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Given a Linear Time Invariant (LTI) system with parametric uncertainties, we propose a new method to synthesize a structured controller with H ∞ constraints. Our approach is based on global optimization. The problem is formulated as a min-max optimization problem. A new version of a global optimization algorithm based on interval arithmetic is implemented to solve this kind of problems. To validate our approach, an example of Autonomous Underwater Vehicle (AUV) regulation to synthesize a PID controller with two H ∞ constraints and two parametric uncertainties is given.

INTRODUCTION

When a dynamic model of a physical phenomenon is constructed, some of its parameters are known with uncertainties. These uncertainties can come from simplifications of physical laws, or proceed from identification from real data, etc. To find a robust controller which stabilizes the real system, it is interesting to take into account these uncertainties in the control synthesis problem. Therefore, we propose, in this paper, a new methodology to synthesis a controller which respects robust criteria for all possible values of the uncertain parameters. A large field of control synthesis is devoted to stabilization subject to H ∞ constraints. Many approaches propose to tune a full order controller. In our approach, a reduced order controller is proposed with a given structure as first proposed in 2006 by [START_REF] Burke | HIFOO -A MATLAB package for fixed-order controller design and H optimization[END_REF] and [START_REF] Apkarian | Nonsmooth h infin; synthesis[END_REF]. The main objectives of a structured controller is to make easy the implementation or the interpolation in the case of a Linear Parameter Varying (LPV) systems.

Early methods, which deals with uncertainties, were based on the Structured Singular Value (SSV) approach. But, these methods impose a rank constraint on the controller [START_REF] Zhou | Essentials of Robust Control[END_REF]). However, recent work based on the SSV proposes the robust synthesis of struc-This work is supported by the city of Brest (Brest Metropole) and the DGA (French Defense Procurement Agency).

tured controller [START_REF] Apkarian | Non-smooth µ synthesis[END_REF]). Other approaches consider the uncertainties to be ellipsoid parametric uncertainties, in order to formulate the synthesis problem like a Linear Matrix Inequalities (LMI) problem [START_REF] Peaucelle | Ellipsoidal sets for resilient and robust static output-feedback[END_REF]; [START_REF] Barenthin | Identification and control: Joint input design and H ∞ state feedback with ellipsoidal parametric uncertainty via lmis[END_REF]; [START_REF] Sadeghzadeh | Fixed-order H ∞ controller design for systems with ellipsoidal parametric uncertainty[END_REF]. Uncertainties can also be represented by intervals. In this case, set-membership approaches using interval arithmetic have been considered [START_REF] Jaulin | Guaranteed tuning, with application to robust control and motion planning[END_REF]; [START_REF] Malan | Robust analysis and design of control systems using interval arithmetic[END_REF][START_REF] Malan | Robust tuning for pid controllers with multiple perfor-mance specifications[END_REF]).

Another approach of the problem considers the worst case of all the uncertainties. Instead of considering all uncertainties, only the value of uncertainty that maximize the criteria are considered [START_REF] Apkarian | Worst-case stability and performance with mixed parametric and dynamic uncertainties[END_REF]; [START_REF] Bianco | A worst-case approach to siso mixed H 2 /H ∞ control[END_REF]).

In this paper, we consider a synthesis problem subject to robust stability constraints and H ∞ constraints based on our previous work [START_REF] Monnet | Global optimization of H ∞ problem: Application to robust control synthesis under structural constraint[END_REF]). We propose a worst-case approach to deal with the uncertainties, and formulate the synthesis problem like a min-max optimization problem. A global optimization method is used to provide a guaranteed enclosure of the minimum.

The paper is organized as follows. Section 2 introduces H ∞ synthesis issue and proposes a min-max formulation of the controller synthesis problem with parametric uncertainties. Section 3 presents the robust stabilization problem. Section 4 introduces a global optimization method based on interval arithmetic and formulates the control synthesis problem subject to stability constraint. Section 5 validates our original approach on a control problem dedicated to the regulation of an underwater robot in comparison with a previous work [START_REF] Yang | Robust heading control and its application to ciscrea underwater vehicle[END_REF]).

H ∞ CONSTRAINTS WITH PARAMETRIC UNCERTAINTIES

H ∞ synthesis

To control a Linear Time Invariant (LTI) system G, H ∞ synthesis [START_REF] Zhou | Essentials of Robust Control[END_REF]) computes a LTI system K (named the controller) such that the system G, interconnected with K by a feedback loop, offers the wanted behavior: small tracking error, perturbation rejection, and any performances an engineer could imagine, etc. To do so, an augmented system P is built from G and the weighting functions, which penalize the non-desired behaviors. The inputs of P are noted: w, the vector of exogenous inputs (reference signals, noises, perturbations on control, etc.); u, the control vector. The outputs of P are noted: z, the vector of performance outputs (tracking error, control signal, etc.); y, the measurement vector. Figure 1 summarizes the notations and shows the interconnection between the plant P and the controller K. Let F (P, K) be the linear fractional transform (LFT) of P with K, which describes the closed-loop system represented on Figure 1. F (P, K) can be described by a matrix of transfer functions that maps the inputs w to the outputs z,

F (P, K) =    T w→z1 (s) . . . T w→zq (s)   
where s = jω denotes the Laplace variable, j denotes the imaginary unit, ω ∈ R denotes the pulsation, and T w→zi (s) = (T w1→zi (s), . . . , T wn→zi (s)) is a row vector of transfer functions which maps w to z i . The principle of H ∞ synthesis is to find K that minimizes the sensitivity of every performance outputs z i from the inputs w. This sensitivity can be quantified by the

H ∞ norm. The H ∞ synthesis problem is formulated as a Constraint Satisfac- tion Problem (CSP): find K such that T w→zi ∞ ≤ 1, ∀i ∈ {1, . . . , q}. (1)
We recall that the H ∞ norm . ∞ is defined by:

T w→zi ∞ = sup w =0 z i (jω) 2 w(jω) 2
The H ∞ control synthesis problem can also be formulated as a optimization problem:

K = argmin K max i∈{1,...,q} T w→zi ∞ , (2) 
If the minimum value of Problem ( 2) is lower than 1, the solution of Problem ( 2) is a solution of Problem (1).

Structured H ∞ synthesis

Problem (2) implies to search a controller in the space of all LTI systems. However, it is interesting to fix the structure of the controller K. Such design constraint is tremendously difficult to take into account in an optimization based control design because it renders the set of admissible controllers nonconvex. This structured controller is defined by variables, noted k ∈ R n k where n k is the number of parameters to tune. Hence, to find a solution of Problem (2), we limit the search for all the controller K(k)

with k ∈ K ⊂ R n k . For example, a Proportional Integral Derivative (PID), the variable k ∈ K is the coefficients k = (k i , k p , k d ) ∈ R 3 , with K = k i /s + k p + k d s. Prob- lem (2) can be reformulated as a structured H ∞ synthesis problem: min k∈K max i∈{1,...,q} T w→zi (k) ∞ . (3) 
Note that each T w→zi depends on k.

H ∞ synthesis with parametric uncertainties

Let us consider that G(p) depends on uncertain parameters p ∈ P, where P is the set of all possible values of these uncertainties. The H ∞ synthesis problem with parametric uncertainties can be expressed as the minimization of the worst case over P of the H ∞ constraints. To minimize T w→zi ∞ for all p ∈ P, we minimize the maximum: sup p∈P T w→zi (p, k, jω) ∞ . Therefore, the structured H ∞ synthesis problems with parametric uncertainties can be expressed as the following min-max problem:

min k∈K sup p∈P ( max i∈{1,...,q} T w→zi (p, k, jω) ∞ ) . (4) 
Remark 1. If the minimum of Problem ( 4) is lower than 1, the solution of Problem ( 4) is a solution to the following CSP:

find k such that T w→zi (p, k) ∞ ≤ 1, ∀i ∈ {1, . . . , q}, ∀p ∈ P.
(5)

ROBUST STABILIZATION

The H ∞ synthesis guarantees performances of the closedloop system F (G, K). But, the controller must also stabilize the closed-loop system. Thus, the solution of Problem (4) does not necessarily stabilize G(p). Therefore, we must ensure that K(k) stabilizes the closed-loop system for all p ∈ P. This is a problem of robust stabilization: ∀p ∈ P, K(k) stabilizes F (G(p), K(k)), This problem was first solved by [START_REF] Kharitonov | Asympotic stability of an equilibrium position of a family of systems of linear differntial equations[END_REF], and was approached later with Interval Analysis by [START_REF] Jaulin | Guaranteed tuning, with application to robust control and motion planning[END_REF] using the Routh-Hurwitz criterion.

The optimization problem, we consider, is the minimization of H ∞ objective function subject to robust stabilization constraints with parametric uncertainties:

min k∈K sup p∈P ( max i∈{1,...,q} T w→zi (p, k, jω) ∞ ) subject to ∀p ∈ P, K(k) stabilizes F (G(p), K(k)).

GLOBAL OPTIMIZATION APPROACH

In this section, an Interval Branch and Bound Algorithm (IBBA) is presented [START_REF] Ninin | A reliable affine relaxation method for global optimization[END_REF]). This algorithm is a deterministic global optimization algorithm [START_REF] Kearfott | An interval branch and bound algorithm for bound constrained optimization problems[END_REF]). It provides a guaranteed enclosure of the optimum of a non-convex problem. To use this algorithm, we reformulate our problem as a constrained non-convex problem, with an H ∞ objective function and robust-stability constraints.

Interval Branch and Bound algorithm

In order to present the algorithm, we first define intervals. Definition 1. An interval is a closed connected subset of R [START_REF] Moore | Introduction to interval analysis[END_REF]), described by its endpoints x and x:

x

= [x, x] = {x | x ≤ x ≤ x}, with x ∈ R ∪ {-∞} and x ∈ R ∪ {+∞}
The set of intervals is denoted by IR and the set of ndimensional interval vectors, also called boxes, is denoted by IR n . Consider a constrained optimization problem: min

x∈X f (x) s.t. g m (x) ≤ 0, ∀m. (6) 
where f : R n → R, g m : R n → R, and X ⊆ IR n . An Interval Branch and Bound Algorithm [START_REF] Ninin | A reliable affine relaxation method for global optimization[END_REF]) provides a feasible solution x and a guaranteed enclosure of the global minimum µ of f over X. The principle of the algorithm is a branch-and-bound algorithm based on Interval Analysis. Bounds of the objective function are computed on X. If these bounds are too wide, the algorithm splits X into smaller boxes, and provide smaller enclosures of f over each boxes. Figure 2 illustrates the principle of the algorithm. The bounds of f over each X i can be over-approximated using interval analysis [START_REF] Jaulin | Applied Interval Analysis[END_REF]). Definition 2. An inclusion function [f ] of f is defined from IR m into IR and respects the following property:

f (X i ) = {f (x), x ∈ X i } ⊆ [f ](X i ).
IBBA deletes X i when it is proved that the global minimum is not inside. For example, if x is a feasible solution,

[f ](X i ) > f (x) =⇒ ∀x i ∈ X i , f (x i ) > f (x) =⇒ x * / ∈ X i .
To improve the converge of IBBA, constraint propagation techniques and pruning techniques are included to reduce the number or the size of the sub-boxes X i [START_REF] Ninin | A reliable affine relaxation method for global optimization[END_REF]

). For example, if [g 1 ](X i ) > 0, X i is deleted because: ∀x ∈ X i , g(x) > 0 =⇒ x * / ∈ X i .
Indeed, IBBA converges to a small sub-box x * of X which contains x * . Moreover, considering the remaining
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[f ](X 12 ) Fig. 2. Interval Branch and Bound Algorithm.

boxes, IBBA provides a guaranteed enclosure of the global minimum:

f (x * ) ∈ µ = min i [f ](X i ) , max i [f ](X i ) .
Consider now the constrained min-max problem: min

x∈X sup y∈Y f (x, y) s.t. g m (x, y) ≤ 0, ∀y ∈ Y, ∀m. (7) 
Problem ( 7) can be solved using two IBBA, see [START_REF] Monnet | Global optimization of continuous minimax problem[END_REF]. A first IBBA splits X into subsets X i , and a second IBBA is used to compute an enclosure of f (X i , Y) by solving the maximization problem: sup y∈Y f (X i , y).

Note that f (X i , .) is a family of functions, which means that IBBA will converge to

Y i = {y ∈ Y | ∃x ∈ X i , y maximizes f (x, y)} and provide an enclosure µ i of all maximums, {sup f (x, y), x ∈ X i } ⊆ µ i = [µ i , µ i ]

Constrained min-max formulation

In order to solve Problem (4) with a global optimization approach, we propose to minimize the following problem:

min k∈K sup p∈P max i∈{1,...,q} T w→zi (p, k, jω) ∞ . (8) 
In Monnet et al. (2016a), we have the following result: The robust stability constraint can be expressed as a system of inequalities using the Routh-Hurwitz criterion,

T w→zi ∞ = sup
∀p ∈ P,      R 1 (k, p) ≤ 0 . . . R r (k, p)
≤ 0 where R i are scalar valued functions, for which inclusion functions [R i ] can also be defined [START_REF] Jaulin | Guaranteed tuning, with application to robust control and motion planning[END_REF]). Therefore, the structured H ∞ synthesis problem with parametric uncertainties and robust stabilization constraints can be formulated as follows:

         min k∈K sup ω>0,p∈P f (k, p, jω) R 1 (k, p) ≤ 0, ∀p ∈ P subject to . . . R r (k, p) ≤ 0, ∀p ∈ P (9)
Problem ( 9) is solved with a new version of IBBA presented in Section 4.1. Remark 2. Solving Problem (9) with IBBA implies that P is a box. It means that the uncertainties of the value of the parameters are represented by an interval. This representation is generally suited to describe uncertainties.

EXAMPLE

We propose to illustrate our global optimization based controller synthesis approach with the example of the control of a cubic Autonomous Underwater Vehicle (AUV), described by [START_REF] Yang | Robust heading control and its application to ciscrea underwater vehicle[END_REF][START_REF] Yang | Modeling of a complex shaped underwater vehicle[END_REF]. This is a classical control problem in marine robotics that have been investigated in recent works [START_REF] Roche | A hierarchical Varying Sampling H∞ Control of an AUV[END_REF][START_REF] Maalouf | Adaptive depth and pitch control of an underwater vehicle with real-time experiments[END_REF]). The proposed problem is the regulation of the yaw angle of the AUV with parametric uncertainties and H ∞ constraints. Indeed, the modelling of a underwater system is a complex task due to the modelling of the environment and the hydrodynamic phenomenons.

The regulation scheme is represented in Figure 3.
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W e W u ẽ ũ P Fig. 3. Regulation scheme with weighting functions.

The signals ẽ and ũ represent the weighted outputs, and r the reference signal. The augmented system mentioned in Section 2 is delimited by dotted lines. The yaw dynamic of the AUV is described by the transfer function:

G(p, s) = 1 p 1 s 2 + p 2 s , with p = (p 1 , p 2 ) T , where p ∈ R 2 is the vector of uncertain parameters, p ∈ P = [0.30, 0.69] × [1. 26, 2.34]. We choose to control the AUV yaw angle with a filtered Proportional Integral Derivative (PID) controller,

K(k, s) = k p + k i s + k d s 1 + s , with k = (k p , k i , k d ) T .
The variables of the controller are searched in: -5, 5]. Two H ∞ constraints are defined on the sensitivity transfer S(p, k, s) = (I + G(p, s)K(k, s)) -1 and the transfer from the reference signal to the control signal K(k, s)S(p, k, s): (10) Problem ( 10) is reformulated as explained in Section 4 and solve with our new version of IBBA. We limit the frequency range to ω ∈ [10 -3 , 10 3 ].

K = [-5, 5] × [-5, 5] × [
W e (s)S(p, k, s) ∞ ≤ 1, W u (s)K(k, s)S(p, k, s) ∞ ≤ 1.
We obtain: max ( W e (s)S(p,

k * , s) ∞ , W u (s)K(k * , s)S(p, k * , s) ∞ ) ∈ µ = [0.45, 0.55],
where k * is the solution to Problem (10). The best solution found is:

K( k, s) = 1.471 + 0.103 s + 1.471s 1 + s .
Our solution k has been found such that µ < 1 thus, we guarantee that the H ∞ constraints are respected for any value of p 1 and p 2 in P. However, if µ were greater than 1, it would prove that there exist at least one value of p (the worst case) such neither of the constraints is respected ∀k ∈ K. Indeed, if µ > 1, Problem (5) is not feasible. In the same way, if 1 ∈ µ, we cannot prove anything.

Figure 4 shows the Bode diagrams of the objective channels S and KS for 20 values of the uncertainties p. It shows that all the frequency responses respects the objectives. We remark that for every p, S and KS are under the inverse of the weighting functions W -1 e and W -1 u , which is consistent with the fact that:

W e S( k) ∞ < 1 of the complex plan, which illustrates the stability of the closed loop. Note that the poles locus shows that only the very stable poles are moving changing p, which shows the robustness of the proposed controller.

The step response performances of the closed loop are shown on Figure 6. A reference step is imposed at t = 10s and a step disturbance is imposed at t = 50s. And it can be seen that all the regulation objectives are fulfilled.

We compare our approach with the structured H ∞ synthesis method implemented in the Systune toolbox of Matlab. Since this method cannot take uncertainties into account, we propose to synthesize a controller for the where p st denotes the worst case over P at k st . As a consequence, our structured robust synthesis approach performs better than a non-robust synthesis method on this example.

This simple example shows that the proposed approach can lead to an efficient methodology for PID tuning under H ∞ constraints.

CONCLUSION

A new method to synthesize a controller with H ∞ constraints, stability constraints and parametric uncertainties is presented. A worst-case approach of this problem is formulated as a constrained min-max problem. A global optimization algorithm provides an upper and a lower bound on the minimum of the H ∞ constraint. These bounds determine which performances can be achieved with a given parametrized controller, and prove in a guaranteed way whether there exists a controller such that the H ∞ constraints are respected for all possible values of uncertainties or not. Moreover, the stability of the closedloop transfer function is ensured for all possible value of the uncertainties. This paper is also dedicated to the comparison between full order synthesis and structured synthesis with a simple robotic example; it is based on the previous work from [START_REF] Yang | Robust heading control and its application to ciscrea underwater vehicle[END_REF]) and it shows that we can compute a PID with similar performances as the full order controller obtained by classical H ∞ synthesis. This work is the fisrt step for robust multiobjective control synthesis based on previous approaches [START_REF] Abbas-Turki | Multiobjective synthesis using LMI formulations for application of the cutting plane algorithm[END_REF]; [START_REF] Arzelier | Multiobjective H 2 /H ∞ /Impulse-to-Peak control of a space launch vehicle[END_REF]) and applied on various application such that aerospace launcher [START_REF] Clement | Aerospace launch vehicle control: a gain scheduling approach[END_REF]), autonomous sailboats [START_REF] Clement | Control algorithms for a sailboat robot with a sea experiment[END_REF]) and others.
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 55 Figure 5 shows the poles location of the closed-loop transfer function T (p, k, s) = G(p, s)K( k, s)S(p, k, s) for several values of p in P. The poles are located on the left half plan
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 6 Fig. 6. Time responses for a step response and a step disturbance. The yaw response y and the command input u. nominal plant G n = G(p n ), with p n = (0.7, 1.8). With Systune, we obtain the controller K st = K(k st , s), k st = (1.372, 0, 0.74) T . (11) which provides for the nominal plant max ( W e (s)S(p n , k st , s) ∞ , W u (s)K st S(p n , k st , s) ∞ ) = 0.6. With our global optimization approach, we can perform a robustness analysis for K st . Indeed, max i ([R i ](k st , P) = which proves the robust stability of the closed loop, and by solving the "sup" part of Problem (10) at k st , we obtain max ( W e (s)S(p st , k st , s) ∞ , W u (s)K st S(p st , k st , s) ∞ ) = 0.78. where p st denotes the worst case over P at k st . As a consequence, our structured robust synthesis approach performs better than a non-robust synthesis method on this example.