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Abstract: In Electronic Warfare, and more specifically in the domain of passive localization, accurate time synchronization between 
platforms is decisive, especially on systems relying on TDOA (time difference of arrival) and FDOA (frequency difference of 
arrival). This paper investigates this issue by presenting an analysis in terms of final localization performance of an experimental 
passive localization system based on off-the-shelf components. This system is detailed, as well as the methodology used to carry out the 
acquisition of real data. This experiment has been realized with two different kinds of clock. The results are analyzed by calculating the 
Allan deviation and time deviation. The choice of these metrics is explained and their properties are discussed in the scope of an 
airborne bi-platform passive localization context. Conclusions are drawn regarding the overall localization performance of the system. 
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1. Introduction 

Historically, most passive localization systems 

based on electromagnetic radiation have been 

developed in the context of EW (electronic warfare), 

and were denoted as ESM (electronic support 

measures). Various military applications have emerged, 

where ESM devices are mounted onboard different 

kinds of platforms: airborne [1], naval [2] or even 

spatial [3]. 

Passive localization systems use the properties of a 

signal received at different positions and/or dates in 

order to compute an estimate of the position of the 

radiating source. These systems differ from 

communication systems in that the source does not 

cooperate with the receiver, thus the waveform is 

unknown a priori and cannot be used to improve an 

estimator of the position of the source. 

Traditionally, these localization systems have relied 

on interferometry to obtain AOA (angle of arrival) 
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measurements in order to triangulate the position of the 

source. But these measurements only have an accuracy 

of a few degrees and the acquisition time can be long 

before the location is estimated with the desired 

accuracy. This is why other types of measurements 

have been introduced. Many modern techniques used 

in passive localization now rely on time and frequency 

based measurements on different platforms. For 

example, many techniques are based on the calculation 

of T/FDOA (time/frequency difference of arrival) [1-5], 

and scan-based localization techniques use the dates of 

interception of the main lobe of a rotating emitter [6]. 

Since the measurements depend on the time on two or 

more remote platforms, several clocks are needed. All 

clocks have imperfections which make them drift, yet a 

single time base must be maintained all along the 

measurement time, hence the need to synchronize the 

devices [5]. 

Synchronization can be done in practice by 

exchanging a signal in different configurations: 

one-way, two-ways, common view [7]. It is also 

possible to dispense with a sync signal if beacons of 

known positions can be seen by the receivers [8]. 
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This article focuses on a system designed for 

combined TDOA/FDOA localization in a short-base 

airborne ESM context. This is a challenging scenario 

for a synchronized system because the measured time 

and frequency differences are small, thus the 

synchronization error must be kept as low as possible 

in order to have good precision [5]. In the scope of this 

article we will try to determine what performance in 

sync error we can expect in real-life situations via 

implementation and analysis of a full synchronization 

system, comprised of hardware (clocks, digital 

receivers) and software (delay estimation algorithm) 

processing. Then this will be translated in terms of 

localization error, in a simple scenario. 

The paper is organized as follows: Section 2 presents 

some theoretical background on clock impairments and 

how to characterize sync error; Section 3 describes the 

methodology and the experimental process of the 

measurements which were carried out; in Section 4 the 

results for two different types of embedded clocks are 

shown and analyzed from an operational point of view; 

Section 5 establishes the link between sync error and 

localization performances; finally global conclusions 

and perspectives are presented in Section 6.  

2. Timekeeping Issues 

A clock can be modeled as a device producing a sine 

wave output of the form [9]: 

sin 2  (1) 

where  is nominal peak output voltage,  

amplitude noise,  nominal frequencyand  phase 

fluctuation (noise). In the case of time and frequency 

analysis, we can usually ignore the  term. From 

there we can identify two parameters of interest [9]: 

Time fluctuation: 

    (2) 

Fractional frequency, derived from the latter: 

   (3) 

Due to the non-stationary nature of , these 

quantities cannot be analyzed through traditional 

statistics, the standard variance estimator will not 

converge as the number of samples increases [10]. In 

order to have a way to evaluate the amount of 

fluctuation of fractional frequency , the Allan 

variance  was introduced [9, 11]. It measures the 

variance of the difference of two values of  spaced by 

a time . An efficient estimator for the Allan variance 

can be expressed in terms of time data: 

∑ 2 (4) 

where  is the time horizon on which the variance is 

calculated,  the  sample of a dataset containing 

 values of  sampled every , and /  

the number of samples of  contained in the time 

horizon  (  must be an integer such as 1).  

Other types of variances similar to the Allan 

variance were developed, like the modified Allan 

variance, which is capable to distinguish between more 

types of noise [9, 12]. The expression of its estimate in 

terms of time data is: 

 
1

2 3 1
 

∑ ∑ 2  (5) 

The time Allan variance is based on the modified 

(frequency) Allan variance and characterizes the time 

error of a clock [13]. It can be expressed as: 

/3    (6) 

All the considerations stated above refer to the 

characterization of a single clock. But in practice it is 

not possible to measure the absolute fluctuations of a 

clock (  and ) without having another clock to 

use as a time reference for . Therefore  and  

do not represent the absolute fluctuation of a single 

clock but the fluctuations of a clock relative to another 

reference clock. 0 s and 0 means that at 

a date  the two clocks are perfectly aligned with each 

other and their frequency is exactly the same. 

 can be interpreted as the standard deviation of 

the time error between the clocks considering an 

integration time of . For example, considering that the 
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Under the hypothesis that  (the base is short 

relative to the distance to the source) which is realistic 

in an airborne context, it is possible to obtain easily the 

CRLB (Cramér-Rao lower bound) of a position 

estimator of  [5]: its covariance matrix can be 

expressed as Σ  0 ; 0  with: 

,    (11) 

Considering 50 km , 1 km  and 

300 m/s , the lower bound of a position estimator 

considering synchronization errors only is: 

38 m, 300 m.  We remark that FDOA 

localization is more demanding in term of 

synchronization accuracy. 

6. Conclusion 

One of the objectives of this paper was to point out 

that the tools developed in frequency analysis (and 

more particularly the Allan deviation and time 

deviation) are very useful to characterize the 

performances of distributed passive localization 

systems. These tools help understand the operational 

impact of technological decisions such as the choices 

concerning the type of oscillator or the synchronization 

period of the data link. 

The main objective was to describe the influence of a 

realistic synchronization scheme on the output 

localization performance. In order to attain this 

objective, a simple but realistic bi-platform system has 

been set up and time error data have been generated 

using two different sets of clock. Time and Allan 

deviations have been computed from these data, 

providing estimates of synchronization performance 

for the optimal integration time. These time and 

frequency performances were used to compute a lower 

bound for a localization estimator, in a simple yet 

relevant scenario. In the end, for the case we studied it 

appeared that the limiting factor was the accuracy in 

term of fractional frequency stability. 

Further work is needed to take into account the 

platform position error when the differential 

propagation time of the sync signal cannot be neglected 

and must be estimated. Moreover, in this paper we only 

focused on time error noise, but the same principles 

could be extended to characterize complicated noise 

processes that can be present in other kinds of sensors, 

such as IMU (inertial measurements units). 
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