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Abstract

Set intervals techniques are an efficient way of dealing with uncertainty in spatial localization problems.
In these techniques, the desired set (e.g., set of possible locations) is represented by an expression that uses
intersection, union, and complement of input sets – which are usually only known with interval uncertainty.
To find the desired set, we can, in principle, perform the corresponding set-interval computations one-by-
one. However, the estimates obtained by such straightforward computations often contain extra elements –
e.g., fake boundaries. It was known that we can eliminate these fake boundaries (and other extra elements)
if we first transform the original set expression into an appropriate DNF/CNF form. In this paper, we
prove a new result, that any DNF/CNF form enables us to eliminate the extra elements – thus, we can
use the shortest possible DNF/CNF form and therefore, speed up the corresponding computations.
c⃝2017 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Location and mapping problems are important. In many practical situations, we are interested in
location and mapping: we want to find the location of an object, and we want to find the exact boundaries
of a region.

In many cases, we can use the GPS signals to get reasonably accurate locations of different objects. This
possibility is based on the fact that in most situations, electromagnetic propagate in the atmosphere with a
known (and practically constant) speed and along straight lines.

For underwater objects, however, determining the exact location is not easy: radio-signals like the GPS
signals do not penetrate in water. In principle, we can use sound signals to “ping” the object and thus,
determine its location. However, due to inhomogeneity of water and to the presence of many potential
obstacles, the direction and speed of a sound signal may change as the signal propagates.

Set computation: a useful tool for solving location and mapping problems. To locate an underwater
object, we usually perform several measurements. Based on each measurement, we can find the set S of all the
locations x which are consistent with the measurement results. In this case, if we perform n measurements,
and find the corresponding sets S1, . . . , Sn, then we can conclude that the actual location x belongs to all
these sets. In this case, the set S of all possible locations x is the intersection of the n sets corresponding to
n measurement results: S = S1 ∩ · · · ∩ Sn.

We also know that the underwater object is in the water, so it cannot be inside the 3-D areas that were
already identified as underwater rocks or peers. If we denote the corresponding “impossible-to-be” sets by
I1, . . . , Im, then we can get a better description of the set of possible locations S as the difference

S = (S1 ∩ · · · ∩ Sn)− (I1 ∪ · · · ∪ Im),

where A−B denotes the set difference.
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This is an idealized situation, when we are sure that all the sensor recordings describe a signal reflected
by the object. In practice, we may have outliers – recordings which are caused by some external noise or by
a reflection from a nearby object. For such outlier reflections, the corresponding set Si describes the location
of a different object; as a result, the intersection of this set with the others sets Sj (that describe reflections
from the object of interest) may be empty.

One of the techniques that helps to locate an object in such situations is based on knowing the maximum
possible number of outliers q. In this case, instead of taking the intersection of all n sets Si – i.e., instead of
considering the set of all the elements that belong to all n sets, we consider the set of all the elements that
belong to at least n − q different sets Si. Such a “q-relaxed intersection” can also be described in terms of
union and intersection: namely, it can be described as

S =
∪
A

∩
i∈A

Si,

where we consider all possible subsets A ⊆ {1, . . . , n} with at least n− q elements.
This idea implicitly assumes that all the sensors are equally reliable. In practice, different sensors may

have different reliability. This reliability can be gauged by the probability pi that the signal coming out of
the i-th sensor actually reflects the location of the desired object. Then, the probability that the signal from
the i-th sensor is an outlier is equal to 1− pi.

Different sensors are usually independent. So, if a location x appears as possible based on the data
provided by two sensors i and j, then the probability that this location is not real – i.e., the probability that
both sensors malfunctioned – is equal to the product (1 − pi) · (1 − pj). In general, for each location x, if
A ⊆ {1, . . . , n} is the set of all the sensors i for which x the possible location (i.e., for which x ∈ Si), then the
probably that this is a wrong location – i.e., that all the sensors from this set malfunctioned – is equal to the
product

∏
i∈A

(1− pi). It is reasonable to conclude that the location x is possible if the probability of a mistake

is sufficiently small: smaller than some threshold p0:∏
i∈A

(1− pi) ≤ p0.

For computational purposes, it is convenient to replace the product with the sum by taking minus logarithm
of both sides; then, this condition takes the form∑

i∈A

wi ≥ w0,

where we denoted wi
def
= − ln(1 − pi) and w0

def
= − ln(p0). The resulting set of possible locations then takes

the following form:

S =
∪

A:
∑
i∈A

wi≥w0

(∩
i∈A

Si

)
.

When all the sensors are equally reliable, i.e., when all the probabilities p1 = · · · = pn are equal, and thus,

w1 = · · · = wn,

the condition
∑
i∈A

wi ≥ w0 simply means that the set A contains at least w0/w1 elements. So, for

q = n− w0

w1
,

this means that we consider all the subsets with at least n− q elements.
The above description includes the cases when the location appears as possible based on the signals from

all the sensors. In some cases, however, when we know that a certain percentage of sensors is bound to
malfunction, we may want to dismiss locations that appear on too many sensors – that would probably mean
that the signal is too strong and is, thus, not a reflection from the object of interest. This leads to more
complex schemes.
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We can consider more sophisticated combination schemes. In all these cases, the desired set A is described
as an expression that combines the input sets A1, . . . , An, . . . by using the three basic set operations: union,
intersection, and complement. Thus, for localization problems, it is important to be able, given sets A1, . . .,
to compute the set A described by such an expression. Such computation is known as set computation.

Need for set intervals. In many practical situations, we know the inputs sets only approximately. For
example, in practice, we only have an approximate information about the 3-D location I1 of an underwater
rock – one of the locations where an underwater object cannot be. In the ideal case, when we know the exact
3-D map of this rock, for each spatial location x, we know whether x belongs to this set or not. In practice:

• for some locations x, we know that x ∈ I1;

• for some other locations x, we know that x ̸∈ I1; however,

• for some locations x, we do not know whether x ∈ I1 or x ̸∈ I1.

Such a situation can be naturally described by listing two sets:

• the set I1 of all the locations x that we know are inside I1, and

• the set I1 of all the locations that can be inside I1, i.e., locations x for which we either know that x ∈ I1,
or we do not know whether x ∈ I1 or not.

In this case, the only information that we have about the actual (unknown) set I1 is that this set is in between
I1 and I1:

I1 ⊆ I1 ⊆ I1.

Interval and set-interval computations are indeed very useful in location and mapping problems, especially
for underwater objects; see, e.g., [1, 2, 3, 4, 5, 6, 7, 8].

Resulting computational problem. The need to consider set intervals in set computations leads to the
following computational problem.

We have a set-theoretic expression A = f(A1, · · · , AN ) that expressed the desired set A as a result of a
sequence of basic set-theoretic operations (union, intersection, and complement) applied to the original sets
A1, . . . , AN .

In general, we do not know the sets Ai. Instead, for each i, we know the lower set Ai and the upper set Ai

for which Ai ⊆ Ai. The only information that we have about the unknown set Ai is that Ai ⊆ Ai ⊆ Ai ⊆ Ai.
In other words, for each i, we know the corresponding set interval

Ai =
[
Ai, Ai

] def
= {Ai : Ai ⊆ Ai}.

For different sets Ai ∈ Ai, in general, we get different sets A = f(A1, · · · , AN ). Our objective is to find the
class of all such sets A:

A = {f(A1, · · · , AN ) : A1 ∈ A1, . . . , AN ∈ AN}.

How this problem is solved now. It is known (see, e.g., [9]) how to compute the range for the case when
the set operation f(A1, · · · ) is simply one of the three basic set operations. In this case, we have explicit
formulas for the corresponding range A:

• for the union f(A1, A2) = A1 ∪A2, we have

A =
[
A1 ∪A2, A1 ∪A2

]
;

• for the intersection f(A1, A2) = A1 ∩A2, we have

A =
[
A1 ∩A2, A1 ∩A2

]
;

• for the complement f(A1, A2) = A1 −A2, we have

A =
[
A1 −A2, A1 −A2

]
.
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In general, we can:

• parse the expression f(A1, · · · , An), i.e., represent the formula f(A1, · · · , An) as a sequence of elementary
set-theoretic operations, and then

• perform computations step-by-step, replacing each elementary set operation with the corresponding
operation with set intervals.

One can prove, by induction, that as a result, we always get an enclosure A′ ⊇ A for the desired range;
see, e.g., [10].

Problem: fake boundaries. It is known that while the above procedure always leads to an enclosure for the
desired class A, the resulting class A′ is often larger than the desired class A, i.e., contains many unneeded
sets.

This can be easily illustrated on the following toy example. Let U be the universal set, and let us assume
that we know nothing about the set A1 ⊆ U . In this case, the range A1 of possible sets A1 is simply the class
of all the subsets of the universal set: A1 = [∅, U ].

Suppose now that we want to compute the range of the function f(A1) = A1∪(U−A1). Of course, for every
set A1, the resulting set f(A1) is simply equal to the universal set, so the actual range is A = {U} = [U,U ].
Let us see, however, what we get if we apply the above procedure. According to the above procedure, we first
represent the expression f(A1) as a sequence of elementary set-theoretical operations:

• first, we compute A2
def
= U −A1;

• then, we compute the union A = A1 ∪A2.

According to the above procedure, we perform these two operations with set intervals:

• first, we compute

A2 = U −A1 = [U,U ]−
[
A1, A1

]
= [U,U ]− [∅, U ] = [U − U,U − ∅] = [∅, U ] ;

• then, we compute
A′ = A1 ∪A2 = [∅, U ] ∪ [∅, U ] = [∅ ∪ ∅, U ∪ U ] = [∅, U ] .

Thus, instead of the single set U , we get the class of all possible subsets of U .
We can give more realistic examples where the resulting class has unnecessary sets. For example, let us

assume that we have three sets A, B, and C, and we are computing the expression

X = (A ∪B ∪ C) ∩ (A ∪B ∪ (U − C)).

One can easily check that this expression is equivalent to X = A ∪B, so the actual range is equal to

X =
[
X,X

]
=
[
A ∪B,A ∪B

]
.

On the example, when all three sets are disks with uncertain boundary, the desired class X is shown in Fig. 1.
What will happen, however, if we apply the above algorithm to the original expression? To compute this

expression:

• first, we compute the union A1
def
= A ∪B ∪ C;

• then, we compute the difference A2
def
= U − C;

• after that, we compute the union A3
def
= A ∪B ∪A2; and

• finally, we compute the intersection A = A1 ∩A3.

In this case, the above algorithm leads to the following result:

• first, we compute the range of A1 = A ∪B ∪ C as

A1 =
[
A ∪B ∪ C,A ∪B ∪ C

]
;
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Figure 1: Actual range X

• then, we compute the range of A2 = U − C, as

A2 = [U,U ]−
[
C,C

]
=
[
U − C,U − C

]
;

• after that, we use the ranges for A, B, and A2, to estimate the range of A3 = A ∪B ∪A2, as

A3 =
[
A ∪B ∪ (U − C), A ∪B ∪ (U − C)

]
;

• finally, we estimate the range of the intersection A as A′ =
[
A′, A′

]
, where

A′ = (A ∪B ∪ C) ∩ (A ∪B ∪ (U − C)) andA′ = (A ∪B ∪ C) ∩A ∪B ∪ (U − C)).

We can see that the upper bound A′, in addition to the desired values A∪B, also contains all the values from
the “boundary” C − C of the set interval C; see Fig. 2.

These fake boundaries is what we need to eliminate.

It is, in principle, possible to eliminate fake boundaries. In [10], we have proven:

• that the range A always has the form of a set interval A =
[
A,A

]
for appropriate sets A and A, and

• that it is, in principle, possible to compute both sets A and A.

Specifically:

• we get exactly the upper set A if we apply the above step-by-step algorithm to the equivalent canonical
DNF form of the expression f(A1, · · · , AN ), and

• we get exactly the lower set A if we apply the above step-by-step algorithm to the canonical CNF form
of the expression f(A1, · · · , AN ).

The notions of the canonical DNF and CNF forms come from propositional logic – which makes perfect sense
since there is a 1-1 correspondence between set operations and propositional formulas:

• the condition x ∈ A1 ∪A2 means that

(x ∈ A1) ∨ (x ∈ A2);
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Figure 2: An estimate X′ with a fake boundary

• the condition x ∈ A1 ∪A2 means that

(x ∈ A1)& (x ∈ A2); and

• the condition that x ∈ A1 −A2 means that

(x ∈ A1)&¬(x ∈ A2).

By replacing union with “or”, intersection with “and”, etc., we can thus assign, to each set operation
f(A1, · · · , AN ), a propositional formula F (a1, · · · , aN ) for which a point x belongs to the set f(A1, · · · , AN )
if and only the formula F (a1, · · · , aN ) is true for the variables ai describing whether x belongs to Ai or not:

x ∈ f(A1, · · · , AN ) ⇔ F (x ∈ A1, · · · , x ∈ AN ).

For each propositional formula, we can build a canonical DNF form by enumerating all the combinations of
truth variables (a1, · · · , aN ) for which this formula is true.

For example, the above set operation

(A ∪B ∪ C) ∩ (A ∪B ∪ (U − C))

corresponds to the propositional formula

(a ∨ b ∨ c)& (a ∨ b ∨ ¬c).

By enumerating all possible tuples (a, b, c) for which this propositional formula is true, we can form the
canonical DNF form. Specifically:

• this propositional formula is true when a = b = c =“true”; this leads to the term a& b& c;

• this formula is also true when a = b =“true” and c =“false”; this leads to a& b&¬c;

• it is true when a =“true”, b =“false”, and c =“true”; this leads to a&¬b& c;

• it is true when a =“true” and b = c =“false”; this leads to a&¬b&¬c;

• it is true when a =“false” and b = c =“true”; this leads to ¬a& b& c;
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• finally, it is true when a =“false”, b =“true”, and c =“false”; this leads to ¬a& b&¬c.

The formula is true if one of these cases is true. So, our formula F (a, b, c) has the following canonical DNF
form:

(a& b& c) ∨ (a& b&¬c) ∨ (a&¬b& c) ∨ (a&¬b&¬c) ∨ (a& b& c) ∨ (¬a& b&¬c).

This propositional formula corresponds to the following set function:

(A ∩B ∩ C) ∪ (A ∩B ∩ (U − C)) ∪ (A ∩ (U −B) ∩ C)∪

(A ∩ (U −B) ∩ (U − C)) ∪ ((U −A) ∩B ∩ C) ∪ ((U −A) ∩B ∩ (U − C)).

One can easily check that if we compute X by applying the above step-by-step procedure to this formula, we
get exactly the desired upper bound X = A ∪B.

To compute the canonical CNF form, we, vice versa, list all the tuples (a1, · · · , aN ) for which the original
propositional formula is false. Then, we say that the propositional formula is true if the tuple is different from
each of these false-producing tuples.

Let us show how this procedure works on the example of the set function (A∪B ∪C)∩ (A∪B ∪ (U −C))
and propositional formula (a ∨ b ∨ c)& (a ∨ b ∨ ¬c).

• This formula is false when a = b =“false” and c =“true”. To avoid this tuple, we need to make sure
that either a is true, or n is true, or c is false. The corresponding term is a ∨ b ∨ ¬c.

• This formula is also false when a = b = c =“false”. To avoid this tuple, we need to make sure that
either a is true, or n is true, or c is true. The corresponding term is a ∨ b ∨ c.

The formula is true for some tuple if this tuple is different from both false-inducing tuples, i.e., if

(a ∨ b ∨ ¬c)& (a ∨ b ∨ c);

this is the canonical CNF form of the original formula. This propositional formula corresponds to the following
set operation:

(A ∪B ∪ (U − C)) ∩ (A ∪B ∪ C).

One can easily check that if we compute the lower set X by applying the above step-by-step algorithm to this
set operation, we will get the exact lower set

X = A ∪B.

Problem: using canonical DNF and CNF forms requires too much computation time. The main
problem with the above idea is that often, it requires too many operations. For example, in the above example,
the canonical DNF form requires computing 6 intersections of 3 set intervals each – and then computing the
union of the resulting set intervals.

In general, when we have N sets, we can have 2N different true-false tuples (a1, · · · , aN ), For each of these
tuples, the corresponding propositional formula is either true or false. If for a tuple, the given formula is true,
then this tuple leads to a term in the canonical DNF form. If for this tuple, the given formula is false, we get
a term in the canonical CNF form. To perform the above computations, we need to use both the DNF form
(to compute A) and the CNF form (to compute A). Thus, overall, we need to compute the set interval values
of 2N terms.

In some practical situations, when we have many sensors, the numberN can be huge; in this case, 2N can be
astronomically, unrealistically huge. So, a natural question is: how can we perform set interval computations
faster and still eliminate all fake boundaries?

What we do in this paper. In this paper, we show how computations-without-fake-boundaries can be
performed much faster. This is the new result of this paper.
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2 How to Avoid Fake Boundaries Faster: Main Idea

Main idea. Our main idea is to use general DNF and CNF forms instead of the canonical ones. This
possibility is based on the new result – the main result of this paper – that the use of these general forms
enables us to avoid fake boundaries.

For a propositional formula, a DNF form is a disjunction (“or”-combination) of conjunctions, i.e., “and”-
combinations of propositional variables and their negations. In set-theoretic terms, a DNF form is thus a
union of intersections of sets and their complements.

For example, for the above formula, a∨b is a DNF form, in which each of the conjunctions a and b consists
of only one term. In this case, A ∪B is the corresponding set expression.

Alternatively, we could use the following DNF expression:

(a& b) ∨ (a&¬b) ∨ (¬a& b),

which corresponds to the set operation

(A ∩B) ∪ (A ∩ −B) ∪ (−A ∩B),

where we denoted −A
def
= U −A.

Similarly, for a propositional formula, a CNF form is a conjunction (“and”-combination) of disjunctions,
i.e., “or”-combinations of propositional variables and their negations. In set-theoretic terms, a DNF form is
thus an intersection of unions of sets and their complements.

For example, for the above formula, a ∨ b is a CNF form, with only one disjunction a ∨ b. In this case,
A ∪B is the corresponding set expression.

Let us show that by using the general DNF and CNF forms, we can indeed get the same exact bounds A
and A as by using the canonical DNF and CNF forms.

Proposition 1. Let f(A1, · · · , AN ) be a set operation in the DNF form, and let A1, . . . ,AN be set intervals.
Then, if we apply the above step-by-step algorithm to this data

(f(A1, · · · , An),A1, . . . ,AN ),

the resulting upper set A′ will be equal to the upper set A of the corresponding range

A =
[
A,A

]
= f(A1, · · · ,AN ).

Proof.

1◦. Due to the above-mentioned result from [10], the range A has the form of a set interval A =
[
A,A

]
.

Thus, the upper set A is equal to the union of all the possible sets from this range – i.e., to the union of all
the sets A = f(A1, · · · , AN ) corresponding to different combinations of sets Ai ∈ Ai.

So, to prove that the set A′ is equal to the desired set A, it is sufficient to prove that the set A′ is equal
to the union of all such sets A = f(A1, · · · , AN ).

2◦. Let us first prove that the union A of all the sets A = f(A1, · · · , AN ) is indeed contained in the resulting
set A′.

To prove this, we will prove that for each tuple (A1, · · · , AN ) with Ai ∈ Ai for all i, the set A =
f(A1, · · · , AN ) is a subset of A′. Indeed, the set operation f(A1, · · · , AN ) has a DNF form

f(A1, · · · , AN ) = (Ai ∩ −Aj ∩ · · · ∩Ak) ∪ (· · · ) ∪ · · ·

When we apply the above step-by-step algorithm to this form, when computing A′, we replace Ai with

Ai ⊇ Ai

and −Aj with
−Aj ⊇ −Aj .
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For each term, this replacement makes it larger (or the same), so each conjunction is contained in the result
of the corresponding replacement:

(Ai ∩ −Aj ∩ · · · ∩Ak) ⊆
(
Ai ∩ −Aj ∩ · · · ∩Ak

)
.

Since this inclusion holds for each conjunction, it holds for their union as well:

(Ai ∩ −Aj ∩ · · · ∩Ak) ∪ (· · · ) ∪ · · · ⊆
(
Ai ∩ −Aj ∩ · · · ∩Ak

)
∪ (· · · ) ∪ · · · ,

i.e., indeed, A ⊆ A′.

3◦. To complete the proof, we need to show that the set A′ produced by the algorithm is contained in the
union A of all the sets A = f(A1, · · · , AN ) corresponding to Ai ∈ Ai.

To prove this, we will show that every element x ∈ A′ belongs to a set A = f(A1, · · · , AN ) for appropriately
chosen sets Ai ∈ Ai. Indeed, let x ∈ A′. Since the set A′ is defined as a union of several conjunctions
(intersections), the fact that the element x belongs to this union means that it belongs to one of these
intersections, e.g., to a set of the type Ai ∩−Aj ∩ · · · ∩Ak. This means that for the appropriate choice of the

sets A1, . . ., namely, for Ai = Ai, Aj = Aj , . . . , the element x belongs to the corresponding intersection from
the DNF expression f(A1, · · · , AN ).

Since x belongs to this intersection, and the set f(A1, · · · , AN ) is a union of several such intersections, we
thus conclude that the element x belongs to the set A = f(A1, · · · , AN ) – and hence, that x belongs to the
union A of all such sets.

The proposition is proven.

Proposition 2. Let f(A1, · · · , AN ) be a set operation in the CNF form, and let A1, . . . ,AN be set intervals.
Then, if we apply the above step-by-step algorithm to this data

(f(A1, · · · , An),A1, . . . ,AN ),

the resulting lower set A′ will be equal to the lower set A of the corresponding range

A =
[
A,A

]
= f(A1, · · · ,AN ).

Proof.

1◦. Due to the above-mentioned result from [10], the range A has the form of a set interval A =
[
A,A

]
. Thus,

the lower set A is equal to the intersection of all the possible sets from this range – i.e., to the intersection of
all the sets A = f(A1, · · · , AN ) corresponding to different combinations of sets Ai ∈ Ai.

So, to prove that the set A′ is equal to the desired set A, it is sufficient to prove that the set A′ is equal
to the intersection of all such sets A = f(A1, · · · , AN ).

2◦. Let us first prove that the intersection A of all the sets A = f(A1, · · · , AN ) indeed contains the resulting
set A′.

To prove this, we will prove that for each tuple (A1, · · · , AN ) with Ai ∈ Ai for all i, the set A =
f(A1, · · · , AN ) is a superset of A′. Indeed, the set operation has a CNF form

f(A1, · · · , AN ) = (Ai ∪ −Aj ∪ · · · ∪Ak) ∩ (· · · ) ∩ · · ·

When we apply the above step-by-step algorithm to this form, when computing A′, we replace Ai with

Ai ⊆ Ai

and −Aj with
−Aj ⊆ −Aj .

For each term, this replacement makes it smaller (or the same), so each disjunction contains the result of the
corresponding replacement:

(Ai ∪ −Aj ∩ · · · ∪Ak) ⊇
(
Ai ∪ −Aj ∪ · · · ∪Ak

)
.
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Since this inclusion holds for each disjunction, it holds for their intersection as well:

(Ai ∪ −Aj ∪ · · · ∪Ak) ∩ (· · · ) ∩ · · · ⊇
(
Ai ∪ −Aj ∪ · · · ∩Ak

)
∩ (· · · ) ∩ · · · ,

i.e., indeed, A ⊇ A′.

3◦. To complete the proof, we need to show that the set A′ produced by the algorithm contains the intersection
A of all the sets A = f(A1, · · · , AN ) corresponding to Ai ∈ Ai.

We will prove this by contradiction. Let us assume that for some x ∈ A, we have x ̸∈ A′. Since the
set A′ is defined as an intersection of several disjunctions (unions), the fact that the element x does not
belongs to this intersection means that it does not belong to one of these intersecting unions, e.g., to a set
of the type Ai ∪ −Aj ∪ · · · ∪ Ak. This means that for the appropriate choice of the sets A1, . . ., namely, for
Ai = Ai, Aj = Aj , . . . , the element x does not belong to the corresponding union from the CNF expression
f(A1, · · · , AN ).

Since x does not belong to this union, and the set f(A1, · · · , AN ) is an intersection of several such unions,
we thus conclude that the element x does not belongs to the set A = f(A1, · · · , AN ) – and hence, that x does
not belongs to the intersection A of all such sets A. This contradicts to our assumption that x belongs to this
intersection. Thus, indeed, every element x ∈ A belongs to A′, i.e., A ⊆ A′.

The two inclusions, from Parts 2 and 3 of this proof, imply that A ⊆ A′ and A′ ⊆ A. thus, A = A′. The
proposition is proven.

Conclusion. Thus, to perform set interval computations and avoid fake boundaries, it is not necessary to
transform the original expression into canonical DNF and CNF forms – any DNF and CNF forms will do.

The above example shows that CNF and DNF forms can indeed be much shorter than the canonical ones,
so we can indeed speed up computations – without introducing fake boundaries.

3 How do We Get Shorter DNF and CNF Forms

Main idea. How can we get shorter DNF and CNF forms? To get the canonical DNF forms, we start with
all the tuples for which the corresponding propositional formula is true. For each tuple, we can then write
down the corresponding conjunction.

If we have two conjunctions that differ only by one variable, i.e., which have the form F & v and F &¬v,
then, we can easily see, we can replace the part (F & v) ∨ (F &¬v) of the original DNF formula with the
equivalent simpler term F .

Similarly, to get a CNF form, we start with all the tuples for which the corresponding propositional formula
is false. For each tuple, we can then write down the corresponding disjunction.

If we have two disjunctions that differ only by one variable, i.e., which have the form G ∨ v and G ∨ ¬v,
then, we can easily see, we can replace the part (G ∨ v)& (G ∨ ¬v) of the original CNF formula with the
equivalent simpler term G.

By applying this procedure again and again, we can get shorter and shorter expressions.

DNF example. Let us show how this idea can work on the above example. We start with the canonical
DNF form

(a& b& c) ∨ (a& b&¬c) ∨ (a&¬b& c) ∨ (a&¬b&¬c) ∨ (a& b& c) ∨ (¬a& b&¬c)

that describes all the tuples for which the original formula (a ∨ b ∨ c)& (a ∨ b ∨ ¬c) is true.
By looking at the above formula, we immediately see the pairs of conjunctions that differ by only one

variable and be thus combined together:

• the conjunctions a& b& c and a& b&¬c can be combined into a single conjunction a& b;

• the conjunctions a&¬b& c and a&¬b&¬c can be combined into a single conjunction a&¬b, and

• the conjunctions ¬a& b& c and ¬a& b&¬c can be combined into a single conjunction ¬a& b.
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After these replacements, the original DNF formula is simplified into the following form:

(a& b) ∨ (a&¬b) ∨ (¬a& b).

This form can be further simplified:

• by combining a& b and a&¬b, we get a, and

• by combining a& b and ¬a& b, we get b.

Thus, we get the simplified DNF form a ∨ b.
We could reach this form differently. We could:

• combine the conjunctions a& b& c and a&¬b& c into a single conjunction a& c;

• combine the conjunctions a& b& c and a&¬b& c into a single conjunction b& c; combine the conjunc-
tions a& b&¬c and a&¬b&¬c into a single conjunction a&¬c;

• combine the conjunctions a& b&¬c and ¬a& b& c into a single conjunction b&¬c.

Then, we would get the new DNF form

(a& c) ∨ (b& c) ∨ (a&¬c) ∨ (b&¬c).

Then, new combinations are possible; we could:

• combine a& c and a&¬c into a single conjunction a, and

• combine b& c and b&¬c into a single conjunction b.

Thus, we will get the same short DNF form a ∨ b.

CNF example. In the CNF case, we start with the canonical CNf form

(a ∨ b ∨ c)& (a ∨ b ∨ ¬c)

that describes all the tuples (a, b, c) for which the original propositional formula is false.
For this formula, there is only one possible combination: we can combine the disjunctions a ∨ b ∨ c and

a ∨ b ∨ ¬c into a single disjunction a ∨ b.

Karnaugh maps: a graphical representation of this idea. The above idea can be graphically represented
by a Karnaugh map, where:

• cells corresponds to tuples,

• 1 (= “true”) 0 (= “false”) in a cell indicates whether the original formula is true or false for the
corresponding tuple, and

• tuples differing by only variable are neighbor.

The Karnaugh-map representation of the original propositional formula is given on Fig. 3, and the above DNF
and CNF reductions are illustrated on parts (a) and (b) of Fig. 4.

Figure 3: Karnaugh map of the original formula
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Figure 4: Karnaugh map illustrating simplification of DNF (a) and CNF (b) forms
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