
HAL Id: hal-01698372
https://ensta-bretagne.hal.science/hal-01698372v1

Submitted on 2 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computability of the Avoidance Set and of the
Set-Valued Identification Problem

Anthony Welte, Luc Jaulin, Martine Ceberio, Vladik Kreinovich

To cite this version:
Anthony Welte, Luc Jaulin, Martine Ceberio, Vladik Kreinovich. Computability of the Avoidance Set
and of the Set-Valued Identification Problem. Journal of Uncertain Systems, 2017, 11, pp.129 - 136.
�hal-01698372�

https://ensta-bretagne.hal.science/hal-01698372v1
https://hal.archives-ouvertes.fr

Journal of Uncertain Systems
Vol.11, No.2, pp.129-136, 2017

Online at: www.jus.org.uk

Computability of the Avoidance Set and of the Set-Valued

Identification Problem

Anthony Welte1, Luc Jaulin1, Martine Ceberio2, Vladik Kreinovich2,∗

1Lab STICC, École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)

2 rue François Verny, 29806 Brest, France
2Department of Computer Science, University of Texas at El Paso, El Paso, Texas 79968, USA

Received 1 August 2016; Revised 1 September 2016

Abstract

In some practical situations, we need to find the avoidance set, i.e., the set of all initial states for which
the system never goes into the forbidden region. Algorithms are known for computing the avoidance set
in several practically important cases. In this paper, we consider a general case, and we show that, in
some reasonable sense, the corresponding general problem is always algorithmically solvable. A similar
algorithm is possible for another general system-related problem: the problem of describing the set of all
possible states which are consistent with the available measurement results.
c⃝2017 World Academic Press, UK. All rights reserved.

Keywords: avoidance set, set-valued uncertainty, computability, forbidden region

1 Formulation of the Problem

In control, we usually deal with robots (or other controlled devices) whose states s are described by tuples of
real numbers s = (s1, · · · , sd). The dynamics of such devices is usually described by a system of differential
equations

dsi
dt

= fi(s(t)),

for a known computable functions fi(s). In most practical situations, we can use these equations to compute,
for each initial state s0 at the starting moment t0, and for each moment of time t < t0, the state s(s0, t) of
the system at the moment t; see, e.g., [2, 4, 10, 12].

Often in control, we have a set S of states that a robot (or other controlled device) needs to avoid. Because
of this necessity:

• once we know how the states change in time, i.e., once we know the algorithm s(t, s0) that describes
how the state s at moment t depends on t and on the initial state s0,

• we need to find the set S0 of all the initial states for which the trajectory avoids the forbidden set S for
all moments of time from the starting moment t0 to a given future moment T .

In other words, we want to find the avoidance set

S0 = {s0 : s(t, s0) ̸∈ S for all t ∈ [t0, T]}.

There exist algorithms for solving this problem in some specific situations; see, e.g., [3, 7, 9].
In this paper, we analyze the general problem of computing the avoidance set, and we show that this

problem is, in some reasonable sense, algorithmically computable.

∗Corresponding author.
Emails: tony.welte@gmail.com(A. Welte), lucjaulin@gmail.com(L. Jaulin),mceberio@utep.edu(M. Ceberio), vladik@utep.edu

(V. Kreinovich).

130 A. Welte et al.: Computability of the Avoidance Set and of the Set-Valued Identification Problem

2 What is Computable: A Brief Reminder

Need for this reminder. To formulate our problem, let us recall what is means for a function to be
computable and – since we are interested in avoiding a given set – what it means for a set to be computable.
Both these computability notions are based on the notion of a computable number, which will be introduced
first.

What is computable: general idea. When we say that some object is computable, this means that we
have an algorithm that is able to compute this object with any given accuracy.

Computable real numbers. Informally, a real number x is computable if, for any given accuracy, we can
efficiently compute a binary-rational (or, more generally, a rational) number that approximates x with the
given accuracy.

Thus, we arrive at the following definition (see, e.g., [1, 6, 11]):

Definition 1. By a computable real number, we mean a pair consisting of a real number x and an algorithm
that, given an integer n, returns a rational number rn for which |rn − x| ≤ 2−n.

A computable tuple can be naturally defined as a tuple of computable numbers.

Definition 2. By a computable tuple, we mean a tuple x = (x1, · · · , xn) consisting of computable real
numbers x1, . . . , xn.

On the set of all the tuples, we can naturally define the Euclidean distance d(x, y) =

√
n∑

i=1

(xi − yi)2. It is

easy to see that for every two computable real numbers, we can algorithmically compute the distance d(x, y).

In this paper, we will use the notation Dr(x)
def
= {y : d(x, y) ≤ r}.

Computable functions. Informally, a function from tuples to real numbers is computable if we can compute
f(x) for each computable tuple x. For each computable tuple, we only know its approximation. Thus, we
need to know, for each desired accuracy in f(x), with what accuracy we need to compute x to get f(x) with
the desired accuracy.

In the following text, we will take into account that in real life, all the parameters describing a state
are bounded. Thus, all the corresponding functions are defined on a appropriate computable box B =
[x1, x1]× · · · × [xn, xn], i.e., on a box with computable endpoints xi and xi.

Definition 3. By a computable function, we mean a triple consisting of a real-valued function f : B → IR
defined on a computable box B and the following two algorithms:

• an algorithm that, given a rational-valued tuple x ∈ B, natural number n, computes the value f(x); and

• an algorithm that, given a natural number n, returns a natural number m for which d(x, x′) ∈ 2−m

implies |f(x)− f(x′)| ≤ 2−n.

It is known that most usual functions are computable, e.g., arithmetic operations, minimum and maximum,
etc. It is also known that a superposition of computable functions is computable. So, e.g., the sum or the
minimum of two computable functions is also computable.

It is also known that for there exists an algorithm that, given a computable function f(x) on an interval
with computable endpoints, computes the supremum sup

x∈S
f(x) and the infimum inf

x∈S
f(x) of f(x) on S – and

if the original function also computably depended on some parameter, the resulting inf and sup function are
also computable in terms of this parameter.

Computable sets of real-values tuples. Since we only know the tuples with some accuracy, we can
therefore only know the sets with some accuracy. It is reasonable to say that a set A is an ε-approximation
to a set B if:

• every element a ∈ A is ε-close to some element from b ∈ B, and

• every element b ∈ B is ε-close to some element from a ∈ A.

Journal of Uncertain Systems, Vol.11, No.2, pp.129-136, 2017 131

Comment. For every two sets A and B, the infimum of all real numbers ε > 0 with this property is known
as the Hausdorff distance dH(A,B). In terms of the Hausdorff distance, the above property takes the form
dH(A,B) ≤ ε.

In the computer, we can only list finitely many tuples, thus, we can only have finite sets. So, we arrive at
the following definition.

Definition 4. By a computable set, we mean a pair consisting of a set S and an algorithm that, given a
natural number n, produce a finite list of elements Ln for which:

• for every element s ∈ S, there exists x ∈ Ln for which d(s, x) ≤ 2−n; and

• for every element x ∈ Ln, there exists s ∈ S for which d(x, s) ≤ 2−n.

Comments. Since we can only measure locations etc. with some accuracy, if s is a limit point of the set S, i.e.,
if s = lim sn for sn ∈ S, then, no matter how accurately we measure s, we will never be able to distinguish it
from the appropriate element sn. Thus, we can never be able to tell that the point s does not belong to the
set S. Because of this, it makes sense to assume that the computable set contains all its limit points, i.e., that
it is topologically closed. For example, if the computable set S contains all rational valued from the interval
[0, 1], then it should contain the whole interval as well.

For a metric space, an ε-close finite set is known as an ε-net. It is known that a closed set has a finite ε-net
for every ε if and only if this set is compact. Because of this, computable sets are also known as computable
compact sets.

One can check, e.g., that every box [x1, x1] × · · · × [xn, xn] with computable bounds xi and xi is a
computable set, and that every ball Dr(x) with computable r and x is also computable. It is known that for

every computable set S, the distance d(x, S)
def
= inf

s∈S
d(x, s) from a point x to this set is a computable function

of x.

Computable set means an outer approximation. When a set S is computable, this means that for every
n, the set S is contained in the union of finitely many balls D2−n(x) of radius 2−n with centers in different
points x ∈ Ln:

S ⊆
∪

x∈Ln

D2−n(x).

One can easily see that this union is 2−n-close to the original set S. When n → ∞, this union gets closer and
closer to the original set S. Thus, when we say that a set is computable, we mean that we have more and
more accurate outer approximations to this set.

One needs to be careful when dealing with computable functions on computable sets. When
dealing with computable functions on computable set, one needs to be careful, since seemingly natural things
turned out to be not computable. For example, it may seem reasonable to assume that for every computable

function f on a computable set S, the set Sf
def
= {s : f(s) ≥ 0} is computable, but this is not true: no algorithm

is possible that, given a computable function f on a computable set S, provides the lists Ln corresponding to
the set Sf .

This negative result follows from the know result that it is not possible, given a Turing machine, to check
whether it halts or not. Based on each Turing machine, we can design a computable number a by taking:

• rn = 2−n if the corresponding Turing machine did not stop by moment n and

• rn = 2−t if it stopped at moment t ≤ n.

For this computable real number a, we have a = 0 if and only if the original Turing machine never stops. We
can then define a function f(x) = −a · x on the interval S = [0, 1]:

• for a = 0, the set Sf is the while interval, while

• for a > 0, the set Sf consists of only one point 0.

132 A. Welte et al.: Computability of the Avoidance Set and of the Set-Valued Identification Problem

Thus, if we could approximate the set Sf with accuracy 0.5, we would be able to tell whether a = 0 and
a > 0, and we have already shown that this is not possible.

A similar negative result shows that the closure of a complement to a computable set is not necessarily
computable. To be more precise, there is no algorithm that, given such a closure, would return the cor-
responding lists Ln. Indeed, let us define the computable set corresponding to a given Turing machine as
follows. For each n, let us take:

• Ln = {−1, 0, 2−n, 2 · 2−n, . . . , 1− 2−n, 1} if the Turing machine did not stop by moment n and

• Ln = {−1, 0, 2−t, 2 · 2−t, . . . , 1− 2−t, 1} if it stopped at moment t ≤ n.

Then:

• if the Turing machine does not stop, the resulting set S is {−1}∪ [0, 1], and the closure of its complement
[−1, 1]− S is the interval [−1, 0];

• on the other hand, if it stops at some moment t, then

S = {−1, 0, 2−t, 2 · 2−t, . . . , 1− 2−t, 1},

and the closure of the complement [−1, 1]− S is the whole interval [−1, 1].

If we could approximate this closure with accuracy 0.5, we would be able to tell whether the Turing machine
halts or not, and we know that this is not possible.

3 Analysis of the Problem

Analysis of the problem. For every moment t, the requirement that the state s(t, s0) does not belong to
the set S can be equivalently formulated as d(s(t, s0), S) > 0.

A state is usually described by listing the values of finitely many parameters characterizing this state:
s = (s1, · · · , sn). We have also mentioned that, since all the parameters are usually bounded, the set of
possible states is a computable box B.

The dependence s = s(t, s0) is usually continuous (and computable) for s0 ∈ B. Hence, the function that
maps a real number t into the distance d(s(t, s0), S) is also continuous. Therefore, the required that this
distance is positive for all t ∈ [t0, T] can be equivalently reformulated as

F (s0)
def
= inf

t∈[t0,T]
d(s(t, s0), S) > 0.

As we mentioned earlier, the infimum of a computable function is also computable, so the function F (s0) is
computable. So, what we want is, given a computable function F (s0), to approximate the set {s0 : F (s0) > 0}
as closely as possible.

Need for inner approximations. The usual technique of computable sets provides us with outer approxi-
mations to this set. We also want to have inner approximations; namely, we want to make sure that:

• if we have selected a point s0 from avoidance set,

• then even if we implement the corresponding starting state with some accuracy, we will still be in the
avoidance set.

In other words, we want to make sure that the whole neighborhood of the corresponding points s0 belong to
the desired avoidance set.

Journal of Uncertain Systems, Vol.11, No.2, pp.129-136, 2017 133

4 Main Computational Result

Proposition. There exists an algorithm that, given a computable function f(x) on an n-dimensional com-
putable box B and a natural number m, produces a finite list of tuples x(1), . . . , x(N) ∈ B and a computable
real number r > 0 such that

{x : f(x) > 2−m} ⊆
N∪
i=1

Dr

(
x(i)
)
⊆ {x : f(x) > 0}.

Comment. This results provides both the outer approximations and the desired inner approximations to the
avoidance set.

Notational comment. Here, as before, Dr

(
xi)
)
denotes the set of all the points x for which d

(
x, x(i)

)
≤ r.

Practical comment. Strictly speaking, we are not exactly computing the set {x : f(x) > 0}, but it is OK: e.g.,
for the function F (s0), the requirement F (s0) > 2−m means that we keep the distance from the to-be-avoided
set to be at least 2−m. For large m, from the practical viewpoint, 2−m is the same as 0. (So, if we strengthen
our requirement this way, we are not missing too many initial states.)

Mathematical comment. The Proposition holds not only for tuples of real numbers, but also for functions
on general metrics spaces – e.g., for quantum states which are elements of the Hilbert space, an infinite-
dimensional analog of the finite-dimensional Euclidean space. Let us therefore consider computable sets in a
general metric space.

Informally, we need to have approximating elements. Each approximating element can be described in a
computer, so it must be described by a finite sequence of symbols – and thus, encoded by a natural number.
Thus, we can describe these approximating elements as a sequence of elements a1, . . . , an, . . .

Since we are interested in computable metric spaces, there should be an algorithm that, given two natural
numbers m and n, computes the distance d(am, an). A general element of a metric space is computable if,
given n, we can find an element am which is 2−n-close to this element. So, we arrive at the following definition.

Definition 5.

• By a computable metric space, we mean a triple consisting of a metric space M with distance d(a, b),
a sequence of elements a1, . . . , an, . . . which is everywhere dense in M , and an algorithm that, given
natural numbers m and n, returns a computable number d(am, an).

• By a computable element of a computable metric space, we mean a pair consisting of an element a ∈ M
and an algorithm that, given a natural number n, returns an integer k(n) for which

d(a, ak(n)) ≤ 2−n.

For every two computable elements a, a′ ∈ M , we can use the appropriate approximations to compute the
distance d(a, a′). The above notion of a computable set and a computable function can be naturally extended
to general computable metric spaces.

Definition 6. By a computable function from a computable metric space M to a computable metric space B
we mean a triple consisting of a function f : M → B and the following two algorithms:

• an algorithm that, given a natural number n, computes f(an) ∈ B; and

• an algorithm that, given a natural number n, returns a natural number m for which d(a, a′) ∈ 2−m

implies d(f(a), f(a′)) ≤ 2−n.

Proof of the Proposition.

1◦. Let us first construct the desired tuples x(1), . . . , x(N) and the desired value r.

Since the function f(x) is computable, there exists an integer p for which d(x, x′) ≤ 2−p implies that
|f(x)− f(x′)| ≤ 2−(m+2). We then choose r = 2−p.

134 A. Welte et al.: Computability of the Avoidance Set and of the Set-Valued Identification Problem

For each variable xi, let us list the values xi, xi + h, xi + 2h, . . . , xi, where h ≤ 2−p/
√
n, and let us list

all possible tuples combining these values.
Then, for each point x ∈ B and for every i, we can find an h-close listed value. By combining these listed

values, we can find a listed tuple s in which each i-th difference differs by h (|xi − si| ≤ h), and thus, the
Euclidean distance is bounded:

d(x, s) =

√√√√ n∑
i=1

(xi − si)2 ≤
√
h2 + · · ·+ h2 (n times) = h ·

√
n = 2−p.

For each of the listed tuples x, we compute f(x) with accuracy 2−(m+2), resulting in a rational value
r(x) for which |f(x) − r(x)| ≤ 2−(m+2). Let us now select, as x(1), . . . , x(N), those listed tuples x for which
r(x) > 2−(m+1).

2◦. Let us now prove that
N∪
i=1

Dr

(
x(i)
)
⊆ {x : f(x) > 0}.

In other words, let us prove that if d
(
x, x(i)

)
≤ r, then f(x) > 0. Indeed, by our choice of p and r = 2−p,

the inequality d
(
x, x(i)

)
≤ r implies that

∣∣f(x)− f
(
x(i)
)∣∣ ≤ 2−(m+2).

By the choice of the values x(i), we have r
(
x(i)
)

> 2−(m+1), where, by definition of r(x), we have∣∣r (x(i)
)
− f

(
x(i)
)∣∣ ≤ 2−(m+2). Thus,

f
(
x(i)
)
≥ r

(
x(i)
)
− 2−(m+2) > 2−(m+1) − 2−(m+2) = 2−(m+2).

From
∣∣f(x)− f

(
x(i)
)∣∣ ≤ 2−(m+2), we can now conclude that

f(x) ≥ f
(
x(i)
)
− 2−(m+2) > 2−(m+2) − 2−(m+2) = 0,

so indeed f(x) > 0.

3◦. To complete the proof, let us prove that {x : f(x) > 2−m} ⊆
N∪
i=1

Dr

(
x(i)
)
.

In other words, we need to prove that if f(x) > 2−m, then we have d
(
x, x(i)

)
≤ r for some i.

Indeed, let f(x) > 2−m. By construction of the listed tuples, there is a listed tuple s for which d(s, x) ≤
2−p = r. Let us show that the tuple s is among the tuples x(i). Indeed, by our choice of p and r, we can
conclude that |f(x)− f(s)| ≤ 2−(m+2) and thus, that

f(s) ≥ f(x)− 2−(m+2) > 2−m − 2m+2 = 3 · 2−(m+2).

So, from |r(s)− f(s)| ≤ 2−(m+2), we conclude that

r(s) ≥ f(s)− 2−(m+2) > 3 · 2−(m+2) − 2−(m+2) = 2 · 2−(m+2) = 2−(m+1),

i.e., that r(s) > 2−(m+1). Satisfying this inequality was exactly the criterion that we used for choosing the
points x(i). Since the listed point s satisfies this inequality, we thus conclude that s is one of the points x(i).
So, the inequality d(x, s) ≤ r means that d

(
x, x(i)

)
≤ r for an appropriate i.

The statement is proven, and so is the proposition.

5 Computability of the Set-Valued Identification Problem

Practical need for set estimation. In many practical situations, we are interested in the values of physical
quantities x1, . . . , xn which are difficult or impossible to measure directly. For example, we may be interested
in the spatial coordinates of a robot.

Since we cannot measure these quantities directly, we measure them indirectly, i.e., we measure quantities
y1, . . . , yJ which are connected to the desired quantities xi in the known way, as yj = fj(x1, · · · , xn). In

Journal of Uncertain Systems, Vol.11, No.2, pp.129-136, 2017 135

some situations, instead of this dependence, we know the dependence of the corresponding quantity yj on the
desired quantities xi and on the auxiliary quantities c1, . . . , cℓ which, in their turn, can be measured directly:
yj = fj(x1, · · · , xn, c1, · · · , cℓ).

The results ỹj and c̃k of the corresponding measurements are, in general, different from the actual (un-
known) values yj and ck of these quantities. In many practical situations, the only information that we have

about the measurement errors ∆yj
def
= ỹj − yj and ∆ck

def
= c̃k − ck are the upper bounds ∆yj and ∆ck on their

absolute values: |∆yj | ≤ ∆yj and |∆ck| ≤ ∆ck; see, e.g., [8].
In this case, after we get the measurement results ỹj and c̃k, the only information that we have about the

desired values xi is that there exists yj and ck for which:

• yj = fj(x1, · · · , xn, c1, · · · , cℓ) for all j;

• |yj − ỹj | ≤ ∆yj for all j; and

• |ck − c̃k| ≤ ∆ck for all k.

Our goal is to find the set X of all tuples x = (x1, · · · , xn) that are consistent with the measurement results
– i.e., which satisfy the above three requirements.

What is known and what we do in this section. There exist several efficient algorithms for computing the
set X in several important situations; see, e.g., [5]. In this section, we analyze the algorithmic computability
of this problem in the general situation, for general computable functions fj .

Analysis of the problem. The requirement on the tuple x is that for some ck ∈ ck
def
= [c̃k −∆ck, c̃k +∆ck],

we have ∆yj − |fj(x, c)− ỹj | ≥ 0 for all j, i.e., equivalently, that we have F (x, c) ≥ 0, where we denoted:

F (x, c)
def
= min

j=1,...,J
(∆yj − |fj(x, c)− ỹj |).

This requirement, in its turn, can be equivalently represented as f(x) ≥ 0, where we denoted

f(x)
def
= inf

ck∈ck

F (x, c).

In accordance with the above-mentioned results, the functions F (x, c) and f(x) are computable.

Conclusion. The set X of all the states consistent with our knowledge has the form {x : f(x) ≥ 0}. Thus,
we can apply the Proposition and conclude that this set is – in some reasonable sense – computable.

To be more precise, we compute a set which is not exactly equal to the desired set X = {x : f(x) ≥ 0},
but which is intermediate between close sets {x : f(x) > 2−m} and {x : f(x) > 0}.

For our identification problem, the condition f(x) > 2−m means, in effect, that we consider bounds
∆yj − 2−m instead of the original bounds ∆yj . As we have mentioned earlier, for large m, the new bound is
practically indistinguishable from ∆yj . So, from the practical viewpoint, our Proposition indeed implies that
the set X of all possible states is computable.

6 The above Algorithms can be Extended to the General Case of
Quantified Constraints

In the avoidance problem, we considered a constraint of the type f(t, c) > 0 for all t, where f(t, c) is a
computable function. To find the set of all the values c that satisfy this constraint, we reformulated this

constraint in an equivalent for F (c) > 0, where the function F (c)
def
= min

t
f(t) is also computable.

In the set-valued identification problem, we were interested in the constraint of the type f(t, c) ≥ 0
for some t. This constraint was reformulated in an equivalent form F (c) ≥ 0, for a computable function

F (c)
def
= max

t
f(t, c).

A similar idea can be applied to general quantified constraints, i.e., constraints of the type

∀t1 ∃t2 . . . ∀tk ∃tk+1 f(t1, t2, · · · , tk, tk+1, c) > 0

136 A. Welte et al.: Computability of the Avoidance Set and of the Set-Valued Identification Problem

or
∀t1 ∃t2 . . . ∀tk ∃tk+1 f(t1, t2, · · · , tk, tk+1, c) ≥ 0

for some computable function f(t1, t2, · · · , tk, tk+1, c).
Indeed, the condition ∃tk+1 f(t1, · · · , tk, tk+1, c) > 0 is equivalent to f1(t1, · · · , tk, c)), where the function

f1(t1, · · · , tk, c)
def
= max

tk+1

f(t1, · · · , tk, tk+1, c)

is also computable.
Thus, the condition

∀tk (∃tk+1 f(t1, · · · , tk−1, tk, tk+1, c) > 0)

is equivalent to ∀tk f1(t1, · · · , tk−1, c) > 0 and so, to f2(t1, · · · , tk−1, c) > 0, where the function

f2(t1, · · · , tk−1) = min
tk

f1(t1, · · · , tk−1, tk, c) = min
tk

max
tk+1

f(t1, · · · , tk, tk+1, c)

is also computable.
In general, each quantified constraint is thus equivalent to, correspondingly, F (c) > 0 or F (c) ≥ 0, where

F (c)
def
= min

t1
max
t2

. . .min
tk

max
tk+1

f(t1, t2, · · · , tk, tk+1, c)

is a computable function.
Thus, by using the above algorithms, we can compute the corresponding sets.

Acknowledgments

This work was supported in part by the National Science Foundation grants CAREER 0953339, HRD-0734825
and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721, and by an award “UTEP and
Prudential Actuarial Science Academy and Pipeline Initiative” from Prudential Foundation. This research
was performed during Anthony Welte’s visit to the University of Texas at El Paso.

References

[1] Bishop, E., Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.

[2] Chaputot, A., Alexander dit Sandretto, J., and O. Mullier, SYNIBEX, 2015,
http://perso.ensta-paristech.fr/∼chaputot/dynibex.

[3] Desrochers, B., and L. Jaulin, Computing a guaranteed approximation for the zone explored by a robot, IEEE
Transaction on Automatic Control, vol.62, no.1, pp.425–430, 2017.

[4] Heimlich, O., GNU Octave Interval Package, Version 1.4.1, 2016, http://octave.sourceforge.net/interval/.

[5] Jaulin, L., Kiefer, M., Dicrit, O., and E. Walter, Applied Interval Analysis, Springer, London, 2001.

[6] Kreinovich, V., Lakeyev, A., Rohn, J., and P. Kahl, Computational Complexity and Feasibility of Data Processing
and Interval Computations, Kluwer, Dordrecht, 1997.

[7] Le Mézo, T., Jailin, L., and B. Zerr, Inner approximation of a capture basin of a dynamical system, Abstracts of
the 9th Summer Workshop on Interval Methods, 2016.

[8] Rabinovich, S.G., Measurement Errors and Uncertainty: Theory and Practice, Springer Verlag, Berlin, 2005.

[9] Ramdani, N., and N.S. Nedialkov, Computing reachable sets for uncertain nonlinear hybrid systems using interval
constraint propagation techniques, Nonlinear Analysis: Hybrid Systems, vol.5, no.2, pp.149–162, 2011.

[10] Revol, N., Makino, K., and M. Berz, Taylor models and floating-point arithmetic: proof that arithmetic operations
are validated in COSY, Journal of Logic and Algebraic Pprogramming, vol.64, no.1, pp.135–154, 2005.

[11] Weihrauch, K., Computable Analysis, Springer Verlag, Berlin, 2000.

[12] Wilczak, D., and P. Zgliczynski, Cr-Lohner algorithm, Schedae Informaticae, vol.20, pp.9–42, 2011.

	jus-11-2-2.pdf
	Introduction
	Background
	The Newton Method
	Model-Order Reduction
	Interval Constraint Solving Techniques (ICST)
	Computations with Intervals
	How to Solve Nonlinear Equations with Intervals?

	Proper Orthogonal Decomposition
	Principal Component Analysis
	Principal Components
	Proper Orthogonal Decomposition Method

	Interval Proper Orthogonal Decomposition (I-POD)
	Numerical Results
	Burgers' Equation
	Transport Equation
	Lotka-Volterra
	The FitzHugh-Nagumo Model

	The Bratu Problem
	Existence and Uniqueness
	Comparison POD and I-POD with Bratu's Problem
	ICST and MOR

	Conclusions and Future Work

	jus-11-2-3.pdf
	Formulation of the Problem
	1-D Patrolling Game: A Brief Description
	Approximations to the 1-D Patrolling Game: A Description
	Analysis of the Problem: General Case
	First Special Case: =0.5
	Second Special Case: =1
	General Cases: 01
	Multi-D Patrolling Game

	jus-11-2-4.pdf
	Formulation of the Biological Problem
	Reformulating the Problem in Precise Terms
	Analysis of the Problem
	How Can We Solve This Problem?
	Auxiliary Question: How Can We Gauge the Quality of the Resulting Prediction

	jus-11-2-5.pdf
	Formulation of the Problem
	Qualitative Analysis of the Problem
	A Simple Quantitative Analysis

	jus-11-2-6.pdf
	Finding Confidence Regions: Formulation of the Problem
	How Confidence Regions are Designed in Inferential Models Approach: A Brief Reminder
	A Simplified Way to Derive the Corresponding Confidence Regions

	jus-11-2-7.pdf
	Formulation of the Problem
	What is Computable: A Brief Reminder
	Analysis of the Problem
	Main Computational Result
	Computability of the Set-Valued Identification Problem
	The above Algorithms can be Extended to the General Case of Quantified Constraints

	jus-11-2-8.pdf
	Formulation of the Problem
	How to Avoid Fake Boundaries Faster: Main Idea
	How do We Get Shorter DNF and CNF Forms

	jus-11-2-9.pdf
	Formulation of the Problem
	What is the Reason for Conflict Situations?
	How to Avoid Conflict Situations: Towards a Conflict-Free Teaching Environment
	Resulting Conflict-Free Testing and Grading Strategy
	What Next?
	How to Take into Account Student's Degree of Confidence when Grading Exams
	JUS-11-2-11.pdf
	Introduction
	Preliminaries
	The IV Fuzzy Set
	The PIV Fuzzy Variable

	Common GPIV Fuzzy Variables
	Linear Combinations of GPIV Fuzzy Variables
	Conclusions and Future Research

