.

2 Systemmodel and generality
The spectrum sensing consists inmaking a decision on the
presence of PU in a bandwidth of interest (BoI). The PU
baseband signal, s(n), can be modeled as follows:

s(n) =
∑

m
bmg(n − mNs) = sp(n) + jsq(n) (1)

bm are the symbols to be transmitted; g(n) is the shaping
window; Ns satisfies the Nyquist criterion; Ns = Fs

B ≥ 2
samples per symbol (sps), where Fs is the sampling fre-
quency and sp(n) and sq(n) are respectively the real and
imaginary parts of s(n). s(n) has a bandwidth B and an
even power spectral density (PSD). s(n) is assumed to
be complex-valued zero mean unknown deterministic2
signal [11, 12, 17–19].
The presence/absence of PU can be presented in a clas-

sic Bayesian detection problem. Under H0, the PU is
absent, whereas under H1 PU exists.

{
H0 : y(n) = w(n)

H1 : y(n) = hs(n) + w(n)
(2)

where h is the complex channel gain. w(n) is N (0, σ 2
w),

whereN (m,V ) stands for a normal distribution of a mean
m and a variance V. Further, w(n) = wp(n) + jwq(n) is an
i.i.d complex circular symmetric, i.e.,
E[w2(n)]= 0 and the real part,wp(n), and the imaginary

part, wq(n), of w(n) are independent Gaussian processes
with equal variance.

E
[
w2
p(n)

]
= E

[
w2
q(n)

]
= σ 2

w
2

(3)
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Where σ 2
w = E[ |w(n)|2] and E[ .] stands for the expec-

tation. Without loss of generality, we assume that s(n) is
a unit power signal. In this case, the signal to noise ratio
(SNR), γ , is defined as follows:

γ = |h|2
σ 2
w

(4)

A wrong decision about the channel status can affect
either the PU transmission or the efficient use of the
channel. In fact, a missed detection can cause a harm-
ful interference by the transmission of the SU in the
same band of the PU. A false alarm, however, decreases
the profit of the opportunity of the channel. Therefore,
the probability of detection (pd) should be increased as
much as possible, by keeping the probability of false alarm
(pfa) low. Neyman-Person’s detection method consists in
a trade-off between a high pd and a low pfa.

2.1 Power spectral density
The power spectral density (PSD), Px(k), of a wide sense
stationary signal x(n) is the Fourier transform (FT ) of its
autocorrelation function, rxx(m) [20]:

rxx(m) = E
[
x(n)x∗(n − m)

]
(5)

Px(k) = FT {rxx(m)} (6)

Thanks to the whiteness of the noise, the autocorrelation
function of w(n) becomes

rww(m) = E
[
w(n)w∗(n − m)

] = σ 2
wδ(m) (7)

where δ(m) is Kronecker’s function. Based on Eq. (7), the
PSD of the white noise, Pw(k), becomes real, even and
constant over the frequency band [−B;B], with an ampli-
tude σ 2

w. It is obvious that the cumulative sum of the PSD
becomes a straight line, with a slope σ 2

w.
According to the model (1), s(n) is a cyclostationary

signal characterized by its cyclic spectral density (CSD),
Sα
s (k) [13, 18]:

Sα
s (k) = FT {R(α,m)}= lim

N−→∞
1
N
SN
(
k − α

2

)
S∗
N

(
k + α

2

)

(8)

where α is a cyclic frequency of s(n), SN (k) = FT {s(n)} is
the FT of N received samples of s(n)3 and R(α,m) is the
cyclic autocorrelation function of s(n) and can be defined
as [18, 19]:

R(α,m) = lim
N−→∞

1
N

P
2∑

n=−N
2 +1

s(n)s∗(n−m) exp
(
−j2πα

n
N

)

(9)

According to Eq. (10), the PSD, Ps(k), of s(n) can be
evaluated for null cyclic frequency (i.e., α = 0),

Ps(k) = S0s (k) = FT {R(0,m)} = lim
N−→∞

1
N

|SN (k)|2
(10)

Due to the fact that the PU signal is not an i.i.d. signal
(i.e. R(0,m) is not a Kronecker’s function), then its PSD,
Ps(k), should be not constant on [−B;B]. Based on this
fact, the distinguish between H0 and H1 can be realized
using the shape of the cumulative sum of PSD.

2.2 Estimation of the power spectral density
The PSD of the received signal y(n) can be estimated by
its periodogram as follows [20]:

P̂y(k) = 1
N

|Y (k)|2 (11)

where Y (k) is the discrete Fourier transform (DFT) of the
signal y(n) with N samples:

Y (k) =
N
2∑

n=N
2 −1

y(n) exp
(
−j2πk

n
N

)
(12)

Therefore, the estimated PSD of the signal is related to the
modulus of its DFT.
Since w(n) is a circular symmetric process, then its

DFT W (k) becomes also a zero mean circular symmetric
process [21–23].

3 Cumulative power spectral density-based
detector

The cumulative power spectral density (CPSD), ψy(k),
of the received signal y(n) is defined, over a frequency
interval I =[ v; l] ∀k ∈ I as follows :

ψy(k) =
k∑

u=v
P̂y(u), (13)

where P̂y(u) is the estimated PSD of y(n) using Eq. (11).
Unlike ED, which makes the sum of energy on all fre-
quency points of PSD, CPSD makes the sum of the energy
on a given frequency points interval. The sense of varia-
tion of CPSD will be tested in order to make a decision on
the PU signal existence as detailed below.
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The expected value of ψw(k), v ≤ k ≤ l, of w(n) can be
found as follows:

E[ψw(k)] = 1
N

k∑

p=v
E
[|W (p)|2]

= 1
N

k∑

p=v

N∑

n=1

N∑

m=1
E
[
w(n)w∗(m)

exp
(
−j2π(n − m)

p
N

)]

= 1
N

k∑

u=v

N∑

n=m=1
E
[|w(n)|2]

︸ ︷︷ ︸
=Nσ 2

w

]

= 1
N

(k − v + 1)Nσ 2
w

= (k − v + 1)σ 2
w (14)

The last value shows that ψw(k) increases linearly on
the frequency interval [ v, l] with k till its highest value
(l − v + 1)σ 2

w.
Let us define the normalized CPSD, �(k), of y(n) by

�(k) = ψy(k)
(l − v + 1)σ 2

w
(15)

Due to this normalization, under H0, �(k) still increase
to one. Thus, under H0 and thanks to the flat PSD of
w(n), the shape of �(k) becomes closed to a straight line
R(v, l; k).

R(v, l; k) = k − v + 1
l − v + 1

(16)

Under H1, this constraint is not satisfied, since the PSD
of s(n) is not a constant, and �(k) has higher values than
the one obtained under H0 due to the additional power of
s(n).
Figures 1 and 2 show �(k) under H0 and H1 for rectan-

gular and raise-cosine (roll-off factor = 0.5) pulse shaping
filters respectively, for various values of Ns and different
SNR. The signal modulation is 16-QAM, and the number
of used samples is N = 10000. As shown in Figs. 1 and
2, the gap between the normalized CPSD shape under H1
and that under H0 increases with the SNR for both con-
sidered pulse shaping filters. In addition, the non-linearity
of the CPSD shapes grows with Ns. Therefore, we define
a test statistic T as the difference between �(k) and the
reference straight line R(v, l; k). Accordingly, we introduce
two detectors:

1. Tp: This detector is based on the CPSD , �p(k), of
P̂y(k) for positive frequency points
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Fig. 1 The normalized CPSD shapes for N = 10000 samples and
several values of Ns and SNR: rectangular pulse-shaping filter. a Ns =
2 sps. b Ns = 4 sps. c Ns = 8 sps
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Fig. 2 The normalized CPSD shapes for N = 10000 samples and several values of Ns and SNR: raised cosine pulse-shaping filter. a Ns = 2 sps. b Ns =
4 sps. c Ns = 8 sps

(i.e., 1 ≤ k ≤ N
2 ), in this case, the corresponding

CPSD, ψp(k), is defined as follows:

ψp(k) =
k∑

u=1
P̂y(u) (17)

Accordingly, the normalized CPSD, �p(k) becomes

�p(k) = ψp(k)(N
2 − 1 + 1

)
σ 2
w

= 2
Nσ 2

w

k∑

u=1
P̂y(u)

= 2
N2σ 2

w

k∑

u=1
|Y (u)|2 (18)

and the reference straight line R
(
1, N2 ; k

)
is obtained

by

R
(
1,

N
2
; k
)

= k − 1 + 1
N
2 − 1 + 1

= 2k
N

(19)

Tp detector aims at finding the difference between
�p(k) and the corresponding reference shape

R
(
1, N2 ; k

)
:

Tp =
N
2∑

k=1

(
�p(k) − R

(
1,

N
2
; k
))

Tp =
N
2∑

k=1

(
�p(k) − 2k

N

)

=
N
2∑

k=1
�p(k) − N + 2

4
(20)

2. Ta: This detector is based on the CPSD of all
frequencies of y(n) (i.e., −N

2 + 1 ≤ k ≤ N
2 ),

similarly to Tp:

Ta =
N
2∑

k=−N
2 +1

(
�a(k) − R

(
−N

2
+ 1,

N
2
; k
))

=
N
2∑

k=−N
2 +1

�a(k) − N + 1
2

(21)

Where �a(k) can be found as follows:

�a(k) = 1
N2σ 2

w

k∑

u=−N
2 +1

|Y (u)|2 (22)
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3.1 Proposed combining detectors
In this section, two combining detectors are proposed.
The first proposed detector, Tor , aims at exploiting all
the frequency points of the signal y(n), by applying
two test statistics: the first one tests the shape of the
CPSD for positive frequency points (which is Tp), and
Tn tests the CPSD shape of the CPSD of the symmetric
of Py(k) part standing for the negative frequency points
(i.e., −N

2 + 1 ≤ k ≤ 0).

Tn =
N
2∑

k=1

(
�n(k) − R

(
1,

N
2
; k
))

=
N
2∑

k=1
�n(k) − N + 2

4
(23)

where �n(k) in this case is given by

�n(k) = 2
N2σ 2

w

k∑

u=1
|Y (−u + 1)|2 (24)

Since Ps(k) is symmetric and deterministic (as s(n) is
deterministic) and the components of W (k) are i.i.d. (as
it is shown in Section 4.1.1); therefore Tp and Tn become
independent and have same mean and variance.
Once Tp and Tn make their own decisions, Tor , acting as

hard cooperative detector, processes those two decisions
using an OR rule.

Tor = OR(DTp ,DTn) (25)

where DTp and DTn are the detection results of Tp and Tn
respectively.
The second proposed cooperative detector, Tav, per-

forms the average, Pav, between the positive frequency
PSD and the symmetric of the negative frequency PSD of
the received signal. CPSD is then performed on Pav. The
averaging process smooth the PSD, since Ps(k) is sym-
metric, and the components of P̂w(k) are independent as
shown in Section 4.

Pav(k) = Py(k) + Py(−k + 1)
2

; 1 ≤ k ≤ N
2

(26)

Tav can be considered as a soft combining detector of Tp
and Tn.

Tav =
N
2∑

k=1
�av(k) − R

(
1,

N
2
; k
)

=
N
2∑

k=1
�av(k) − N + 2

4
(27)

where the first term of the previous equation becomes

�av(k) = 2
Nσ 2

w

k∑

u=1
Pav(u) (28)

4 Statistical analysis
Distributions of test statistics are essential in order to find
analytically the probability of false alarm pfa and the detec-
tion probability pd. Tp and Ta have the same statistical
distribution since W (k) is i.i.d. and S(k) is deterministic
as s(n) is assumed to be deterministic. In the follow-
ing, we develop the distribution of Tp under H0 and H1
over a Gaussian channel, where the channel effect h is
assumed to be constant. Similarly, the distribution of Ta
can be found. Tor made its decision by applying the logi-
cal OR on the decisions of Tp and Tn which have the same
distribution.

4.1 False alarm and detection probabilities of Tp

The distribution of Tp depends on
∑N

2
k=1 �p(k) as pre-

sented in Eq. (20). A simplification of the term
∑N

2
k=1 �p(k)

can be obtained as follows (see Appendix 1):

N
2∑

k=1
�p(k) = 2

N2σ 2
w

N
2∑

k=1

k∑

u=1
|Y (u)|2

= 2
N2σ 2

w

N
2∑

k=1

(
N
2

− k + 1
)

|Y (k)|2 (29)

4.1.1 False alarm probability of Tp
Under H0, the test statistic Tp is only related to the noise
w(n). Using Eq. (29), Tp can be written as follows:

Tp =
N
2∑

k=1

[
2

N2σ 2
w

(
N
2

− k + 1
)

|W (k)|2 − R
(
1,

N
2
; k
)]

=
N
2∑

k=1

[
�p(k) − R

(
1,

N
2
; k
)]

(30)

Being the discrete Fourier transform of a white noisew(n),
W (k) asymptotically follows a normal distribution since
it is the sum of independent terms. It is known that two
Gaussian variables are independent if they are uncorre-
lated [22]. As E[W (k)W ∗(k − m)]= E[W (k)]E[W ∗(k −
m)]= 0 (see Appendix (2)), thenW (k) becomes i.i.d.
Being the sum of independent terms and according to

the central limit theorem, the distribution of Tp tends
towards N (μ0,V0) under H0. In this case, the probability
of false alarm ppfa of Tp can be found as follows:

ppfa = Q
(

λ − μ0√
V0

)
(31)

where Q(.) is the Q-function 4, and λ is the threshold
of comparison. Since E

[|W (k)|2] = Nσ 2
w and based on
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Eq. (30), we can evaluate μ0 as follows:

μ0 = E[Tp]

= 2
N2σ 2

w

N
2∑

k=1

(
N
2

− k + 1
)
E
[|W (k)|2]− N + 2

4

= 0 (32)

In this case, the variance,V0, ofTp becomes (see Appendix 4)

V0 = E
[
T2
p

]
= (N + 2)(N + 1)

6N
(33)

4.1.2 Probability of detection of Tp
Under H1, Y (k) = hS(k) + W (k), then Eq. (29) becomes
as follows:

�p(k) = 2
N2σ 2

w

N
2∑

k=1

(
N
2

− k + 1
)

|hS(k) + W (k)|2

(34)

Since S(k) is deterministic and the terms of W (k) are
independent, the distribution of Tp under H1 tends also
towards N (μ1,V1). In this case, the probability of detec-
tion ppd, of Tp can be found as follows:

ppd = Q
(

λ − μ1√
V1

)
(35)

μ1 and V1 should be evaluated in order to find ppd. Under
H1, |Y (k)|2 becomes

|Y (k)|2 = Y (k)Y ∗(k)
= |hS(k)|2 + |W (k)|2 + 2Re{hS(k)W ∗(k)}

(36)

where hS(k) = DFT{hs(n)} and Re{X} is the real part of
X. The mean value of Tp underH1 can be found as follows
(see Appendix 3):

μ1 = bγ (37)

where b = 2
N2
∑N

2
k=1(

N
2 − k + 1)|S(k)|2, and γ is the SNR

as defined by Eq. (4).
Under H1, the variance V1 is given by the following

equation (see Appendix 5):

V1=V0 + 8γ
N3

N
2∑

k=1

(
N
2

− k + 1
)2

|S(k)|2 = V0 + cγ

(38)

where c = 8
N3
∑N

2
k=1

(N
2 − k + 1

)2 |S(k)|2.
Ta is based on similar idea to Tp, but it covers theN fre-

quency points instead of just positive frequency points (N2
points). SinceW (k) is i.i.d. and S(k) is deterministic, then

by following the same process for ppfa and ppd, the probabil-
ity of false alarm pafa and the probability of detection pad of
the detector Ta can be found as follows:

pafa = Q
(

λ − μa
0√

Va
0

)
(39)

pad = Q
(

λ − μa
1√

Va
1

)
(40)

where μa
0 = 0; Va

0 = N
3 + 1

2 + 1
6N ; μa

1 = baγ , where
ba = 1

N2
∑N

k=1(N − k + 1)|S(k)|2, and Va
1 = Va

0 + caγ ,
where ca = 2

N3
∑N

k=1(N − k + 1)2|S(k)|2.

4.2 Probabilities of Tor
Tor applies the OR rule between the decisions of Tp and
Tn, then Tor can be considered as a hard cooperative
detector of these two detectors. Since Tp and Tn are inde-
pendent and have the same statistics as we defined previ-
ously, the probability of false alarm porfa and the probability
of detection pord of Tor can be found as follows [2]:

porfa = 1 −
(
1 − ppfa

)2
(41)

pord = 1 − (
1 − ppd

)2 (42)

4.3 Probabilities of Tav
Tav can be developed following similar steps as Eq. (30).

Tav = 2
N2σ 2

w

N
2∑

k=1

(
N
2

− k + 1
) |Y (k)|2 + |Y (−k + 1)|2

2

− N + 2
4

(43)

Under H0, Y (k) = W (k), then Tav becomes the sum
of independent terms. Based on CLT, Tav asymptotically
followsN (μav

0 ,Vav
0 ) under H0.

Under H1, Y (k) = hS(k) + W (k) and S(k) is deter-
ministic, so Tav is still following a normal distribution:
N (μav

1 ,Vav
1 ) under H1.

The probability of false alarm, pavfa , and detection, pavd , of
Tav are expressed as follows:

pavfa = Q
(

λ − μav
0√

Vav
0

)
(44)

pavd = Q
(

λ − μav
1√

Vav
1

)
(45)

Since W (k) is i.i.d. and Ps(k) is even, μav
0 ,Vav

0 , μav
1 , Vav

1
can be found by following similar steps to μ0, V0, μ1 and
V1, we can find that μav

0 = μ0, Vav
0 = V0

2 , μav
1 = μ1, and

Vav
1 = V1

2 .
The theoretical and the simulated ROC curves of pro-

posed detectors are with good agreement as shown in
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Figs. 3a, b. Simulations were done under following con-
ditions: 16-QAM modulation, γ = −12 dB, N = 1000
samples, and Ns = 4 sps.
As shown in Fig. 3a, Tav is the most efficient detector

for both considered shaping filters. For the simulations
of Section 6 under Gaussian channel, only Tav and Tor
are compared to other well-known detectors. The rest
of simulations in this paper are done with a rectangular
pulse-shaping filter.

5 Probability of detection over Rayleigh fading
channel

In this section, we derive the detection probability over
the Rayleigh flat-fading channel. The false alarm probabil-
ity remains the same since it is independent of the channel
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Fig. 3 Simulated vs. analytical results over Gaussian channel for
rectangular and raised-cosine pulse-shaping filters. a Rectangular
pulse-shaping filter. b Raised-cosinepulse-shaping filter: roll-off factor = 0.5

gain h. The distribution of the SNR, γ , in a Rayleigh
channel is given by [21]:

fγ (γ ) = 1
γ̄
exp

(
−γ

γ̄

)
(46)

where γ̄ is the average SNR.
Over a Rayleigh channel, the probability of detection,

pdr , is found by averaging the probability of detection, pdg
under Gaussian channel with respect to fγ (γ ).

pdr =
∫ +∞

0
pdgfγ (γ )dγ (47)

Concerning our detectors, Tp, Ta, and Tav, their detection
probabilities over Rayleigh fading channel can be derived
similarly, since they have a similar probability of detection:
p = Q(

λ−δγ
VH0+βγ

), where δ, VH0 , and β are constants.
Hereinafter, we only derive ppdr , the detection probabil-

ity of Tp over a Rayleigh channel. Once ppdr is derived, p
a
dr

and pavdr , the probability of detection of Ta and Tav, can be
easily found.
Using Eqs. (35), (46), and (47), ppdr can be expressed as

follows:

ppdr = 1
γ̄

∫ +∞

0
Q
(

λ − μ1√
V1

)
exp

(
−γ

γ̄

)
dγ (48)

The above integral does not have an analytic solution.
Therefore, Taylor series of the first order are used to
approximate the argument of the Q-function, g(γ ) =

λ−bγ√
V0+cγ , around γ0 = λ/b as follows (see Appendix 6):

g1(γ ) = g(γ0) + g′(γ0)(γ − γ0)

= g′(γ0)(γ − γ0) (49)

where g1(γ ) is the first-order Taylor series approximation
of g(γ ).
The approximation of ppdr , p̂

p
dr is given by :

p̂pdr = 1
γ̄

∫ +∞

0
Q
(

θ(γ − γ0)

)
exp

(
−γ

γ̄

)
dγ (50)

With θ = g′(γ0) = − b√
V0+cλ/b

. According to [24], we can
find

∫
exp (qx)Q(px)dx = 1

q

[
exp (qx)Q(px)

− exp
(

q2

2p2

)
Q
(
px − q

p

)]

(51)

Using Eq. (51) and the fact that Q(−x) = 1 − Q(x), the
integral of Eq. (50) becomes

p̂pdr = Q(−θγ0) + exp
(

1
2θ2γ̄ 2 − γ0

γ̄

)
Q
(

θγ0 − 1
θγ̄

)

(52)
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For the approximation p̂adr , of padr , it can be found by
replacing the number of samples N/2 used in Tp by N
used in Ta. Similarly to p̂pdr ,the approximation p̂avdr of p

av
dr

can be derived as follows:

p̂avdr = Q (−θavγ0)

+ exp
(

1
2θ2avγ̄ 2 − γ0

γ̄

)
Q
(

θavγ0 − 1
θavγ̄

)
(53)

where θav = − b√
V0av+ cλ

2b

.

γ0 is not modified in the expression of p̂avdr , since Tp and
Tav have the same mean under H1.
The detection probability ofTor under Gaussian channel

is a non-linear combination of the probability of detec-
tion of Tp and Tn. Over a Rayleigh channel, the fading
coefficient, h, is the same for Tp and Tn, pordr of Tor
becomes

pordr = 1
γ̂

∫ ∞

0

(
1 − (

1 − ppd
)2) exp

(
−γ

γ̄

)
dγ

= 2
γ̄

∫ ∞

0
Q
(

λ − bγ√
V0 + cγ

)
exp

(
− γ

γ̄

)
dγ

− 1
γ̄

∫ ∞

0
Q2
(

λ − bγ√
V0 + cγ

)
exp

(
− γ

γ̄

)
dγ (54)

As there is no analytic solution of Eq. (54), we solve it in
numerical way.
In Fig. 4, analytical results are very closed to simulation

results. Tav and Tor both achieve the best performance
among the proposed detectors, thus they will be com-
pared to the well-known ED and CSD under Rayleigh
channel.
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Fig. 4 Simulated vs. analytical results over Rayleigh fading channel,
Ns = 3 sps

6 Performance evaluation
In this section, we compare the performance of our
detectors to that of the energy detector (ED) [8] and
the cyclostationary detector (CSD) [10], under Gaussian
and Rayleigh channels. Throughout the upcoming simu-
lations, A 16-QAM baseband-modulated PU signal with a
rectangular pulse-shaping filter is considered.

6.1 Performance analysis over Gaussian channel
Figure 5 presents the ROC curves under a Gaussian chan-
nel of various numbers of samples per symbol Ns. Simula-
tions are done using N = 1500 samples and γ = −12 dB.
According to that figure, the performance increases with
Ns. For the limiting case, i.e., when Ns = 2 sps, CSD
shows a poor performance relatively to Tav, Tor , and ED,
while Tav outperforms all other detectors. However, Tav
and Tor outperform ED and CSD for different values
of Ns.
Figure 6 shows the variation of the probability of detec-

tion with respect to SNR for a constant pfa = 0.1. The
number of samples is fixed N = 1000 samples, and var-
ious values are assigned for Ns. Tav and Tor reach higher
probabilities of detection than ED and CSD for similar
SNR and different values of Ns. In addition, increasing
Ns leads to enhancing the performance of Tor , Tav, and
CSD. For example, Tav reaches pd = 0.9 at SNR � −7 dB
for Ns = 2 sps, while the same probability of detection
is reached for SNR � −9 dB and SNR � −10 dB at
Ns = 4 sps and Ns = 8 sps respectively.

6.2 Performance analysis over Rayleigh channel
Figure 7 shows the ROC curves under Raleigh fading
channel for Ns = 4 and Ns = 8 sps, with N = 1000
samples and an average SNR of −5 dB.
Over Rayleigh fading channel, Tav and Tor are still out-

performing ED and CSD. The same fading suffered by the
negative and the positive frequency parts of PSD affects
the performance of our detectors. This fact makes the
performances of ED and CSD closed to the proposed
detectors, as shown in Fig. 7, where the gap of per-
formance among our detectors, ED and CSD becomes
smaller comparing it to a Gaussian channel.

6.3 Complexity analysis
According to Eq. (29), Tp needs N

2 operations to
obtain |Y (k)|2 and N

2 multiplication operations to
evaluate the product

(N
2 − k + 1

) |Y (k)|2. Moreover,
Tp performs N addition operations: N

2 opera-
tions to calculate

(N
2 − k + 1

)
, N

2 − 1 operations
to compute the overall sum and, at the end, one
addition operation is required to subtract N+2

4 . Fur-
thermore, to compute the Y (k), we need Nlog2(N)

operations using the fast Fourier transform (FFT)
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Fig. 5 ROC curves of our proposed detectors comparing to ED and
CSD for various Ns , SNR of -12 dB and N = 1500 samples. a Ns = 2 sps.
b Ns = 4 sps. c Ns = 8 sps
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Fig. 7 ROC curves over Rayleigh fading channel for a) Ns = 4 sps and
b Ns = 8 sps for N=1000 samples and average SNR = −5 dB

algorithm. The overall number of operations needed by
Tp is C(Tp):

C(Tp) = N
(
2 + log2(N)

)
(55)

To obtain the decision of Tor , we have to previously find
Tp and Tn. Since those two test statistics have the same
complexity, therefore, the complexity of Tor becomes the
double of that of Tp except for the calculus of the FFT
which should be evaluated once. Then the required num-
ber of operations of Tor , C(Tor), becomes

C(Tor) = N
(
4 + log2(N)

)
(56)

For Tav, we can find the corresponding number of opera-
tions, C(Tor), similarly to Tor :

C(Tav) = N
(
3 + log2(N)

)
(57)

To compare the complexity of our detectors to that of
ED and CSD, we should emphasize that ED needs N
operations of multiplication and N − 1 for addition:

C(ED) = 2N − 1 (58)

For CSD, the corresponding number of operations,
C(CSD), can be derived as follows [25]:

C(CSD) = (Ns − 1)N(L + 1) + 4(Ns − 1)L2

+ 8(Ns − 1)3 + 6(Ns − 1)2 + 2(Ns − 1)
(59)

where L is an odd number and stands for the length for the
unit window used in the detection process of CSD [10].
According to Eqs. (56) and (57), the complexity Tor and

Tav is independent of the number of samples per symbol
Ns, contrary to CSD where the complexity depends on Ns
as shown in Eq. (59). As shown previously, increasing the
oversampling rate leads to obtain a robust performance
for CSD, Tor and Tav, while the performance of ED is not
affected by the oversampling rate.
Figure 8 shows the number of samples and the com-

plexity of the various detectors in terms SNR for a target
(pfa; pd) = (0.1; 0.9) under a Gaussian channel. As shown
in Fig. 8a, Tor and Tav need a number of samples less
than that of ED and CSD, in order to reach the target
probabilities. In addition, the required number of sam-
ples decreases with an increasing Ns. Figure 8b shows the
number of performed operations corresponding to the
number of required samples given in Fig. 8a. The complex-
ity of Tor and Tav decreases if Ns increases due to the fact
that the number of required samples decreases with an
increasing Ns. Contrariwise, the complexity of CSD grows
with Ns even if the total number of samples decreases,
this is because the complexity of CSD depends on Ns. On
the other side, our proposed detectors are slightly more
complicated than ED.
To summarize, ED is less complicated than the proposed

detectors. However, Tav and Tor require shorter observa-
tion time to fulfill the equivalent performance of ED and
CSD.

7 Robustness of our proposed detectors under
noise uncertainty

Due to many factors (such as thermal noise, ambient
interference, receiver non-linearity, etc.), the variance of
the white noise cannot be estimated accurately. This fact
introduces the noise uncertainty (NU) problem which
prevents the detector from reaching a target (pfa, pd) even
with a large observation time. According to Eq. (15), the
noise variance should be pre-estimated in order to per-
form the normalization. That means our proposed detec-
tors are sensitive to the estimation of the noise variance.
In this section, the impact of the NU on the robustness of
our proposed detectors is evaluated.
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a

b
Fig. 8 a The number of samples needed by the detectors in order to
reach (pfa ; pd) = (0.1; 0.9) for various SNR and b the number of
required operations performed by each detectors corresponding to
the number of samples given in a

The estimated noise variance σ̂ 2
w can be bounded as

follows:

σ̂ 2
w ∈

[
1
r
σ 2
w; rσ 2

w

]
(60)

σ 2
w is the nominal value of the noise variance and r ≥ 1

stands for the NU factor. The distribution of σ̂ 2
w, fσ̂ 2

w
(σ̂ 2

w),
is assumed to be uniform in a logarithmic scale red [26].

fŝ(ŝ) =
{ 1

2ρ , s − ρ ≤ ŝ ≤ s + ρ

0, elsewhere
(61)

where s = 10 log10(σ 2
w), ŝ = 10 log10(σ̂ 2

w), and ρ =
10 log10(r).
In a conventional detection mechanism, a suitable

threshold λ is fixed according to a target pfa. In our
proposed detectors, the choice of λ depends on set-
ting the estimated value of the noise variance and
the observation time (i.e. the number of the received
samples). A wrong estimation of σ 2

w may lead to an
inappropriate λ. This fact increases the false alarm
rate and deteriorates the spectrum sensing perfor-
mance.
In Fig. 9, the variation of pfa with ρ is illustrated for

the proposed detectors and the conventional ED. All
considered detectors are assumed to have pfa = 0.1
when no NU exists (i.e. ρ = 0), then the thresh-
old of each detector is chosen according to pfa = 0
with a perfect estimation of the noise variance. Figure 9
shows that the pfa of ED ia higher than the ones of the
proposed detectors. Indeed, our detectors exploit both
the energy and the CPSD shape of the received sig-
nal unlike ED which exploits only the energy. On the
other hand, Tav and Ta have the same pfa as these two
detectors are based on linear combination of |W (k)|2
which is i.i.d.. Tor has a superior pfa than Tp since these
two detectors are related to each other by a non-linear
Eq. (41).
To show the effect of the noise uncertainty on the

ROC curves, we evaluate numerically the performance
loss pd = pd(0) − pd(ρ) where pd(0) stands for the
case where there is no NU, and pd(ρ) stands for probabil-
ity of detection for the case where NU is equal to ρ dB.
Figure (10) presentspd of our detectors and ED for pfa =
0.1, N=1000 samples, SNR of -10 dB, and Ns = 3 sps. As
shown in this figure, our detectors are less sensitive to the

Fig. 9 The evolution of pfa in terms of the NU ρ
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noise uncertainty than the energy detector for pfa = 0.1.
We observe that Ta is most affected among the proposed
detectors. Tav and Tor have the same detection loss since
they both are related to both Tp and Tn, which exhibit the
same NU.

Spectrum sensing based on self-normalized CPSD:
As discussed previously, the normalization by the noise
variance (Eq. (15)) leads to a possible NU problem. In
order to avoid this problem, a new model for the pro-
posed detectors is introduced. Instead of normalizing
the CPSD by the mean value of the last term of ψw(k),
the CPSD is normalized using the last term. The self-
normalized CPSD of the received signal, y(n), is defined
as follows:

ηy(k) = ψy(k)
ψy(l)

; v ≤ k ≤ l (62)

For [ v; l]= [−N
2 + 1; N2

]
, ψy

(N
2
) = 1

N
∑N

2
k=−N

2 +1 |Y (k)|2
becomes the estimated energy of the received signal.
Such a normalization makes ηy(k) not vulnerable to

the NU as its calculus does not depend on the estima-
tion of the noise variance (as presented in Eq. (62)), and
its distribution and its statistical parameters (mean and
variance) are also independent of the noise variance (see
Appendix 7).
This normalization is equivalent to a scaling and does

not change the shape form of the CPSD.
Figure 11 shows ηy(k) under H0 and H1 and a SNR

= 0 dB for various values of Ns. We have under H0 a

shape like a straight line, but a curved shape under H1.
As shown in this figure, the difference between ηy(k) and
the straight line increases as Ns increases, which means
the detection becomes more reliable with the increasing
of Ns.
Without taking into account the relative position of

ηy(k) with respect to the reference straight line, the deci-
sion about the presence of the PU signal is made by
comparing the ηy(k) shape to the reference line shape.
For that reason, the dissimilarity between the CPSD and
the reference straight line is computed (see Eqs. (63)–
(66)). Similarly to the detectors Tp, Ta, Tor , and Tav,
we define the new detector model based on the self-
normalization detectors: Ts

p, Ts
a, Ts

or , and Ts
av as follows

respectively:

Ts
p =

N
2∑

k=1

∣∣∣∣ηy(k) − R
(
1,

N
2
; k
)∣∣∣∣ (63)

Ts
a =

N
2∑

k=−N
2 +1

∣∣∣∣ηy(k) − R
(

−N
2

+ 1,
N
2
; k
)∣∣∣∣ (64)

Ts
or = OR

(
DTs

p ,DTs
n

)
(65)

Ts
av =

N
2∑

k=1

∣∣∣∣η
av
y (k) − R

(
1,

N
2
; k
)∣∣∣∣ (66)

where ηavy (ν) is given by

ηavy (k) =
∑k

u=1 Pavy (u)

∑N
2
u=1 Pavy (u)

(67)
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Figure 12 shows the performance of proposed
detectors under a NU of 0, 0.75, and 1.5 dB with
Ns = 4 sps, SNR of -10 dB, and N = 1000 samples
under Gaussian and Rayleigh flat-fading channels. For a
NU = 0 dB, Tav and Tor outperform Ts

av and Ts
or respec-

tively for both Gaussian and Rayleigh channels. Beside
that, when the NU grows, the performance of Ts

av and
Ts
or is not affected, whereas the detectors Tav, Tor , and

ED suffer a performance degradation and become less
robust than the self-normalization detectors, as shown
in Figs. 12b, c and 13b, c. However, Tav and Tor have a
superior performance relative to ED for different values
of ρ.

8 Conclusions
In this paper, we proposed spectrum sensing detectors
based on the cumulative power spectral density (CPSD).
Our proposed detectors verify the linearity of the CPSD
shape of the received signal.
Hard and soft schemes are used to combine the

CPSD measures, which are derived based on the two
symmetric parts of the power spectral density. False
alarm and detection probabilities are derived analyt-
ically under both Gaussian and Rayleigh flat-fading
channels. Our simulation results show the perfor-
mance superiority of our detectors comparing to clas-
sic detectors such as the energy and the cyclostationary
detectors.
In addition, simulation results show that the proposed

detectors are less affected by the noise uncertainty than
the energy detector. However, to avoid the impact of the
noise uncertainty, the measured CPSD is normalized by
the estimated energy of the received signal. By doing
this, we make our detectors independent from the noise
variance.
In a future work, we will enhance the power spectral

density estimator and extend our algorithms to deal with
multiple antennas spectrum sensing problem.

Endnotes
1 This work was presented in part as a book chapter in

Springer book [27]
2According to [18] and [19], almost-periodic signals can

be considered as deterministic in a fraction of time (i.e.,
for our application, this is the time of sensing). As the lin-
ear modulated signal s(n) is almost cyclostationary signal
according to [19], then it is almost-periodic [18, 19] and
consequently it can be considered as deterministic during
a period of spectrum sensing. On the other hand, in [28]
the author motivates the use of the deterministic assump-
tion of the cyclostationary signals in a fraction of time
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Fig. 12 ROC curves of the proposed schemes under various values of
NU, N = 1000 samples, and SNR = -10 dB: Gaussian channel. a ρ =
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Fig. 13 ROC curves of the proposed schemes under Rayleigh channel
and various values of NU, N=1000 samples and SNR = -10 dB. a ρ =
0 dB. b ρ = 0.75 dB. c ρ = 1.5 dB

while the purely stationary noise signals (do not have any
cyclic features) are considered random.

3 for simplicity, we refer to SN (k) by only S(k) in the
forthcoming sections

4Q(x) = 1√
2π

∫ +∞
x e

−t2
2 dt [22]

Appendix
1 Simplification of Eq. (20)

N
2∑

k=1

k∑
u=1

|Y (u)|2
= |Y (1)|2 (k = 1)

+|Y (1)|2 + |Y (2)|2 (k = 2)

. . .

+|Y (1)|2 + |Y (2)|2 . . .
∣∣Y
(N
2
)∣∣2 (k = N

2
)

=
N
2∑

k=1

(N
2 − k + 1

) |Y (k)|2

(68)

2 Autocorrelation of the DFT ofW(k)

Let us consider the autocorrelation function of W (k),
rWW (m).

rWW (m) = E
[
W (k)W ∗(k − m)

]

=
N∑

q,n=1
E
[
w(q)w∗(n)

exp
(

−j2π
(
qk − (k − m)n

N

))]

Since w(n) is i.i.d., rWW (m) becomes

rWW (m) =
N∑

n=1
E
[|w(n)|2] e−j2πnm/N

Sincem ∈ ZZ∗, we obtain

rWW (m) = σ 2
n

N∑

m=1
exp (−j2πnm/N) = 0 (69)
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3 Themean of Tp under H1

μ1 = 2
N2σ 2

w
E

⎡

⎣
N
2∑

k=1

((
N
2

− k + 1
)

|W (k)|2 − R
(
1,

N
2
; k
))⎤

⎦

︸ ︷︷ ︸
=μ0=0, according to Eq.(32)

+ 2
N2σ 2

w
E

⎡

⎣
N
2∑

k=1

(
N
2

− k + 1
)

|hS(k)|2
⎤

⎦

︸ ︷︷ ︸
S(k) is deterministic

+ 2
N2σ 2

w
E

⎡

⎣
N
2∑

k=1
2Re{hS(k)W∗(k)}

⎤

⎦

︸ ︷︷ ︸
=0, as S(k) is deterministic and W(k) is zero mean

= 2γ
N2

N
2∑

k=1

(
N
2

− k + 1
)

|S(k)|2

= bγ
(70)

4 Variance of Tp under H0
As μ0 = E[Tp]= 0, using Eq. (30), the variance V0 can be
written as follows:

V0 = E
[
T2
p

]

= 4
N4σ 4

w
E

⎡

⎢⎣

⎛

⎝
N
2∑

k=1

(
N
2

− k + 1
)

|W (k)|2
⎞

⎠

2⎤

⎥⎦

+
⎛

⎝
N
2∑

k=1
R
(
1,

N
2
; k
)⎞

⎠
2

︸ ︷︷ ︸
= (N+2)2

16

− 4
N2σ 2

w

N
2∑

k=1
R
(
1,

N
2
; k
)

︸ ︷︷ ︸
=N+2

4

× E

⎡

⎣
N
2∑

k=1

(
N
2

− k + 1
)

|W (k)|2
⎤

⎦

︸ ︷︷ ︸
=N(N+2)Nσ2w

8

= 4
N4σ 4

w
E

⎡

⎢⎣

⎛

⎝
N
2∑

k=1

(
N
2

− k + 1
)

|W (k)|2
⎞

⎠

2⎤

⎥⎦

− (N + 2)2

16
(71)

The term 4
N4σ 4

w
E
[(∑N

2
k=1

(N
2 − k + 1

) |W (k)|2
)2
]
can

be simplified as follows:

4
N4σ 4

w
E

⎡

⎢⎣

⎛

⎝
N
2∑

k=1

(
N
2

− k + 1
)

|W (k)|2
⎞

⎠

2⎤

⎥⎦

= 4
N4σ 4

w
E

⎡

⎣
N
2∑

k1 �=k2=1

(
N
2

− k1 + 1
)

|W (k1)|2

(
N
2

− k2 + 1
)

|W (k2)|2
⎤

⎦

+ 4
N4σ 4

w
E

⎡

⎣
N
2∑

k=1

(
N
2

− k + 1
)2

|W (k)|4
⎤

⎦ (72)

SinceW (k) is Gaussian and i.i.d. then:
1) The kurtosis ofW (k) is zero:

kurt(W (k))=E[|W (k)|4]−E[W 2(k)]2 −2E2[|W (k)|2]=0

Since E[W 2(k)]= 0 because W (k) is circular symmetric
Gaussian, then

E[ |W (k)|4]= 2E[ |W (k)|2]2 = 2N2σ 4
w (73)

2) For k1 �= k2:

E[ |W (k1)|2|W (k2)|2]= E[ |W (k1)|2]E[ |W (k2)|2]= N2σ 4
w

(74)

Using Eqs. (73) and (74), the Eq. (72) becomes

4
N4σ 4

w
E

⎡

⎢⎣

⎛

⎝
N
2∑

k=1

(
N
2

− k + 1
)

|W (k)|2
⎞

⎠

2⎤

⎥⎦

= N2

16
+ 5N

12
+ 3

4
+ 1

3N
(75)

Back to Eq. (71), V0 becomes

V0 = N2

16
+ 5N

12
+ 3

4
+ 1

3N
−
(N
2 + 1

)2

4

= N
6

+ 1
2

+ 1
3N

(76)

5 Variance of Tp under H1
The calculation of Eq. (77) in the next page stands for
finding the variance, V1, of Tp under H1.
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V1 = E

⎡

⎢⎣

⎛

⎜⎝

N
2∑

k=1

[
2
(N
2 − k + 1

)

N2σ 2
w

(|hS(k)|2 + |W (k)|2 + 2Re{hS(k)W ∗(k)})− R
(
1,

N
2
; k
)]
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⎟⎠
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= E
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−μ2
1
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w
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⎛

⎜⎝

N
2∑
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(
N
2

− k + 1
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2⎤

⎥⎦− μ2
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(
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2
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)

|hS(k)|2
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︸ ︷︷ ︸
=μ2

1; since s(n) is deterministic

+ 4
N4σ 4
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(
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2

− k + 1
) (
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) (
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(77)

In Eq. (77), the part A2 = 0 because

A2 = 2E
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⎛

⎝
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(78)

Since Wp(k) and Wq(k) are independent and
E
[
Wp(k1)W 2

p (k2)
]

= E
[
W 2

q (k1)Wq(k2)
]

= 0 ∀k1 and
k2, since Wq(k) and Wp(k) are Gaussian, then Eq. (78)
becomes zeros.
Using the i.i.d. and the circular properties of W (k) and

the fact that s(n) is deterministic, Eq. (77) becomes
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(
N
2
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)2

|S(k)|2

(79)
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6 Approximation of the detection probability
The approximation of the Q-function using a first-order
Taylor series was proposed in [16] without justification.
Here, we show by simulation the effectiveness of this
approximation. The Taylor series of a function f (t) around
t0 can be developed as follows:

f (t) =
∞∑

n=0
f (n)(t0)

(t − t0)n

n!
(80)

where f (n)(t0) is the nth order derivative of f (t) at t0.
According to Eq. (48), we aim at simplifying ppd =

Q
(

λ−bγ√
V0+cγ

)
in order to find the analytic probability of

detection under Rayleigh channel. Let us define g(γ ) =
λ−bγ√
V0+cγ . The first g1(γ ) and the second order, g2(γ ), Tay-

lor series approximations of g(γ ) around γ0 can be found
as follows:

g1(γ ) = g(γ0) + g′(γ0)(γ − γ0) (81)

g2(γ ) = g(γ0) + g′(γ0)(γ − γ0) + g′′(γ0)
(γ − γ0)2

2
(82)

Let γ0 = λ/b as g(γ0) = 0, and thenQ(g(γ0)) = 0.5, which
is the middle point of the Q-function. Accordingly, g′(γ0)
and g′′(γ0) can derived as follows:

g′(γ0) = − b
√
V0 + cλ/b

(83)

g′′(γ0) =
c
(
cλ(1 + 3/b) + 4bV0

)

4(V0 + cλ/b)5/2
(84)

Figure 14a, b presents a comparison between ppd =
Q(g(γ )) and its approximations Q(g1(γ )) and Q(g2(γ ))

under different conditions. Figure 14a shows the varia-
tion of ppd and its approximations in terms of SNR for
different pfa. The number of samples is fixed to 1500 and
Ns = 4 sps, while Fig. 14b shows under SNR of 10 dB
and Ns = 4 sps, the variation of ppd and its approxima-
tions in terms ofN for different pfa. As shown, the analytic
and the approximated curves are closed to each others
under the various conditions. As expected, g2(γ ) leads to a
more robust approximation, since Q(g2(γ )) is almost col-
inear with Q(g(γ )). Even though, g1(γ ) results are very
closed to exact ones. As no important loss is obtained
when g1(γ ) is used, and since it is more simple to deal
with the first-order Taylor series, g1(γ ) will be considered
to approximate the detection probability under Rayleigh
fading channel.
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Fig. 14 a The probability of detection ppd and its approximation in
terms of SNR for different pfa , N = 1500 samples and Ns = 4 sps. b
The probability of detection ppd and its approximation in terms of the
number of samples N, for different pfa , SNR=−10 dB samples, and
Ns = 4 sps

7 The distribution of the self-normalized CPSD
Under H0, ηy(k) can be written as follows:

ηy(k) =
∑k

u=ν |W (u)|2
∑k

u=ν |W (u)|2 +∑l
u=k+1 |W (u)|2 (85)

AsW (u) is Gaussian,
∑k

u=ν |W (u)|2 and∑l
u=k+1 |W (u)|2

become χ2 distributed with 2(k − ν + 1) and 2(l − k)
degrees of freedom respectively [22]. Since W (u) are
i.i.d., then

∑k
u=ν |W (u)|2 and

∑l
u=k+1 |W (u)|2 become
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independent. Consequently, ηy(k) should follow a Beta
distributed [21]:

η
p
y (k) ∼ B(k − ν + 1, l − k) (86)

The mean and the variance of ηy(k) can be found as
follows [21]:

E
[
ηy(k)

] = k − ν + 1
l − ν + 1

(87)

var
[
ηy(k)

] = (k − ν + 1)(l − k)
(l − ν + 1)2(l − ν + 2)

(88)
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