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This paper presents a control synthesis methodology for a cubic AUV. The modeling part is based on CFD calculation and the control part is based on H ∞ theory, nonlinear compensation, Smith compensation and Kalman filter. It is presented and adapted to Ciscrea AUV for heading control. A comparison with PID controller is given with simulations and sea tests.

INTRODUCTION

Underwater vehicles have a large variety of types and they are widely involved in undersea surveillance, inspection and survey missions [START_REF] Clement | A marine robotics point of view for oceanography[END_REF]). Typically, AUVs and gliders are common with a torpedo shape for long range missions, and Human Occupied Vehicles (HOVs) as well as Remote Operating Vehicles (ROVs) are generally of a cubic shape used for hovering tasks. Note that, for some specific applications: undersea pipeline inspection, offshore infrastructure surveillance and large vessel maintenance, a small size cubic AUV is preferred. Indeed, small AUVs can be deployed to explore areas which are not accessible to HOVs and ROVs. Meanwhile, the cubic shaped AUVs enjoy more degrees of freedom than torpedo-shaped AUVs. Indeed, they can hover and enter complex underwater spaces.

Achieving good maneuverability of small AUV depends on two key factors: an accurate hydrodynamic model and an advanced control system. [START_REF] Yamamoto | Robust and non-linear control of marine system[END_REF] pointed out that a model-based control system is more efficient if the dynamics of the vehicle are modeled to some extent. Meanwhile, [START_REF] Ferreira | Modeling and control of trimares auv[END_REF] show that an empirical linear model often fails to represent the dynamics of the AUV over a wide operating region. In this work, we adopt our previously published model [START_REF] Yang | Modeling of a complex-shaped underwater vehicle for robust control scheme[END_REF]).

Regardless of modeling issues, the value of a model-based control approach depends on how robust and efficient the control scheme can adopt the hydrodynamic model. Potential trends of current methods focus on faster controllers to assist the pilot or the autopilot with better accuracy. Optimal controllers can reduce propelling actions to save the battery power as well as to increase the propeller lifespan. Moreover, numerous uncertainties should be considered, including parameter variations, nonlinear hydrodynamic damping effects, sensor transmit delays and ocean current disturbances. In robotic competitions (SAUC-E and eu-Rathlon), it has been shown that a PID yaw controller was less efficient for a low mass AUV. Consequently, advanced control algorithms should be involved, such as the adaptive control scheme by [START_REF] Maalouf | From pd to nonlinear adaptive depth-control of a tethered autonomous underwater vehicle[END_REF], interval analysis approach by [START_REF] Jaulin | An interval approach for stability analysis: Application to sailboat robotics[END_REF]. Note that robust control schemes are shown to be successfully by [START_REF] Feng | Reduced order h ∞ control of an autonomous underwater vehicle[END_REF] and Roche et al. (pp. 17-24, Sep., 2010) for torpedo-shaped AUVs. In this work, we appointed the CISCREA AUV shown in Figure 1 and main characteristics are given in Table 1.

This work is organized as follows. AUV main notions, Ciscrea model and its derivative equations for control design are presented in Section 2. A control scheme based on nonlinear feedback and H ∞ optimization is proposed in Section 3. Section 4 shows the Matlab simulation results of H ∞ and PID controllers. In addition, the improved H ∞ scheme adaption and sea tests are presented. It is important to note that the validation is performed from simulation to real envirionment like it has been done for other robots (Clement (2013a)).

In this paper, we propose a original embedded control structure simple model oriented; using Kalman filters, the unmeasured and noisy system states are estimated. A Smith compensator is introduced to compensate the magnetic compass delay. The system uncertainties are dealt with H ∞ theory. The experiment and simulation results show the advantages of the proposed CFD model based H-infinity methods compared with PID controller.

AUV MODELING

This section is dedicated to describe the AUV modeling notions as well as the dynamic and hydrodynamic parameters of Ciscrea AUV. A yaw model is derived in this section for robust heading control design. Note that, modeling data in this section comes from our previous CFD works [START_REF] Yang | Modeling of a complex-shaped underwater vehicle for robust control scheme[END_REF]).

AUV Modeling Notions

Ciscrea AUV dynamics are represented marine vehicle formulation by [START_REF] Fossen | Marine control systems: Guidance, navigation and control of ships, rigs and underwater vehicles[END_REF] and by the Society of Naval Architects and Marine Engineers (SNAME (April 1950)).

Positions, angles, linear and angular velocities, force and moment definitions are reflected in Tab 2. The position vector η, velocity vector ν and force vector τ are defined as follows: According to [START_REF] Fossen | Marine control systems: Guidance, navigation and control of ships, rigs and underwater vehicles[END_REF], rigid-body hydrodynamic forces and moments can be linearly superimposed. Therefore, the overall non-linear underwater model can be characterized by two parts, the rigid-body dynamic (1) and hydrodynamic formulations (2) (hydrostatics included):

η = [x, y, z, φ, θ, ψ] T ; ν = [u, v, w, p, q, r] T ; τ = [X, Y, Z, K, M, N ] T
M RB ν + C RB (ν)ν = τ env + τ hydro + τ pro (1) τ hydro = -M A ν -C A (ν)ν -D(|ν|)ν -g(η)
(2)

Table 3 describes the parameters of this model. Due to the size of the matrices and the figures needed to show all the numerical values, the reader can refear to the paper dedicaded to modeling [START_REF] Yang | Modeling of a complex-shaped underwater vehicle for robust control scheme[END_REF]).

For the Ciscrea AUV, the rigid-body mass inertia matrix M RB is simplified due to symmetry. Here,

r G = [x G , y G , z G ] T is the vector from O b (origin of B-frame) to CG (center of gravity).
C RB and C A contribute to the centrifugal force. Note that a practical way to calculate these two matrices using Vector of hydrodynamic forces and moments τpro Propeller forces and moments vector M RB , M A and ν is introduced in Marine System Simulator (MSS ( 2010)). In our case, these two matrices can be neglected due to the low speed to be considered, C(v) ≈ 0.

For an AUV with neutral buoyancy, the weight W is approximately equal to the buoyancy force B.

For Ciscrea AUV, CB (the buoyancy center) and CG are located using trials and errors method by adding and removing the payload and floats. The marine disturbances, such as the wind, waves and currents are related to the environmental effect τ env . However for a deep sea underwater vehicle, only current should be considered since wind and waves have negligible effects. Two hydrodynamic parameters added mass, M A ∈ R 6×6 , and damping, D(|ν|) ∈ R 6×6 , should be carefully involved in the AUV model. Added mass is a virtual conception representing the hydrodynamic forces and moments. Any accelerating emerged-object would encounter this M A due to the inertia of the fluid. For a cubic-shaped AUV, added mass in some directions are generally larger than the rigid-body mass as explained by [START_REF] Yang | Modeling of a complex shaped underwater vehicle[END_REF]. Damping in the fluid consists of four parts: Potential damping D P (|ν|), skin friction D S (|ν|), wave drift damping D W (|ν|) and vortex shedding damping D M (|ν|). For the CISCREA AUV, quadratic damping is the main dynamic nonlinearity of the system [START_REF] Yang | Modeling of a complex shaped underwater vehicle[END_REF]).

Ciscrea model

For applying the methodology to the Ciscrea AUV, Mass inertia matrix, M RB , is calculated using PRO/ENGINEER software, and added mass matrix, M A , is calculated using WAMIT TM based on radiation/diffraction program. Finally, STAR-CCM+ TM software and real world experiments are conducted to estimate the relationship among damping forces, damping moments, vehicle velocities and angular velocities. In [START_REF] Yang | Modeling of a complex shaped underwater vehicle[END_REF][START_REF] Yang | Modeling of a complex-shaped underwater vehicle for robust control scheme[END_REF], second order polynomial lines are implemented to approximate the relationship between damping and velocities.

Yaw model

Without loss of generality, we only present the robust controller in yaw direction. The rotational model is simplified as in (3) (neglecting buoyancy and gravity). Definitions and parametric values, such as inertia and damping coefficients, are listed in Table 4. Note that, all the parameters have uncertainties, as they are either measured or numerically calculated. The uncertainties will be carefully discussed and treated using H ∞ solution in section 3. We propose a framework to :

(I Y RB + I Y A )ẍ r + D Y N | ẋt | ẋr + D Y L ẋr = τ i (3)
• change the nonlinear yaw model into a linear system with uncertainties based on previous modeling works (here is an important contribution that shows the links between control and modeling); • tune a Kalman filter if only few sensors are used (compass in our case); • tune a Smith compensator for the delay due to the low cost sensor; • solve a H ∞ controller for the linear system.

Nonlinear compensation

In this part, we discuss the nonlinear problem without concern of parametric uncertainties, such as inertia and damping coefficient errors. As shown in [START_REF] Yang | Modeling of a complex shaped underwater vehicle[END_REF], damping is a major nonlinear component in the AUV model. Therefore, in Figure 3, we propose to compensate nonlinear behaviors using the CFD yaw model, as feedback for real world propellers.

The nonlinear compensation is given in equation ( 4). The linear model result of compensation is given in equation ( 5). 

(D Y LA + (D Y N | ẋr | -D Y N D | ẋr | + D Y L -D Y LD )) ẋr +(I Y RB + I Y A )ẍ r = τ i (5) The term δ = D Y N | ẋr | -D Y N D | ẋr | + D Y L -D Y
(I Y RB + I Y A )ẍr + (D Y LA + δ) ẋr = τ i δ ∈ [-0.4265, 0.4265] (6) 
At the end, the proposed model, equation ( 6), is a linear system with uncertainties. Therefore, H ∞ approach is feasible for this model as it is proposed in figure 3.

Linear controller: H ∞ synthesis

Let us consider the following classical state space representation of a linear time invariant (LTI) system: ẋ z y

= A B 1 B 2 C 1 D 11 D 12 C 2 D 21 D 22 x w u (7) 
where x ∈ R n is the state vector, u ∈ R m2 the control input, y ∈ R p1 system output, w ∈ R m1 the external input vector, z ∈ R p2 the error vector. The robust design process is to find a LTI feedback controller K, such that the closed-loop system remains stable and is able to achieve given performances in presence of uncertainties [START_REF] Gu | Robust Control Design with MATLAB[END_REF]; Zhou and Doyle (1998)). Generally, cost functions for finding K are represented by H ∞ norms of the closedloop transfer functions from w to z, as seen in equation ( 8).

min

Kstable W p (I + GK) -1 W e (I + GK) -1 W u K(I + GK) -1 ∞ < γ (8)
Here, K is the robust controller in Figure 4 which separates uncertainties into an individual block [START_REF] Gu | Robust Control Design with MATLAB[END_REF]).

In H ∞ theory, weighting functions are introduced for setting control specifications. Generally, it is difficult to get the accurate frequency characteristics of external input signals. Therefore, weighting functions are sometimes the upper bound that covers original signals. For example, the weighting function W p , which represents the frequency characteristics of the external disturbance, is used to describe output disturbance rejection ability. Satisfying the above norm inequality indicates that the closed-loop system indeed reduces the disturbance effects to a prescribed level.

Finding appropriate weighting functions is critical and difficult, trials are necessary for a successful robust control design. In this application, we choose a structure with three weighting functions as it can be seen in Figure 4. W e is chosen as a reference tracking error requirement, W u represents the input disturbance rejection. W p , which restricts the output disturbance, is the same specification with W e , but with different objectives.

Weighting function parameters are selected according to equations ( 9) to (11). W u is selected to be a very small scalar (Gu = 0.01) for disturbance rejection. We choose W e and W p according to [START_REF] Gu | Robust Control Design with MATLAB[END_REF] and Roche et al. (pp. 17-24, Sep., 2010), carefully considered the robust margins, tracking error (1%) and fast response.

W p (s) = 0.95 s 2 + 1.8s + 10 s 2 + 8s + 0.01 ( 9) W e (s) = 0.5 s + 0.92 s + 0.0046 (10)

W u (s) = 0.01 (11) 
To solve the H ∞ problem, one can use the Riccati method or Linear Matrix Inequality (LMI) approach [START_REF] Zhou | Essentials of robust control[END_REF]. Usually, we prefer to choose the LMI approach, as it requires less initial conditions [START_REF] Gu | Robust Control Design with MATLAB[END_REF]). The resulting transfers are given in Figure 5.

Delay compensation

First, underwater vehicles might not be equipped with enough sensors to detect all the states, such as the angular velocity ẋr . In addition, the magnetic compass may encounter serious signal delay and noise injection. Therefore, we propose to use a CFD model based kalman filters, numerically estimating unmeasured as well as noisy states.

In addition, model based compensation algorithms are Fig. 6. Ciscrea H ∞ heading control delay and noise problem recommended to deal with the sensor delay. The proposed H ∞ approach is completed as it is shown in Figure 2.

In order to reveal the magnetic compass delay as well as noise injections on the rotational motion of CISCREA AUV, A less tuned H ∞ heading controller was demonstrated in Figure 6. Among the Kalman angle estimation and magnetic compass output, an obvious 0.5s delay was observed. In this case, the delay lead to distinct heading control oscillations. Meanwhile, there exist noise efforts on the control output to propellers.

For Ciscrea heading control application, a classical Smith compensator was introduced by [START_REF] Zhong | Robust control of time delay systems[END_REF] to compensate the magnetic compass delay, see Figure 7 and equation (12).

P (s) = G 0 (s) -G 0 (s)e -0.5s (12) 
The main idea is to estimate current delay free output y from the nominal model G 0 (s) and real output ye (-0.5+δ)s . Figure 8 shows the H ∞ heading control simulation results using Smith predictor compensation. In addition, as robust controller is insensitive to compensation errors, we are enlighten to propose another compensation scheme using Kalman angular velocity estimation ( ẋr ), see equation ( 13).

y = P (s)u + ye (-0.5+δ)s , y = K c ẋr + ye (-0.5+δ)s , K c > 0 (13)

A K c = 0.57 was tuned which has an efficient compensation result in Figure 9.

SIMULATION AND EXPERIMENTS

Heading control simulation

In the simulation, I Y RB + I Y A and D Y LA are considered to be two varying parameters, which have respectively 30% and 40% (> 23.7%) of variations. In Figure 10, Tracking error achieves the specification less than 1%. To emphasize the speed and robustness of our approach, we inject a small disturbance of 0.5rad on the output at 50s. Figure 11 shows the robust performance of our controller handling a yaw model with 30% inertia variations.

Ciscrea Sea Test

The proposed control scheme has been validated on Ciscrea in sea tests, and its results are compared with a traditional PID approach, respectively shown in Figures 12 and13. First, H ∞ heading controller is faster than PID scheme (even with low battery conditions). Second, there is no nonlinearity induced oscillations in the control output, and the tracking accuracy is better. Third, from the propeller thrust signal, we can determine that the magnetic compass noise and disturbances are well rejected, while PID is less efficient to handle those uncertainties. Finally, the characteristics of our controller result in an optimal and smooth propulsion, which saves the battery energy, and allows to increase the working range. • faster in time response for a step demand;

• free from nonlinearity induced oscillations and overshoot (CFD compensation); • free from sensor delay induced oscillations (Delay compensation); efficient noise and disturbance rejection (Kalman filter and H ∞ perfomance constraints); • not sensitive to parametric variation uncertainties (Robustness); • optimal and smooth propulsion orders.

The proposed robust heading control application demonstrates a high quality AUV motion control solution, and finally it uses only one compass as feedback sensor.
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 1 Fig. 1. CISCREA AUV picture in the test pool of ENSTA Bretagne

Fig. 3 .

 3 Fig. 3. Nonlinear Compensator allows linear synthesis • D Y LA is the artificial linear factor given in Tab 4. • D Y N D and D Y LD are CFD damping estimations.

Fig. 4 .

 4 Fig. 4. H ∞ synthesis structure: weighting functions, nominal model, controller.

  Fig. 5. Sensitivity Functions and inverse of weighting functions
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 7 Fig. 7. Smith Predictor struture for delay compensation
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 9 Fig. 9. Improved Ciscrea H ∞ heading controller (Kalman Compensation)
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 11 Fig. 10. Step Response and Propellor Output on Nominal Yaw Model

Fig. 12 .

 12 Fig. 12. Ciscrea H ∞ heading control sea experiment (Kalman compensation)

Table 1 .

 1 CISCREA AUV main characteristics

	Depth Rating	50m
	On-board Battery	2-4 hours

Size 0.525m (L) 0.406m (W) 0.395m (H) Weight in air 15.56 kg (without payload and floats) Degrees of Freedom Surge, Sway, Heave and Yaw Propulsion 2 vertical and 4 horizontal propellers Speed 2 knots (Surge) & 1 knot (Sway, Heave)

Table 2 .

 2 The notation of SNAME

		Positions and	Velocities	Forces and
		Angles		Moments
	Coordinate	NED-frame	B-frame	B-frame
	Surge	x	u	X
	Sway	y	v	Y
	Heave	z	w	Z
	Roll	φ	p	K
	Pitch	θ	q	M
	Yaw	ψ	r	N

Table 3 .

 3 Nomenclature of the notations

	Parameter	Description
	M RB	AUV rigid-body mass and inertia matrix
	M A	Added mass matrix
	C RB	Rigid-body induced coriolis-centripetal matrix
	C A	Added mass induced coriolis-centripetal matrix
	D(|v|)	Damping matrix
	g(η)	Restoring forces and moments vector
	τenv	Environmental disturbances (wind, waves and cur-
		rents)
	τ hydro	

Table 4 .

 4 Rotational model parameters for yaw direction Fig. 2. Ciscrea H ∞ heading control scheme with nonlinear and delay compensations, Kalman filter and linear H ∞ controller.

	Parameter Description			Value
	I Y RB	Rigid-body inertia	0.3578kg • m 2
	I Y A	Added mass inertia	0.138kg • m 2
	D Y N	Nominal quadratic damping factors	Ideal 0.2496
	D Y L	Nominal linear damping factors	Ideal 0.021
	ẋr	Angular Velocity	0 to 4rad/s
	τ i	Torque input		0 to 6N • m
	τcom	Compensation Torque	0 to 6N • m
	ẋr0	Equilibrium velocity	0 to 4rad/s
	D Y N D	CFD quadratic damping factors	0.1479
	D Y LD	CFD linear damping factors	0.0013
	D Y LA	Artificial linear factors	<Motor limit
							(select 1.2)
	ref	(Linear) Robust Controller	+	-	Nonlinear Model	yaw angle
							angular
							Nonlinear	velocity
						Compensation
		angle				
		estimation				kalman filter
							(Linear)
				Delay	
		+	+	compensator	e^(-0.5*s) Delay

3. CONTROL STRUCTURE

In this section, an original struture is proposed. It is based on H ∞ theory, nonlinear compensation, Smith compensation and Kalman filter. It is presented and adapted to Ciscrea AUV for heading control. The proposed structure is given on figure 2. One can see the various parts of the control.
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