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Abstract State-of-art echosounders reveal fine-scale details of mobile sandy bedforms, which are commonly found on continental shelfs. At present, 
their dynamics are still far from being completely understood. These bedforms are a serious threat to navigation security, anthropic structures and 
activities, placing emphasis on research breakthroughs. Bedform geometries and their dynamics are closely linked; therefore, one approach is to 
develop semi-automatic tools aiming at extracting their structural features from bathymetric datasets. Current approaches mimic manual processes or 
rely on morphological simplification of bedforms. The 1D and 2D approaches cannot address the wide ranges of both types and complexities of 
bedforms. In contrast, this work attempts to follow a 3D global semi-automatic approach based on a bathymetric TIN. The currently extracted primi-
tives are the salient ridge and valley lines of the sand structures, i.e., waves and mega-ripples. The main difficulty is eliminating the ripples that are 
found to heavily overprint any observations. To this end, an anisotropic filter that is able to discard these structures while still enhancing the wave 
ridges is proposed. The second part of the work addresses the semi-automatic interactive extraction and 3D augmented display of the main lines 
structures. The proposed protocol also allows geoscientists to interactively insert topological constraints. 
Keywords Bedform; MBES; TIN; Anisotropic filter; Features extraction. 

1 Introduction 

1.1 General context 
Currently, multibeam echosounder systems (MBES) are rou-
tinely used to map fine-scale seafloor features of regional areas. 
By collecting dense datasets with high-resolution and accurate 
soundings, these acoustic sensors confirmed the ubiquity of 
subaqueous dunes in continental shelves and coastal areas. 
Since such bedforms were first described by Lüders in 1930 
(Lüders, 1955), the later generation of MBES reveals a wide 
variety of complex sandy bedforms. Coupled with high accura-
cy positioning and inertial motion sensors, repeat MBES sur-
veys are useful to measure bedform migration (Garlan, 2009). 

Mobile bedforms represent vital issues for hydrographic of-
fices as they potentially reduce water depths. Understanding 
sand dune formation processes is required to maintain naviga-
tion channel conditions (Whitmeyer and FitzGerald, 2006). 
After discovery, their migrating nature requires hydrographers 
to resurvey such zones to avoid navigational hazards. Because 
MBES surveys are costly and time consuming, the criteria for 
area prioritization have to be defined from the types and sizes 
of their dynamics (Dorst et al., 2013; Garlan, 2013). 
Knowledge of the behaviors of sand waves is also critical for 
the engineers in charge of offshore installations. Routing pro-
cedures have to be optimized as mobile bedforms may damage 
cables or pipelines (Morelissen et al., 2003). With the substan-
tial expansion of marine renewable energy platforms, it is cru-
cial to predict sand wave migration as scouring may weaken 
established marine systems (Németh et al., 2003; Kenyon and 
Cooper, 2005; Barrie and Conway, 2014). Moreover, in Euro-
pean coastal waters, mines from WWII buried in sandy envi-
ronments still make the installation of platforms difficult (Gar-
cia et al., 2009).  However, sandy bedforms are of considerable 
interest from an economical point of view. The exploitation of 
marine aggregates, especially in Belgium, is increasing (Eynde 
et al., 2010). Nevertheless, intensive dredging activities have 

sedimentary and morphological impacts on marine environ-
ments due to altering the forms and volumes of the sand dunes 
(De Mol and Vandenreyken, 2014). 

The above examples clearly illustrate the importance of 
sandy bedforms for various end-users. Dunes are dynamic self-
organized systems, modeled by complex interactions between 
flow, sediment transport and bedform (Powell, 2000). A wide 
range of theoretical and numerical models have been developed 
to explain the generation, evolution and destruction of bed-
forms in both laboratory and field contexts. Up to now, pro-
cesses controlling bedform dynamics still remain far from 
perfect (Franzetti et al., 2013). Model limitations are due to the 
complex behavior of sand dune patterns that form from nonlin-
ear processes operating in open systems (Werner, 2003). The 
reduction and simplification of the physical processes involved 
in bedform evolution lead to morphodynamic models that are 
far from reality. Furthermore, the spatial variability of field 
observations and the scarcity of empirical analysis add further 
concerns to this scientific challenge (Garlan, 2009). Because 
both sizes and shapes of bedforms influence and reflect hydro-
dynamic and sedimentological processes, another relevant 
approach to modelling sand dune dynamics aims to character-
ize their morphologies (Lefebvre and Lyons, 2011). Our algo-
rithm belongs to the latter class, as it aims to objectively de-
scribe and analyze bedforms acquired using MBES. Its origi-
nality lies in the use of a mesh data structure to represent the 
bedforms as surfaces, their analysis through geodesic mor-
phometry and quantitative description using 3D parametric 
curves. 

1.2 Related works 
Sand dunes are generally described as a train of features with 
regular shapes, sizes and spacings. Deeper observation reveals 
that sand bedforms display much more complex behaviors 
(Werner, 2003). With the exception of Seif dunes, MBES sur-
veys revealed subaqueous features mirroring aeolian dune 
shapes on a smaller scale (Garlan, 2009). Dunes observed on 
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the seabed can be isolated structures or organized in dune 
fields. Their sizes, based on spacing, cover a wide range from 
ripples, megaripples, and sandwaves to dunes (Ashley, 1990; 
Perillo, 2001). The lengths, orientations and geometries of their 
crest lines show wide variations from linear ridges to crescent 
shapes (Dyer and Huntley, 1999). Because they are shaped by 
complex flow dynamics that operate on different spatial and 
temporal scales, sand dunes often show multiple superimposed 
bedform scales (Barnard et al., 2011; Gutierrez et al., 2013). 

Currently, there is no consensus on how to model the mor-
phologies and dynamics of sand bedforms (Werner, 2003). 
Nevertheless, numerous studies of both flume and field exper-
iments have linked some morphological features to environ-
mental conditions. Crest lines are generally perpendicular to 
the main current directions (Garlan, 2009). Bedform height and 
wavelength generally increase with flow velocity (Gutierrez et 
al., 2013). Dunes shapes, such as their degree of asymmetry or 
the sinuosity of their crest lines reflect hydrodynamic condi-
tions: Bedforms with a high degree of asymmetry or those with 
sinuous crest lines are characterized by high migration rates 
(Garlan, 2009). 

From these results, it makes sense to propose a geometrical 
reading of these bedforms to describe the local hydrodynamic 
and sediment dynamic processes. Up to now, geometrical fea-
tures of bedforms have mainly consisted of local minima and 
maxima extracted from manual one-dimensional cross-sections 
that are drawn perpendicularly to crest lines. Manual analysis 
of bed elevation profiles is a tedious and time consuming task 
that relies on subjective measurements. This method is clearly 
not suitable for processing large volume of MBES datasets 
while taking full advantage of the detailed bathymetric infor-
mation they contain. 

Traditional analysis of bedforms can be improved through 
automatic selection of bathymetric profiles and automatic lo-
calization of their crests and troughs. When bedform profiles 
are not directly recorded (Cataño-Lopera et al., 2009; Huang et 
al., 2012), they can be extracted as rows/columns of Digital 
Terrain Models (DTMs) provided that they are parallel to the 
direction of the tidal principal axis (Knaapen, 2005). DTMs 
that do not fulfill this condition are rotated to place dune crest 
lines perpendicularly to raster scanning. Duffy (2012) deduces 
the suitable rotation angle in a set of values as the one that 
minimizes the mean length of the dunes, while Cazenave et al. 
(2008) extract the bedform orientations based on 2D spectral 
analysis. Sand dunes are usually composed of amalgamated 
forms; analysis of their shapes requires the separation of their 
bedforms at different scales before quantifying the variabilities 
of their geometry. Other studies propose a bedform tracking 
tool to automatically find crest and trough locations from pro-
files smoothed using a weighted moving-average technique 
(Knaapen et al., 2005; Van der Mark and Blom, 2007; Duffy, 
2012). Considering that all of the scales of sand dunes are of 
interest, other approaches use 1D-spectral analysis to retrieve 
bedform profiles of different wavelengths in the bathymetric 
signal and apply a detailed analysis of each Fourier-filtered 
bedform (Kheiashy et al., 2007; Winter and Ernstsen, 2007; 

Singh et al., 2009; Van Dijk et al., 2012). Bathymetric profiles 
often present significant departures from Fourier analysis as-
sumptions. Cataño-Lopera et al. (2009) propose the use of a 
wavelet technique to capture bedform components. Following 
this approach, Gutierrez et al. (2013) describe bedform profiles 
within a hierarchical structure by combining robust spline fil-
ters to continuous wavelet transforms. As in previous morpho-
logical approaches, the geometric descriptors they propose are 
based on the crest and trough locations in bedform profiles. 
Different approaches exist to automatically detect these feature 
points. Crests and troughs can be selected from extremal depths 
obtained through bedform height and length thresholding (Par-
sons et al., 2005) or with the help of zero up crossings and 
down crossings (Van der Mark and Blom, 2007). Different 
approaches exist to define and name the geometric characteris-
tics of bedforms (Jerolmack et al., 2005; Van der Mark et al., 
2005; Knaapen, 2008). Among the most common variables, the 
bedform height and length, crest and trough elevations and lee 
face slope are statistically analyzed to determine simple generic 
relationships between bedform geometries and find correlations 
with flow and sediment features (Van der Mark et al., 2008).  

One-dimensional approaches can incorporate spatial aspects 
by taking into account different profile locations. Cataño-
Lopera et al. (2009) propose a one-dimensional wavelet trans-
form to separate dominant wavelengths within bedform pro-
files. The juxtaposition of one-dimensional results enables the 
representation of regions with characteristic wavelength bands 
and analysis of their spatial-interaction behaviors.  

Nevertheless, 1D approaches still remain inadequate to fully 
describe 3D planform patterns of bedforms. Studying the spa-
tial distribution of co-existing bedforms of multiple scales 
requires a spatial approach. Cazenave et al. (2013) and Li-
simenka and Rudowski (2013) apply a 2D Fourier transform to 
quantify the variability of linear bedform geometry displaying 
their orientation and wavelength using a vector field. Lefebvre 
and Lyons (2011) also apply a two dimensional spectral analy-
sis to identify and map bedform regions according to their 
roughness. In addition to the Fourier decomposition technique, 
Van Dijk et al. (2008) propose a geostatistical filter to separate 
bedforms components. The crest and trough lines are then 
extracted as a set of points of extremal curvatures from the 
filtered bathymetric surface. To overcome the limitations of the 
2D-Fourier transform, Garcia and Best (2012) extend the one 
dimensional wavelet transform developed by Cataño-Lopera et 
al. (2009) to the spatial case. The morphological map leads to 
identification of superimposed regions at different bedform 
scales. 

1.3 Methodological choices and paper contents 
All of these studies contributed to a significant increase in our 
knowledge of such complex environments. Nonetheless, much 
remains to be done. Recent MBES surveys acquired near San 
Francisco and in the Irish Sea that contrast with previous ob-
servations suggest improvements to both the geometrical at-
tributes and their associated extraction tools (Hanes, 2012; Van 
Landeghem et al., 2012). The algorithm described below auto-
matically extracts crest and trough lines of sandy bedforms 
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modeled as a Triangular Irregular Network (TIN) built from 
MBES soundings. This algorithm requires the availability of a 
novel anisotropic filter. This filter, which is applied first, en-
hances the dominant features of bedforms while smoothing 
sand ripples. The resulting line features are described as 3D 
parametric curves and their associated domains are then sub-
jected to deeper statistical analysis after optional expert-
knowledge integration. 

This paper is organized as follows: Section 2 describes the 
anisotropic filter applied to bathymetric mesh surfaces to en-
hance their dominant features while smoothing out their rip-
ples. Section 3 is devoted to the automatic extraction of struc-
tural lines from filtered bedforms as 3D parametric curves. 
Section 4 describes the optional semi-automatic incorporation 
of expert knowledge into the structural lines before addressing 
the global statistics of their orientations. This section also co-
vers some usual topics: accuracy, robustness, computational 
cost, and comparison with other line detectors. The main lines 
of a prospective application aiming at automatic extraction of 
the wave geodesic domains are then described before Section 5 
that presents conclusions and perspectives. 

2 De-noising and enhancement of bedform shapes 
through anisotropic smoothing 

2.1 Data content and differential scale space 
Obtaining a prior and insightful representation of the incoming 
data with respect to the underlying data processing framework 
is a key point to enable end-users to set parameters in accord-
ance with the distribution of features. In this context, while 
implicitly addressing the analysis of a discrete surface, this 
subsection provides a short reminder of the main 2D-
representations of the curvature pairs. For an exhaustive analy-
sis of curvatures estimation techniques based on TIN, readers 
are referred to Gatzke and Grimm (2006). There are two main 
non-hybrid families: continuous and discrete techniques. The 
latter have a very low-cost but provide crude estimations, 
whereas the former are cumbersome but provide optimal esti-
mations. This work makes use of both types during different 
steps: Section 2 emphasizes the discrete approach, whereas 
Section 3 uses the classic continuous approach. 

Let us recall relationships that exist between the common 
curvature pairs before emphasizing a more convenient choice: 
the differential scale space of Koenderink. Fig. 1 depicts the 
relationships between the common curvature pairs. 
• The principal curvatures   (κ1,κ2) , with    κ1 ≥ κ2 , and their 

orthogonal principal directions   (e1,e2) , are the fundamental 
characteristics of the local shape configuration. These are 
the native outputs of the continuous methods. 

• The mean and gauss curvatures    (κH ,κG )  can be seen as the 
reciprocal form of   (κ1,κ2) 	 where     κH = (κ1 +κ2) 2  and 

    κG = κ1κ2 . Thus, the inverse relationship is 

    (κ1,κ2) = (κH ± (κH
2 −κG )

1
2 ) .	The pair	   (κH ,κG ) 	is a native 

output of the discrete methods. 
• A more intuitive shape partitioning criteria can be built 

from    (κD,κH )  where   κD is the curvature mean difference: 

    κD = (κ1−κ2) 2 . It divides the local shape domain into 
two half-spaces 

  H
+
| H
− 	with respect to the sign of 

  κH . 
• A major intuitive representation arises when the polar coor-

dinates embedded in    (κD,κH ) 	are made explicit through the 
curvature pair    (κC ,κP ) 	 where     κC = (κD

2 +κH
2 )

1
2  is the 

curvedness, also defined as     κC = (2κH
2 −κG )

1
2 , and	

    κP = arctanκH κD 	 is the angular phase defined on 

   [−π/2,+π/2] . The normalized phase 
   
2
π
κP , also known as 

the shape index (Koenderink, 1990), is thus defined on 

  [−1,+1] . 
The implicit	    (κD,κH )  and explicit    (κC ,κP )  polar coordinates 
are both well suited to get an intuitive overview of the morpho-
logical bedform variability while performing the anisotropic 
filter discussed below. However, in this data processing con-
text, it is more convenient to make direct reference to the cur-
vature radius:    λ = κ−1 . Moreover, the datasets under study 
lead to the use of a logarithmic scale for the curvedness to take 
advantage of the Gaussian-like distribution of its logarithm. 
Thus, bedform shapes are described using 2D-histograms of the 
warped	 coordinates    (λD

* ,λH* ) 	 and    (λC
* ,κP ) , where 

    
λ{D,H }

* = λC* λC λ{D,H } ,	     λC
* = ln(max(λ0,λC ) λ0) , and   λ0  is 

defined as the minimal curvature radius. As stated by Koender-
ink (1990), who was the first to put forward the differential 
scale space 

   
( 2
π
lnκC , 2

π
κP ) , it is worth emphasizing that the 

logarithm of the curvedness provides a more natural measure-
ment scale.  

In this work, the bathymetric surfaces are assumed to be pro-
vided with an extrinsic orientation. Hereafter, inner and outer 

H
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Fig. 1. Relationship between common representations of a curvatures pair 
through 2D diagrams: principals   κ1 and   κ2 , mean sum 

  κH , mean difference 

  κD , gauss   κG , curvedness   κC , and angular phase   κP . The graphic design 
emphasizes the polar viewpoint. 
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regions bounded by a surface are assumed to be linked to sedi-
ments and water materials, respectively; the normal vectors are 
made outward-oriented. Thus, any estimated mean curvature 
will exhibit positive values on bedform ridges and negative 
values in bedform troughs or valleys. This paper focuses on 
ridges and valleys, i.e., structures where     κP ≈±π/4 . Fig. 2 
gives a global overview of the test area used in this study. This 
bathymetric survey was carried out by the Hydrographic and 
Oceanographic Service of the French Navy (SHOM) in May 
2005 using a SIMRAD/EM3002 MBES. Some examples of 
2D-histograms shown in Fig. 3 are built from this area. These 
2D-Histograms provide access to a qualitative description of 
these still unprocessed bedform shapes. A close look at Fig. 3a 
shows that some ridges are very sharp and that bedform stoss 

sides and ridges are superimposed with sharp-ripples waves. 	
The existence of ridges and valleys – the former being sharp-

er as expected – clearly comes out from 2D-histogram where 
the phases	    ±π/4  are over-represented. This accumulation 
effect is mainly the signature of ripples because they are statis-
tically much more present than sand dunes. Moreover, the 
amplitudes of the ripples on several dunes are noticeable with 
respect to the dune elevation. Thus, the first step of the pro-
cessing framework will need to eliminate these ripples without 
performing an excessive smoothing of the dune crests. To this 
end, the next subsections propose a filter that is not only able to 
smooth-out these ripples and the remnant noise, but also able to 
enhance the main characteristics of the bedform structures. 

2.2 Surface isotropic smoothing 
Let    S(u,v,t) 	 denote a 2-manifold surface evolving with re-
spect to time  t 	and embedded in the 3D-Euclidean space   R3  
through a parameterization    x(u,v,t)  over the bounded do-
main Ω . It has been shown that performing homogenous 
smoothing of a surface of some given amount is equivalent to 
letting it undergo an isotropic diffusion process during a given 
processing time (Koenderink, 1984). In this framework, the 
initial state	     S0 = S(u,v,t0)  is allowed to evolve under the 
mean curvature normal flow through the PDE 

     ∂t S =−κH n , 
where    κH (u,v,t) 	is the mean curvature and    n(u,v,t) is the unit 
normal vector. The Dirichlet conditions are currently supple-
mented by holding the domain borders  ∂Ω  frozen over time. 

A popular and very general way of managing the spatial 
component of this PDE is to redefine	  S 	as the zero-set of an 
embedding function in the Euclidean plane	   R3  and then to 
operate in this plane through well-posed numerical schemes 
involving relationships such as      2κH = divn .	However, when-
ever the evolving surface is not allowed to undergo topological 
changes, which is the case for current application context, op-
erating directly on the surface points will provide a much more 
efficient approach. In this way, Desbrun et al. (1999) propose 
to directly compute the normal curvature vector as 

       
−2κHn = limφA→0∇A A 	where  A 	 is a local infinitesimal 

 
Fig. 2. Global overview of the location of the Lézardrieux bank. This banner 
bank is located in north Brittany (France). In the middle part, the 630×630 m 
square region visually enhances the test area used in this study. 
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Fig. 3. Data characteristics of the test area. (a): Shaded representation, with an exaggeration factor of 5, of the bathymetric TIN built from a set of 180000 MBES 
soundings acquired in the geographical area enhanced in Fig. 2. The actual bedform, whose depth ranges from 12 m to 27 m, is composed of medium, large and mega-
ripples. All data are projected in UTM-30N. (b): Qualitative patch shape distributions through the local characteristic pair (   λH

* ,   λD
* ). (c): The same distribution, now 

shown through the pair (  κP ,   λC
* ). Both plots are drawn with   λ0  set to 1 m. These 2D histograms are built on a regular grid involving 256×256 accumulation bins. A 

point footprint is computed as an isotropic Gaussian kernel with a 1.5-bins standard deviation and is defined on a 4-bins radius support. 
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area of	  S  around  x  which has a vanishing diameter of   φA . 
This vector can be seen as the result of the Laplace-Beltrami 
operator    H(S)  applied to a point  x  on the surface  S  – an 
operator that is also known as a generalization of the Laplacian 
from flat spaces to manifolds. Hereafter, the same symbol  H  
refers to both the operator and its resulting vector. The aniso-
tropic diffusion PDE becomes 

     
∂t S = 1

2
H(S) .  However, 

whenever the application context requires a signed estimation 
of 

  κH , the normal vector will still be needed to perform the 
reverse factorization of  H  through 

      
κH =− 1

2
sgn(nH) ||H || .	

2.3 Anisotropic smoothing and shape enhancement 
The methodology proposed below can be seen as a very low 
cost attempt to transpose the anisotropic approaches available 
in the flat space framework to the surface geodesic space. The-
se approaches mainly operate through the variational minimiza-
tion of an ad hoc functional and then give rise to a PDE manag-
ing a gradient descent. Intuitively, once transposed in the cur-
rent application context, such a minimization process is ex-
pected to end up with an entire domain  Ω  spanned by a set of 
sharp ridges and valleys interconnected by a minimal surface. 
However, because the current processing objective is confined 
to providing a filter that is able to enhance dune shapes while 
filtering out both the ripples and the noise components, the 
proposed PDE drops any penalty management with respect to 

  S0  and turns to a mere iterative anisotropic quadratic regulari-
zation. Thus, its main end-user parameter is the integration 
time. 

The basic idea is to drive the local diffusion process 

     
∂t S = 1

2
H(S)  through a scalar control function   g(u,v,t)  

defined on   [−1,+1] . For the sake of clarity, in the first step, the 
following discussion is limited to the quadrant   H+ . However, 
as the problem is symmetric with respect to axis   κD , an a pos-
teriori transposition of the result to cope with the ridges mir-
rored on the quadrant   H−  (i.e., the valleys enhancement) is 
straightforward. As a basic rule, the locations where the curv-
edness is small enough still undergo linear diffusion, i.e.,  g  is 
then set to unity. Otherwise, whenever a local configuration 
bears some resemblance to a ridge profile (i.e., showing both a 
noticeable curvedness and a vanishing Gaussian curvature) the 
speed of the diffusion process decreases, converging to zero for 
an ideal ridge. However, this adaptive iterative process must be 
asymmetric to drop shapes in stable configurations. If the van-
ishing Gaussian curvature is positive, the evolution process is 
damped by  g  while remaining diffusive. Conversely, if the 
vanishing Gaussian curvature is negative, the function  g  re-
turns a negative coefficient letting inverse diffusion occurs. 
The remaining challenge is to define relevant thresholds – 
mainly, through an asymmetric transfer function with respect to 
the space on both sides of the   κ1  axis and a curvature magni-
tude threshold along the same axis – to automatically balance 
between these dynamic modes. 

Such an innovative and very low-cost non-linear PDE is pro-
posed by Meyer et al. (2003) and validated by addressing the 
reverse engineering of noisy man-made shapes. However, un-
like the application goals put forward by these authors, when 
addressing the current bathymetric datasets, some sharp bumps 

or holes may become frozen. To eliminate these artifacts or 
unwanted singularities, a less crude variant of their control 
function is described below. Let    κfloor> 0  denote a curvature 
threshold. The control function of the new non-linear diffusion 
PDE is then built by cascading, in the given order, four logical 
cases: (i) if    κ1 ≤ κfloor  then 

   gH
+ = 1 , (ii) else if    κ2 > κfloor  then 

    gH
+ = 2κ

floor
(κ1 +κ

floor
) , (iii) else if     |κ2|≤ κH  then 

    gH
+ = κ2 κH , (iv) else 

   gH
+ = 1 . Furthermore, to counteract 

the emergence of excessive curvatures, (v) a post-processing 
step progressively restores the linear diffusion while   κ1  in-
creases toward a given threshold    κceil> κfloor , and it then sets 

   gH
+ = 1  if    κ1 > κceil . This is currently done through the update 

   gH
+ ← s2 + (1−s2

)g
H

+  where    s ∈ [0,1]  is linearly defined as 

    s = (min(κ1,κceil)−κfloor) (κceil −κfloor) . This new threshold 
should be setup with respect to the magnitude    λ0

−1 , i.e., with 
respect to a natural curvature bound linked to the spatial resolu-
tion of the MBES data. An overview of the action domains of 

   gH
+  is depicted in Fig. 4. 

If the mirror form 
   gH

−  is required, it may be simply obtained 
by applying the swap    (κ1,κ2)→ (−κ2,−κ1)  to these rules. 
However, because the non-linear PDE will still make an explic-
it reference to the normal diffusion vector  H , 

   gH
+  remains 

valid for the two quadrants and its counterpart 
   gH

−  is not need-
ed. Therefore, hereafter,  g  will implicitly denote 

   gH
+  and its 

curvature coefficients will work simply through 
     
κH ≡ 1

2
||H || . 

In applications operating on flat spaces, it is well-known that 
diffusion flows evolving through an anisotropic PDE may be 
ill-conditioned if the operators involved in the control function 
are directly applied to the current state of the evolving shape. 
The correct numerical scheme requires applying these opera-
tors on an isotropically smoothed state of the current state of 

κD

κH κ1

κ2
κ
floor

κ
ceil

+κ
flo
or

−κ
flo
or

(i)

(ii)

(iii+)

(iii-)

(iv)

(v)

 
Fig. 4. Repartition of the six action domains of the tuning function 

   
g
H

+ . They 
are defined with respect to the thresholds   κfloor  and   κceil  and the angular phase 
defined through the ratio    κ1 κ2 =−3 . The full diffusion still occurs in do-
mains (i), (iv), and (v). 

   
g
H

+ depends only on   κ1  in domain (ii), whereas it 
depends on both   κ1  and   κ2  in domain (iii). Sub-domain (iii+) slightly 
smooths the bump-biased ridges, whereas sub-domain (iii-) performs a slight 
inverse-smoothing on saddle-biased ridges. Data samples currently mapped on 
the edge between domains (iii+) and (iii-) (i.e., perfect ridges) remain strictly 
frozen if they are not too close to   κceil . 
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the shape (Catte et al., 1992). In the same way, the control 
function discussed above has to make reference to a slightly 
smoothed state of   St , denoted by    

!St , obtained through the 
integration of the diffusion PDE over a small time interval   !t . 
The anisotropic PDE is 

      
∂t St = 1

2
!gt H(St ) , where   !gt  is now 

implicitly operated through the standard curvatures pair 

    (!κH , !κG )  issued from    
!St , with 

      
!St = St + 1

2
H(S ′t )

′t =t

t+!t
∫ d ′t . 

2.4 Discrete anisotropic diffusion 

Let the TIN surface  S  denote a discrete counterpart of the 2-
manifold  S  topologically built as a homogeneous simplicial 
2-complex    S = (V,E,T) , where  V ,  E , and  T , denote the set 
of vertices, edges, and triangles, respectively, embedded in   R3  
through a direct parameterization defined by the point cloud 
dataset      {pi, i = 1,!,|V |} . Hereafter,  px  and  py  are the 
georeferenced coordinates of the MBES soundings while  pz  is 
their depths. The 1-skeleton    G = (V,E)  is said to be the graph 
of  S . The k-ring of a vertex  v  is the set   NG

k (v)  of the sur-
rounding vertices linked to  v  through at least one path involv-
ing at most  k  edges of  G . 

In this discrete context, the challenge is to swap from a na-
tive pointwise definition of an operator to another one based on 
a spatial average. Many works – mainly in the Computer 
Graphics domain – have been devoted to devising a discrete 
counterpart  H  for the operator  H – see also Gatzke and 
Grimm (2006). However, Wardetzky et al. (2007) have shown 
that, from a theoretical viewpoint, all of the known discrete 
strategies focusing on the estimation of the normal curvature 
are deemed to be endowed with some intrinsic drawbacks. 
Meanwhile, the cotangents-based operator proposed by Pinkall 
and Polthier (1993) and Meyer et al. (2003), currently a de 
facto standard that is summarized in Fig. 5, is expected to be 
the most versatile with respect to the current goal. The next 
points give the main grounds of this choice. 
• Unlike many schemes that operate only on the 1-skeleton 

 G , this operator implicitly operates through the 2-complex 
 S , providing intrinsic estimations of  H , i.e., its estimation 
vanishes for planar 1-rings for any relative locations of the 
vertices involved. Thus, a discrete diffusion flow based on 
this operator should not exhibit noticeable tangent drifts, 
which is a mandatory requirement for performing enhance-
ments of ridges and valleys through non-linear diffusion be-
cause triangles may have to become badly shaped at these 
features. 

• The computational cost of this scheme is very low. In addi-
tion, its vertices neighborhood is bounded to the 1-ring. 
This feature makes it suitable for efficiently processing an 
iterative integration of a PDE on a large TIN such as those 
built from MBES data acquired in shallow waters. 

• Some computational components involved in  H  provide, 
still at low cost, an additional discrete estimation of the cur-
vature   κG  through the application of the Gauss-Bonnet the-
orem (see Fig. 5). 

The discretization with respect to  t  is done through the for-
ward Euler numerical scheme 

      
St+δt = St + 1

2
δt !gtH(St )  per-

formed over the integration time    t = mδt  through  m  itera-
tions – each of the ancillary smoothing steps being performed 
over     

!t = !mδ!t . This scheme easily enables addressing non-
linear PDEs. However, the limitation of such an explicit 
scheme is well known: At every time,   δt  must be kept suffi-
ciently small so that 

     
1
2
δt !gt||Ht ||  does not exceed the square of 

the spatial granularity, i.e., a magnitude range    ∝ λ0
2 . Moreo-

ver, this theoretical step bound only holds for linear diffusion 
on regular grids. Thus, despite the internal regularization pro-
cess, it is expected to have to proceed through a more conserva-
tive   δt  setup to cope with non-linear diffusion cases. It may 
follow that a larger number of iterations can be required to 
match the same space scale effect. However, because it ad-
dresses a filtering task, the current process only expects shape 
evolutions at the small space scale. Thus, the required integra-
tion time remains tractable. 

Surprisingly, while processing datasets where    λ0 ≈ 1  m and 
starting from well-conditioned TIN, it is even found that work-
ing through     δt = 0.5 , with      δ!t = 0.1  and     !m = 2 , still provides 
good results (see Fig. 6), thus saving a large amount of pro-
cessing time. With this current setting of   (κfloor,κceil) , the filter 
turns out to be almost isotropic with respect to the quadrant 
  H− . Almost all of the ripples disappear while sharp (i.e., well 
localized) dunes ridges still emerge from a smooth background. 
Nevertheless, some ripple stamps break the continuity of the 
dune ridges because these intrinsic characteristics of some dune 
ridges can also be frozen by the filter. Thus, the selected setup 
of the main parameters of the filter   (κfloor,κceil)  is expected to 
provide an optimal trade-off between, on the one hand, the 
acceptable side-effects of the filter and, on the other hand, the 
robustness expected from the automatic features extraction 
process described below. 

pi−

pi

pi+

n = θi+normal(Ti+)i∑ || θi+normal(Ti+)i∑ ||

⌢
Ai± =

0 if αi± > π/2,
1
4
area(Ti±) if (αi±+θi±)< π/2,

1
8
||pi −p ||2 cotαi±  else.

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

∇Ai± = 12 (pi −p)cotαi
±

p

∇A= (∇Ai
−+∇Ai

+
i∑ )

⌢
A= (

⌢
Ai
−+
⌢
Ai
+

i∑ )

κG = (2π− θi
+

i∑ )
⌢
A

H =∇A
⌢
A

Mid point (peripheral edges) Orthogonal (incident edges)
Contour     of the influence area     of  

⌢
A

⌢
ΓMid point (incident edges) 

αi
−

αi
+

θi
− θi

+

Ti
−

Ti
+

⌢
Ai
−
⌢
Ai
+

p

 
Fig. 5. Computation of the normal curvature vector  H  through application of 
the discrete Meyer-Desbrun operator on the 1-ring of a vertex located at  p . 
This graphic makes use of a circum differential indexation of the 1-ring to 
enhance the fragment-wise contributions in the analytical expressions. The 
symbol  A  denotes any influence area of  p  whose perimeter  Γ  always passes 
through the mid points of the incident edges. The actual path, denoted   

⌢
Γ , 

follows the Voronoï influence area of  p  only within non-obtuse triangles. 
Conversely, to remain consistent with respect to the partitioning of the neigh-
boring 1-rings, obtuse triangles require the contextual definition of their path 
segments. After being defined through the application of the Gauss-Bonnet 
theorem, the Gaussian curvature   κG  at  p  is also provided. When the polarity 
of the mean curvature returned by  H is required, a common way to compute 
the unit normal  n  at  p  is also given. 
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3 Automatic extraction of salient linear structures as 
3D parametric curves 

3.1 Tracking of ridge and valley lines 
The typical approaches for extracting ridge and valley lines from a 
TIN follow the same strategy. They track the zero-crossing of the 
derivative of the most significant curvature coefficient along its 
principal direction. These approaches are mainly of two types: 
global and local. A well-posed implementation of a global ap-
proach using implicit surface fitting is described by Ohtake et al. 
(2004). The local approaches, which mainly use explicit poly-
nomial fitting, have a lower cost compared to global ones. Two 
popular local approaches are described by Cazals and Pouget 
(2005a) and Yoshizawa et al. (2005), respectively. Because of 
the use of higher order derivatives, these approaches are very 
sensitive to noise. Therefore, they require isotropic smoothing of 
the surface prior to or during curvature estimations. In addition, 
principal curvature orientations become undefined at the umbilics; 
therefore, special care must be taken at these locations. The differ-
ential geometry classifies the ridges into several types. The 
salient ridges are called crest ridges. The current study focuses 
only on crest lines. Thus, for the sake of simplicity, subsequent 
references to the terms ridge and valley will implicitly refer to 
a crest ridge and crest valley, respectively. These standard 
methods are expected to provide new insights when the filter 
discussed in the previous section is included in their prepro-
cessing pipeline. 

However, the output of these methods continues to be a mere 
bag of lines. Based on its filter breakthrough, the second part of 
this study now attempts to propose an efficient semi-global 
approach that can robustly provide geoscientists with a more 
structured output. This significantly different strategy will 
natively detect the main structural lines as part of an arbores-
cent network. The strategy operates without the noisy principal 
directions and without performing any explicit derivation on 
the principal curvatures. The strategy consists of three steps. 
First, a scalar ridgeness indicator is built from an ad hoc analytical 
recombination of the curvature coefficients. Second, skeletoniza-

tion fronts simultaneously start from the contours of regions where 
the indicator is greater than a predefined threshold. Third, they 
evolve simultaneously in an entropic manner with local speeds 
inversely proportional to the gradient modulus of the indicator 
level and with the constraint of not breaking the topology of the 
uncovered parts of their starting regions. The process stops when 
the fronts are frozen, and the remaining uncovered parts form the 
skeleton forest. 

3.2 Overview of the extraction procedure 
The availability of an efficient filter that is able to enhance ridge 
and valley structures, while smoothing out the ripples, opens the 
door to their explicit extractions through a robust and automatic 
process. Its basic building blocks are high level transforms of the 
Mathematical Morphology – namely, reconstruction, skeletoniza-
tion, tree pruning and hierarchization, influence zones, and con-
strained watersheds. Their theoretical foundations and their usual 
implementations are detailed by Soille (2004). The entire process 
described below operates through its extension on the TINs. Be-
cause the internal topology of a TIN is not implicit, this choice 
requires additional resources to manage their structures. However, 
unlike the working case of the discrete regular Euclidean flat space 
(e.g., DTMs), where the spatial relationships are commonly de-
scribed through lattice structures, the Jordan theorem still holds on 
TIN discrete 2-manifold.  This behavior makes it easy to define 
vertex-based robust predicates enabling the performance of condi-
tional erosion while preventing connected components from being 
split. From a methodological point of view, such a generic frame-
work allows for addressing the segmentation of functions defined 
on 2-manifolds and can thus be called Geodesic Morphometry. 

From an algorithmic viewpoint, the transformations listed above 
involve, either explicitly or implicitly, to manage the propagation 
of entropic fronts. Because it is based on powerful and efficient 
data processing structures – mainly Priority Queues (PQ) – such a 
dynamic model can address the pseudo-interactive analysis of very 
large datasets. 

The aim of this work is to track both ridge and valley lines of the 
main sand waves. From a mathematical point of view the distinc-
tion between ridges and valleys of a surface is merely conventional 

(a)

λH
*

λD
*0 10

+5

−5

0

(b) +
π
2

−
π
2

λC
*

κP

+
π
4

−
π
4

0
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(c)

N
0 100 m

 
Fig. 6. Anisotropic filtering. (a): Application to the bedforms displayed in Fig. 3. (b) and (c): 2D shape distributions of the filtered TIN. A close look at Fig. 3b,c sug-
gests to set     λC

* ! 1.6 and 0., for the floor and ceil bounds of the filter, respectively – at these bounds     λD
* =|λH* |= λC* /sqrt(2) . Because    λ0 = 1 , the anisotropic filter is 

thus locked on the curvatures pair (  κfloor ,   κceil ) = (0.2, 1.0). It is iterated with its generic internal setting – i.e.,   δt  = 0.5,    δ!t  = 0.1, and   !m  = 2. The filtering scale  m  
is set to 100 iterations. 
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depending on the current surface orientation. Thus, the generic 
process devised to track ridge lines still holds while tracking valley 
lines. Unless otherwise noted, the following discussion will now 
focus on ridges. These lines are extracted as a discrete 1-manifold 
network where explicit bifurcations are thus forbidden. The sec-
ondary objective is providing end-users with an automatic estima-
tion of the volume of any sand wave; thus, the geodesic influence 
domain of each ridge line is made available. Although it is still a 
medium-term goal, some interesting results are already available 
and discussed in Section 4.6. 

The entire procedure is summarized as follows: First, a signed 
scalar indicator is made available to measure the saliency of the 
lines (Section 3.3). Then, the line extraction process is performed 
in four steps (Section 3.4).  
(i.) A mask including ridge lines is first extracted by thresholding 

the saliency indicator. To prevent the extraction of closed 
paths, any mask hole disconnected from the support borders is 
filled. Furthermore, to ensure compliance with the entropic-
wise processing context, every local minima of the indicator 
over the mask domain are simultaneously flooded through a 
geodesic reconstruction step. 

(ii.) This main step carries out the skeletonization of the indicator 
function over the mask domain, thus giving rise to a forest de-
fined as a subgraph of the 1-skeleton  G  of the surface  S . 

(iii.) Then, an ancillary step builds a structured and hierarchical 
description of each tree while operating through a geodesic 
hypermetric. As a result, each tree is broken into a primary 
branch (i.e., a trunk maximizing its geodesic path length) and 
a set of secondary branches, most of which are then pruned. 

(iv.) In this last step, the remaining branches are individually post-
processed. This task involves resampling, smoothing, and 
reparametrizing each line path. This enables access to some 
relevant characteristics and insertion of their augmented icon-
ographic instances, built as generalized cylinders, into the in-
teractive 3D-navigation scene. 

3.3 Saliency indicator 
This indicator provides a scalar signed value to measure how 
well a filtered location is linked to a sharp ridge, and a sharp 
valley, through large positive and large negative magnitude 
values, respectively. It is expected that (i) applying this indica-
tor to the enhanced shape provided by the non-linear filter, and 
then (ii) taking it as the major input of the segmentation algo-
rithm summarized above will enable the extraction of reliable 
high level characteristics. Let    (κ̂C , κ̂P )  denote the curvedness 
and angular phase pair computed from the pair    (κ̂H , κ̂G )  esti-
mated from a shape   ̂S  enhanced with respect to the ridges and 
the valleys. The saliency indicator is defined as 

    K = κ̂C sgn κ̂P | sin 2κ̂P |n , where the strength of the smooth 
angular windows is currently defined with    n = 4 . Hereafter, it 
is simply referred to as the ridgeness indicator, because it is 
obvious that its reverse encoding    

⌣
K ≡−K  becomes the valley 

saliency indicator. 
The pair    (κ̂H , κ̂G )  required to build this indicator is already 

available as a by-product of the filtering process. However, 
because the goal is now to perform a static shape analysis, it is 
relevant to perform this measurement more homogenously 

using a less crude estimator than the discrete Meyer-Desbrun 
operator. Thus, a classic continuous approach,	 operating 
through the fitting of an osculatory paraboloid on k-rings, is 
retained to obtain   (κ̂1, κ̂2)  first. Optionally, a regularization 
effect can now be managed while operating estimations with 
   k >1 . A mapping of this indicator on the enhanced surface 
discussed above is depicted in Fig. 7. 

3.4 Extraction and representation of ridge lines 
3.4.1 Preprocessing steps 
Let   M0  denote a mask function defined on the vertices set  V  
with    M0 = 1  if   K ≥ h  else    M0 = 0 , where  h  is a ridgeness 
threshold. To allow the end-user to easily express some rele-
vant threshold  h  with respect to the actual distribution of the 
ridgeness function, this threshold can, in turn, be indirectly 
specified as    h = K med+h*K mad  through a rank-based scale 
  h* , where    K

med= medi∈Ω+{K(i)} , and 

   
K mad= 3

2
medi∈Ω+{|K(i)−K med|} , are the median, and the 

median absolute deviation of  K , respectively – both being 
computed over    Ω

+= {vi ∈V ;K(i)≥ 0} . Each Connected 
Component (CC) of   M0  receives a unique label identifier. Any 
CC of the inverse mask   M0  not connected to the domain bor-
der  ∂Ω  is erased. This hole filling step guarantees that the 
linear structures extracted below will not contain circuits. Then, 
any CC of   M0  whose geodesic area is less than   aCCmin  is 
removed – the computation rule of a vertex area is described in 
Fig. 5. This cleaning step, which removes only sparse and qua-
si-punctual components, should not be too aggressive. Let  M  
denote the mask issued from these preprocessing steps. 

+0.03

-0.03
N

0 100 m

 
Fig. 7. Mapping of the ridgeness indicator  K  on a filtered instance of the 
Lézardrieux patch. The curvatures are estimated using the ring extent order 
   k = 3 . The angular window strength around the phases    ±π/4  is defined with 
   n = 4 . The pseudo-colors mapping focuses on the saliency level clipped with 
respect to the symmetric interval [−0.03, +0.03]. 
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The last preprocessing step performs a geodesic reconstruc-
tion of   K maxM  over  K , with    K

max= maxi∈Ω{K(i)} . This is 
an iterative global transform applied until convergence. An 
iteration performs an erosion of   K

maxM  on the 1-ring neigh-
borhood; if the eroded state of a vertex becomes lower than its 
reference value in  K , its state is increased to this reference 
value. This transform results in a new reconstructed ridgeness 
map    KR = recK(K maxM )  where any local minimum of  K  
found in locations covered by  M  are now flooded. The parts 
of  K  linked to the background of  M  are left unchanged in 

  KR . An example of this pair   (KR,M )  is depicted in Fig. 8a,b 
while focusing on one CC. 
3.4.2 Skeleton extraction 
The skeletonization of  M  with respect to its informative con-
tent   KR  is done iteratively while performing successive condi-
tional erosions on  M  until convergence. In the initial state, 
any vertex of  M  is labeled UNPROCESSED if it belongs to the 
mask foreground or labeled PROCESSED otherwise. The initiali-
zation step locates all of the foreground contour vertices of  M  
and then pushes them into a waiting queue PQ with a priority 
equal to the negative of their ridgeness in   KR . The fronts then 
start to progress iteratively while removing the current output 
vertex from PQ, whose label becomes PROCESSED. If this ver-
tex location can be eroded with respect to its 1-ring without 
breaking the topology of the remaining part of its CC in  M , 
then its mask state is zeroed. Independently of the results of 
this test, every neighbor of this vertex that is still UNPROCESSED 
and not already in PQ, is put in PQ with a priority equal to the 
negative of its ridgeness in   KR . The process ends when PQ 
becomes empty. Let   MSK  denote the final state of  M . The 
remaining foreground vertices of   MSK  form the skeleton.  

However, to proscribe the occurrence of skeleton paths in-
volving border edges, the vertices of the binary mask located 
on  ∂Ω  require a special care: At these places, the erosion step 
may be enabled to break the current CC topology giving rise to 
additional connected components within the skeleton. Thus, a 
final cleaning step occurs to discard from   MSK  spurious con-
nected components with geodesic areas lower than   aSKmin . The 
skeleton result of the tutorial CC is depicted in Fig. 8c. 
3.4.3 Skeleton structuration into branches and pruning 
Each tree of the skeleton issued from the previous step may 
involve many branches. Most of them account for insignificant 
sub-structures or for ripple residuals. Thus, a structural and 

hierarchical decomposition of each tree into a primary branch 
(i.e., its trunk) and a set of secondary branches is required to 
post-filter these trees while pruning some of their branches. 
The iterative process performing this task operates through a 
geodesic hypermetric based on   (KR,MSK) . It can be described 
through three main steps: 
(i.) The initialization step marks each leaf of the skeleton with 

a unique label; the labels already involved in the CC iden-
tifications in   MSK  are reserved. Each of these vertices is 
registered as the tail of a starting path. At startup, these 
vertices are also registered as the current head of this in-
coming path whose initial geodesic length is thus zeroed. 
Each of these paths is natively labeled ONGOING and in-
crements the ONGOING paths count of their respective CC 
by one unit. The vertices linked to these head locations are 
put in a priority queue PQ. At every step, the negative of 
the cumulated length of the tail-head path segment will de-
fine the priority of its current head vertex in PQ. 

(ii.) The branch recovering process iterates while PQ is not 
empty. The current output is removed from PQ. Let  i  and 

 li  denote the identifier of this vertex in  S  and the current 
path length to reach its own tail, respectively. Its pro-
cessing context depends on the ongoing path count 

  n(CCi)  of its CC. If this count is lower than two, this loop 
reiterates immediately. Otherwise, this unloaded vertex  i  
is always the current head of an ONGOING path. The verti-
ces of the undiscovered parts of the skeleton (i.e., those 
unprocessed that are not already registered as part of one 
path) found within the 1-ring neighborhood of  i  are then 
analyzed. The objective of this scan is to determine a topo-
logically valid successor  j  so that the current path can 
progress through an additional step of length  lij . This pro-
spective step length is quantified through a geodesic hy-
permetric 

    
lij = 1

2
(KR(i)+ KR(j)) ||pj −pi || . The topolog-

ical test applied to validate  j  states that removing the ver-
tex  j  must not break the topology of the unprocessed part 
of the skeleton. The actual processing of  j  still depends 
on   n(CCi) . 
• The count   n(CCi) is greater than two. If a valid successor 

 j  has been found for  i , then  j  becomes the new head of 
the path and is pushed into PQ with priority    −(lij + li) . 
Otherwise (i) the path is labeled TERMINATED and the 
ONGOING paths count   n(CCi)  is decremented by one 

(a) (b) (c) (d) (e) (f)

 
Fig. 8. Processing sequence showing the main steps of the extraction and visualization of the ridge lines of a sandy bedform. (a): Reconstructed ridgeness function – 
map   KR . (b): Cleaned and labeled CC – mask  M . (c): Skeleton of  M  with respect to   KR  – mask   MSK . (d): Branch-labeled decomposition of this skeleton through 
a geodesic hypermetric – mask   MBR  with all native branches preserved (nine secondaries). (e): Same mask overprinted with the basic graphic instances of the parame-
terized and smoothed branches issued from the pruned skeleton. (f): Same branches displayed through their augmented 3D graphic models. 
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unit, and (ii)  i  is registered as the final bifurcating head 
of the path and receive the label of its native CC in   MSK . 

• The count   n(CCi)  equals two. Because the preprocessing 
step (Section 3.4.1) ensures that there are no circuits in 
the mask, these two remaining ONGOING paths are the two 
opposite half paths of the trunk of   CCi . Thus, the current 
step always contributes to the completion of the trunk and 
the two remaining head points should be made to progress 
until they collide – this event also defines the geodesic 
midpoint of the primary branch. In the current context,  i  
gets always a valid successor  j . If  j  is not the vertex 
head of its half-path counterpart (i.e.,  j  is not in PQ), the 
vertex  j  is pushed in PQ with the priority    −(lij + li)  and 
the loop reiterates immediately. Otherwise, this event 
marks the completion of a trunk path. The two half-
branches are concatenated to form the primary branch and 
the ONGOING path count   n(CCi)  is zeroed. This primary 
branch has no head and the current labels of its two tails 
are erased with the same number: the label of its native 
CC in   MSK . However, a pseudo-head is still required for 
technical purposes, this one is made to point to the tail 
vertex that has the greater identifier in  S . 

(iii.) In this final pruning step, only secondary branches are 
subject to clipping. Those whose length is shorter than 

  lBRmin  are removed. Unlike the results of the two cleaning 
steps already described, this one should give rise to notice-
able changes because many small secondary branches are 
indeed spurious structures. Its optimal setting encompasses 
expert-level trade-off (see also the discussion in Section 
4.1). Hereafter,   MBR  denotes the cleaned and branch-
structured state of   MSK , where paths are now labeled with 
the label of their respective tail vertex. 

The branch-wise decomposition of the skeleton is depicted in 
Fig. 8c–e. The complete set of branches is displayed in Fig. 8d, 
where each branch is mapped with a unique color expressing 
the label of its tail. Only two branches – the trunk and one 
secondary, which are overlaid by their respective smoothed 
paths – remain after the pruning example shown in Fig. 8e. 
3.4.4 Branch re-parameterization and augmented 3D represen-

tation 
Each ridge line is now registered in a database as an ordered list of 
vertices of  S  describing a polygonal geodesic path along with its 
tail-labeled description in the mask   MBR . To allow the user to 
perform a perceptual and quantitative analysis on the basis of a 
less crude set of paths, each path is then smoothed and re-
parameterized with respect to its curvilinear abscissa defined 
on [0, 1]. Only the two ends are kept frozen at their native 
vertex locations. A curvilinear differential analysis maps an 
intrinsic direct orthonormal Frenet trihedron (i.e., the tangent, 
normal and binormal   (tF,nF,bF)  unit vectors-triplet along with 
its (curvature, torsion) scalar pair) on every locations of the 
path. This homogenous description enables the construction of 
a generalized cylinder around each path. 

A last cleaning step is operated at this GUI level. To this end, a 
median value of   KR  is computed separately along each regis-
tered path, and the median of this set of medians is then re-

turned. The paths with median ridgeness that are lower than 
this value are discarded from 3D representation if their tail-head 
cord length is less than 

  lTHmin . This heuristic filter is mainly ex-
pected to address the removal of quasi-circuits around bumps. The 
two paths depicted in Fig. 8e have successfully undergone this 
infographic-level cleaning step. 

Any parametrized line can also be endowed with extrinsic at-
tributes to provide additional visual insights. The latter can be 
some characteristics inherited from those found under the original 
discrete geodesic path (e.g., the surface normal  n  or the saliency 
indicator level   KR ) as long as they have been subject to the same 
post-processing steps as their native vertex locations. The color 
texture of the cylinder encodes the amplitude of an extrinsic 
channel whereas its radius section is simultaneously modulated 
by another extrinsic channel. In the scene depicted in Fig. 8f, 
the underlying ridge saliency of the surface is now visually 
transferred over the cylinder, both through its color texture and 
its section radius. 

Fig. 9 displays the network of ridges extracted from the 
Lézardrieux bank while applying this segmentation procedure 
to the ridgeness map in Fig. 7. In addition to the ridgeness 
threshold  h , which is natively expressed through its rank-
based relative value   h* , four cleaning parameters have to be 
entered: the geodesic areas   aCCmin  and   aSKmin  (m2) and the 
geodesic lengths   lBRmin  and 

  lTHmin  (m). Because it may be 
convenient to express these four values as an information-

+0.05

-0.05
N

0 100 m

 
Fig. 9. Extraction of the ridge and valley network of the filtered surface, driven 
by the ridgeness map in Fig. 7. Concerning the iconographic working scale, the 
modulation of the radius of the cylinder sections operates through the range 
window 

  
[0.3λmoy, 2.2λmoy ] . This radius window is linearly mapped from the 

ridgeness interval   [h
*, h1

*] , where   h1
*  is the relative upper bound defining   h1  

through the same rank-based rule that defines  h  from   h* . The current setup 
for the ridge and valley icons is   h1

*  = 10.0 and 2.5, respectively. From a per-
ceptual standpoint, the valley lines appear with noodle-like profiles whereas in 
some places ridge lines appear with sausage-like profiles. The latter are not 
profiles with artifacts: some ridges are natively heavily notched by ripples and 
these configurations may have been frozen by the anisotropic filter. 
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quanta count, the user is allowed to provide them through a 
number of points. These relative instances are respectively 
denoted   {aCCmin

* ,   aSKmin
* ,   lBRmin

* , 
  lTHmin
*

} . These are then 
internally scaled into physical units through 

    
a = 3

4
a*λmoy

2  and 

    l = (l*−1)λmoy , where   λmoy  is the mean edges length of  S , 
i.e., ~1.8 m with respect to the filtered state displayed in Fig. 6. 
The processing setup of the ridge lines extraction in Fig. 9 is 
  h* = 1.0 with the cleaning parameters set {10, 10, 10, 15} giv-
en in number of points. As stated previously, as long as the re-
assignation    K ←

⌣
K  is done before re-processing, the valley 

lines extraction is formally the same problem. The parameter 
set of their extraction is   h* = 0.01 with the cleaning parameter 
set {30, 30, 40, 15} given in number of points. As their salien-
cy levels are very poor with respect to those of the ridges, the 
threshold is smaller and the cleaning step becomes slightly 
more aggressive, especially with respect to the clipping of the 
secondary branches. 

4 Discussion 

4.1 High-level semi-interactive edition of topological 
constraints 

The network in Fig. 9 still contains bifurcation errors with 
respect to geoscientist expertise. To scrutinize these locations, 
the current configurations of the bifurcations are noted in Fig. 
10. These are not true segmentation errors with respect to the 
generic segmentation approach devised above. To successfully 
address these configurations, the knowledge issued from a 

physical model of the dune formations and interactions still has 
to be included in future work. However, the estimation of the 
path lengths through a geodesic hypermetric was already de-
vised to counteract much of these potential geometric biases 
while weighting the path length by the ridgeness. However, this 
cannot overcome large discrepancies between a short and very 
salient branch and a very long branch with poor saliency. Thus, 
in the current situation, an expert should be allowed to proceed 
to an interactive topological surgery of the network while oper-
ating intuitively at the symbolic level, i.e., not requiring some 
time consuming interventions at the data level. 

This optional facility is currently addressed through a simple 
trick. First, all of the tail vertices involved in the structure of 
the trees that contain at least one secondary branch are made 
clickable through the insertion of a spherical pin initially 
shown in its neutral state, e.g., white. While navigating through 
the 3D scene, the user can then successively click on the pairs 
of tail vertices that should become trunk-linked. A color change 
of the pin (e.g., to red) acknowledges each selection. The seg-
mentation process is then reiterated from the global step de-
scribed in Section 3.4.3. In the initial step, any selected tail 
vertex now receives the same initial large length, whereas the 
other tails still receive an initial zero length as before. There-
fore, these virtually extended paths will not begin to progress 
until all of the unextended paths are fully discovered. The 
surged network rebuild from the red pins selection, as shown 
Fig. 10, is depicted in the next figure. 

4.2 Global statistics vs curves intrinsic orientations 
Because a smoothed and re-parameterized 3D curve is mapped 
on each path registered in the database, some high-level ridge-
valley statistics can be built at convenience. Moreover, the 
setup of an ad hoc iconographic instantiation can simultaneous-
ly help obtain intuitive insights while addressing the analysis of 
their global characteristics. An application addressing the mean 
orientations of the lines in spherical coordinates is depicted in 
Fig. 11. To this end, first, the intrinsic curvilinear frames 

  (tF,nF,bF)  are simultaneously rotated around   tF  so that the 
transformed normal vectors   nF  belong to the plane defined by 

  tF  and the normal  n  of the surface. Let   (tF,nR,bR)  denote 
these new orthonormal curvilinear frames. Second, the mean 
unit vector   bR  of each line is computed and encoded in spheri-
cal coordinates   (θ,ϕ)  where  θ  and  ϕ  denote the azimuthal 
and polar angles, respectively. For display purposes, ridge and 
valley azimuths are mirrored in the West and East hemi-circles, 
respectively, to limit icon overlapping. The section of the icon-
ographic paths is now made cuboidal and aligned with 

  (nR,bR) . The angular dispersion of the points confirms the 
perceptual distribution: The azimuths of the mega-ripples (up-
per right part) differ from the orientation of the sinusoidal 
waves (diagonal part) with the mean azimuth of the barchans 
(lower left part) showing a greater dispersion. Because valley 
lines are mostly found on lee sides of sand waves, the distribu-
tion of their polar angles corroborates the main azimuth 

  NW→SE  of the current transport dynamics of this scene. 

(a)

(b)

(c)

(d) (e) (f) (g)

(h)

N
0 100 m

 
Fig. 10. Procedure aiming at symbolic redefinition of the bifurcations that 
could be determined to be physically irrelevant. Considering the network in 
Fig. 9, seven bifurcations are identified in (h) and zoomed in (a–g), respective-
ly. The tails of the paths involved in the bifurcations are made clickable using 
white pins. The user simply clicks the pin pairs he wants to become trunk-
linked, which turn red, and the automatic extraction process is run again using 
these external constraints. Some of these bifurcation hierarchies (e.g., (f,g)) are 
supposedly natively acceptable, whereas (a–e) need to be redefined. 
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4.3 Robustness and consistency 
The components of the tool pair (i.e., a filter and a detector) 
discussed in this study are low-level measurement tools. The 
usage of these tools is relevant, provided that the minimum 
curvature radius of the structure primitives under study remains 
much greater than the resolution of the raw data. If this condi-
tion was not fulfilled, an alternative methodology that performs 
convex optimizations through a regularization model would 
have to be considered, thus resulting in a very different prob-
lem involving interpolation and reconstruction; then this prob-
lem would be subject to critical robustness considerations. The 
data resolution can be computed as the median distance be-
tween MBES soundings of the post-processed data set. This 
value is approximately 1 or 2 m for the currently available 
datasets. 

Thus in this optimal setting, the robustness of the detection 
results is mainly linked both to the overall robustness of the 
complex data acquisition pipeline of an MBES survey and to its 
post-processing validation steps. The structures to be extracted 
are intrinsic geometric primitives whose inference involves the 
measurement of high order derivatives; therefore, for a given 
TIN, the accuracy of the computed results would be better than 
that of any manual extraction even that by a trained operator. 
Therefore, in the study of complex dynamic systems such as 
sand bedforms, the post-processing validation step of the accu-
racy lacks reliable prior ground truths. 

Conversely, between two consecutive surveys, such bed-
forms can undergo drastic transformations; therefore, the con-
sistency of the extraction of primitives should be a qualitative 
criterion that is more relevant than the robustness. With regard 
to the processing pipeline, this consistency criterion is twofold; 
it involves (i) the sensitivity with respect to the parameters 
setting and (ii) the flexibility with respect to the interpretation 
of the ridge network provided by the detector. The second 
point, already discussed in Section 3.1 and Section 4.1, relies 
on the ability to manage explicit bifurcations within the ridge 
network, thus enabling interactive insertions of high-level 
knowledge from the expert.  

Recently, Debese et al. (2016) investigate the marine inspec-
tion of another georeferenced monitoring area through the 

methodology discussed in Section 2 and Section 3. The chal-
lenge in their study is mainly related to the consistency with 
respect to the parameters setting. Their georeferenced monitor-
ing area is a tidal bank that is significantly different from that 
of the banner bank described in Fig. 3. A set of 30 unevenly 
time-spaced surveys, ranging from one to three per year dis-
patched over 15 consecutive years, were conducted using two 
different MBES systems with similar spatial resolutions (ap-
proximately 1 m). The processing parameters of the first survey 
were set according to the default setup proposed in this study, 
and their corresponding internal instantiations were maintained 
static to process the other surveys. Meaningful and promising 
results are available within each survey because different ac-
quisition contexts, with respect to the states of the natural sys-
tem and the measurement systems, can be addressed without 
changing these parameters. 

4.4 Computational cost 
The processing tasks discussed in this study involve a sequence 
of four computational kernels: (i) performing anisotropic filter-
ing, (ii) computing the ridgeness indicator map, (iii) applying 
the ridge detector to this map, and (iv) performing an augment-
ed visualization of the smoothed instance of a subset of the 
ridge network obtained from (iii). The technical insights related 
to the scientific visualization of the ridge and valley network 
through generalized cylinders (i.e., Computer Graphics) are not 
within the scope of this paper. However, the last kernel (iv) 
uses 1D discrete primitives smoothing and drawing; therefore, 
its additional cost is marginal with respect to the costs of the 
first three kernels. 

Some hardware tests have been performed using a MacPro 
Cylinder with a Quad-Core Xeon-E5 CPU running at 3.7 GHz 
and having 32 GB of RAM. The overall computation cost re-
mains mostly linear with respect to the number of vertices used 
by the TIN. To process a TIN that includes 1.3 million points 
with the default parameter settings, this computer takes 156 
seconds to apply the filter, 22 seconds to compute the ridgeness 
map and less than 5 seconds to detect and display the ridge 
network. These times are obtained for the single-thread mode 
of operation. The most demanding computation kernel is the 
anisotropic filter because the relative cost of the other kernels 
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Fig. 11. Statistical analysis, in spherical coordinates, of the orientations of the ridge-valley network. The view (b), also expressing the result of the process described in 
Fig. 10, gives an iconographic instantiation of the network aiming at visual expression of the underlying binormals twisted with respect to the surface. The charts (a,c) 
depict the distribution of the mean azimuthal and polar, respectively, angle of the twisted-binormals. 
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remains marginal. Thus, a TIN issued from an MBES survey 
containing 2 million points could be processed with the default 
parameter settings in less than 300 seconds on the currently 
available tabletop computers. Further, this time can be easily 
divided by the number of CPU cores. 

4.5 Comparisons with other ridge detectors 
The alternative ridge extraction strategy discussed in Section 3 
provides an arborescent network in which the key structural 
nodes are bifurcations. Thus, the latter are fundamental ele-
ments, and their occurrences are welcome, even non-ternary 
ones. In contrast, in typical local extraction approaches, perfect 
bifurcations appear as mathematical singularities (e.g., umbil-
ics) that cannot be solved through a limited local consideration 
basis without some heuristics. 

Below, we present some comparisons with two well-known 
local ridge detectors: that of Cazals and Pouget (2005a), hereaf-
ter labeled "A", and that of Yoshizawa et al. (2005), hereafter 
"B". To address path reconstructions, the detector A includes 
topological heuristics, whereas the detector B recovers small 
gaping jumps by using another heuristic rule. These detectors 
output a list of polygonal lines, each provided with some path 
integrals: PathStrengthA, PathSharpnessA, PathRidgenessB, 
PathSphericalnessB, and PathCyclidenessB. They can be used to 
post-filter the set of lines through ad-hoc thresholds. Hereafter, 
the detector discussed in Section 3 is labeled "C" and is used 
with its default setting modified with    h

*= 0.5 ; this detector 
provides its own path integral PathRidgenessC based on the 
saliency indicator defined in Section 3.3. Van Dijk et al. (2008) 
applied the detector A to automatically extract ridge lines from 
sand waves. However, this operation was performed through 
both a smoothed DEM context and a homogeneous waves 
orientation hypothesis; ripples and megaripples are supposed to 
have been be optimally discarded through an oriented 1D low-
pass filter. 

To perform a balanced perceptual analysis, the three corre-
sponding post-cleaning steps are tuned to provide the network 
with similar complexities. This operation currently results in 
keeping approximately 10%, 10%, and 60%  from the A out-
puts, B outputs, and C outputs, respectively, using the corre-
sponding threshold settings, PathSharpnessA ≥ 1E05, PathRid-
genessB ≥ 1.0 and PathRidgenessC ≥ 1.0. The curvature estima-
tions are 3-ring-based for the detectors B and C, whereas the 
detector A requires a 4-ring extent to provide its full capabili-
ties through its more sophisticated estimator (Cazals and Pou-
get, 2005b). The resulting networks are shown in Fig. 12a. We 
make the following observations: 
• On acute ridge locations, the detector A fails with noticea-

ble path deviations, e.g., Fig. 12b. This result is mainly due 
to ill-shaped triangles and very acute ridges that are no 
longer compliant with the internal working hypotheses. 

• Conversely, the path locations provided by the detector B 
are very accurate. Thus, this detector can take full ad-
vantage of the filtered TIN. However, owing to its local na-
ture, several resilient broken paths involving gaps that are 
larger than one edge continue to be found at locations that 
are heavily notched by resilient ripples, e.g., Fig. 12c. 

• The paths issued from C are no longer broken and are well 
localized. However, these paths may exhibit under-
segmentation at vanishing path extremities (Fig. 12d). This 
behavior is not an intrinsic drawback because it depends on 
the input threshold setting. Now, the paths must follow the 
native edges of the TIN; therefore, they are less smooth than 
the paths provided by A or B. Nevertheless, if this path con-
straint resulted in an apparent limitation, it would mean that 
the required sampling resolution was not matched by the 
MBES data.  

Without internal changes, the detector C can be made to 
function in a fully global mode using a null input threshold 
   h = 0  while continuing to accept topological constraints de-

(e)A
B
C

(b)

(c)

(d)

γ1

γ2

γ3
γ4

(a)

N
0 100 m
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0 100 m

 
Fig. 12. Comparison of three detectors aiming at extraction of structural lines from the filtered result displayed in Fig. 6a. Overprints of the three resulting networks are 
given in (a) with A: Cazals' detector, B: Yoshizawa's detector, and C: semi-global detector described in Section 3. The 3D zooms (b–d) point to one example of their 
respective drawbacks: path deviations by A in (b), path breaks by B in (c), and path under-segmentations by C in (d). The gauge network (e) displays the raw output of 
the detector C when it fully operates in global mode and does not perform branches clipping. 
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fined using the protocol described in Section 4.1. Fig. 12e 
shows a 3D-enhanced display of the corresponding global 
network result in which the branch clipping process has been 
disabled for didactic purposes, i.e.,    lBRmin

* = 2 . The presence or 
absence of the paths labeled    γ1!4  in Fig. 12a does not indicate 
failure because the three detectors can provide all of these paths 
through their native raw outputs. The final status of these paths 
depends on the detection strategy during the setup of the post-
filtering step, i.e., enabling or disabling false positives. The 
global results in Fig. 12e could act as a ground truth model 
versus Fig. 12a; therefore, a close inspection of Fig. 12e could 
result in selecting a trade-off disabling the obtention of these 
paths. For the 1.3 million points of the benchmark context of 
Section 4.4 (where the detector C requires 27 seconds), the 
detector A requires 357 seconds whereas the detector B re-
quires 90 seconds; these times include the curvature estimation 
step. 

Thus, in spite of the drawbacks and additional time con-
sumed, performing ridge extractions by these well-known ap-
proaches may provide useful measurements while handling 
geomorphological structures similar to those described in this 
paper. However, the previous statement is valid provided that 
(i) the TIN is cleaned and enhanced beforehand using the ani-
sotropic filter described in Section 2, and (ii) an ad-hoc strategy 
is devised to clean the over-segmented outputs found in the bag 
of ridges. The new detector C was just devised to address this 
latter point (ii) natively providing an arborescent framework. 
The network structured output provided by this semi-global 
approach should increase the flexibility and thus enable accu-
rate interactive morphometry on complex natural structures 
including lineaments, the commonly found structures that typi-
cally result in both oversegmentation and topological problems. 
As shown in Fig. 12e, the new detection strategy could even be 
made global while continuing to handle topological constraints 
using a multi-level generalization of the protocol described in 
Section 4.1. 

4.6 Toward automatic extraction of geodesic domains of 
sand bedforms 

The first approach, depicted in Fig. 13a,d, transcribes the branches 
stored in   MBR  to a new binary mask   MZ , where each branch still 
gives rise to a unique CC. Then, starting from the contours found 
in   MZ , it simultaneously propagates geodesic fronts – one per CC 
– over the surface at uniform geodesic speed. If it did not collide 
with another before, any front stops to advance after it has trav-
elled the geodesic distance   dmax . To get an optimal accuracy, the 
geodesic distance is computed with respect to  S , not only with 
respect to  G , through the continuous Eikonal approach described 
by Kimmel and Sethian (1998). 

The second approach transposes a well-known global segmenta-
tion technique, the markers-based constrained watershed, in the 
geodesic morphometry context. Let    

⌣
K0  denote a copy of   

⌣
K . All 

of the sites of    
⌣
K0  covered by   MZ  are set to a lower bound of   

⌣
K , 

e.g.,    −K max−1 . Let    
⌣
K1  denote a copy of    

⌣
K0 .  Every location of 

   
⌣
K1  covered by the inverse mask   MZ  is set to    

⌣
K max . A first step 

performs the geodesic reconstruction of    
⌣
K1  over    

⌣
K0 . Let 

    
⌣
KR = rec ⌣K0

(
⌣
K1)  denote this reconstructed map where all local 

minima covered by   MZ  are now flooded. In the second step, a 
watershed recovers the geodesic influence zone of each branches 
with respect to the geodesic function    

⌣
KR . However, when apply-

ing a global transform to an open support cut from a larger do-
main, a common difficulty may arise: the choice of the boundary 
conditions can have drastic influences on the result relevance. To 
this end, the parts of the support borders  ∂Ω  not covered by the 
partition issued from the first approach are also added to the maker 
set   MZ . The result is displayed in Fig. 13b where only the geodes-
ic influence regions linked to the branches are displayed. As ex-
pected, the salient parts of the valley lines match the borders of the 
influence zones, especially on the lee sides of the waves. However, 
in other parts, some fronts have still progressed too much without 
colliding with a competing one. 

The result displayed in Fig. 13c is the logical intersection of the 
two partition types. These results are promising but they are still 
more qualitative than quantitative. However, they will provide a 
relevant initial guess for a more complex algorithm involving 
regularization rules – theses rules also expressing theoretical or 
empirical knowledge about sandy bedforms. 

5 Conclusions and perspectives 

This work demonstrates that an efficient computer-based plat-
form can be developed to semi-interactively assist geoscientists 
in the routine extraction of some global and intrinsic morpho-
logical characteristics of sandy bedforms from recent MBES 
surveys. Moreover, this could be done without smoothing their 
main characteristics (i.e., the ridge lines) whose dynamics 
could then be tracked accurately through multiple surveys, and 
the algorithms could work on raw bathymetric datasets while 
dealing with their pervasive ripples. Because these structures 

(a) (b) (c)

(d)

 
Fig. 13. Toward automatic extraction of geodesic domains of a sandy bedform. 
For visual purpose, these views still include the valley network, but this infor-
mation is not used by the algorithm. (a): Geodesic regions recovered through 
uniform geodesic speed with a maximum geodesic distance   dmax = 45 m. (b): 
Geodesic regions recovered through the constrained watershed applied to the 
inverse ridgeness   

⌣
K . (c): Intersection between these two approaches. (d): 

Perspective view of (a), showing that the global trend of this area is very 
complex and that its depth fluctuations have magnitudes similar to those of the 
main sand waves. 
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are often mobile with respect to both their conformations and 
locations, the reduction of the inter-observer variability and the 
preservation of the native accuracy of the data are two funda-
mental key points.  

Recent engineering failures with respect to the premature 
breakdown of the basements of offshore wind farms in the 
North Sea, have shown that understanding these natural struc-
tures is a critical issue. After insertion into the global infor-
mation pipeline, the benefits of this tool are twofold: (i) it could 
help marine engineers in charge of sand resource management 
to estimate sand volume evolution over time in a fixed area; 
and (ii) marine scientists could obtain reliable shape character-
istics and dynamics measurements that could help them insert 
relevant global constraints into their complex models to calcu-
late advanced results with tractable computational costs. 

Future work will improve both the robustness and efficiency 
of the current approach by incorporating a more versatile aniso-
tropic filter, a geodesic segmentation tool to quantitatively 
track the influence domain of each sand wave, and the semi-
interactive insertion of more general topological constraints on 
the ridge networks. The development of a companion tool to 
extract the global trend of the underlying static bedforms is also 
required to obtain accurate measurements of sediment volume. 

Notations 

  (κ1,κ2)  principal curvatures,    κ1 ≥ κ2 . 

  (e1,e2)  orthogonal principal directions of   (κ1,κ2) . 

   (κH ,κG )  mean and Gauss curvatures,    (κ1+κ2) 2 ,   κ1κ2 . 

   (κD,κH )  difference and mean curvatures,     κD =(κ1−κ2) 2 . 

   (κC ,κP )  curvedness and phase,     (κD
2 +κH

2 )
1
2 ,    arctanκH κD . 

 λ  some curvature radius – i.e.,    κ−1 . 

  λ0  actual minimal curvature radius of a surface. 

   λC
*  log-curvedness radius    ln(max(λ0,λC ) λ0) . 

   (λD
* ,λH* )  difference and mean curvatures radius coordinates. 

   (λC
* ,κP )  curvedness radius and phase coordinates. 

  (H
+
,H
−
)  quadrant labels on   κP  domain following    sgnκH . 

   x(u,v,t)  space and time parameterization of a surface in   R3 . 

   S(u,v,t)  continuous 2-manifold surface. 

   n(u,v,t)  unit normal vector of  S . 

  (Ω,∂Ω)  domain and Border of  S . 

   (S0,St )  initial and Current states of    S(u,v,t) . 
 A  local infinitesimal area of  S  around  x . 

   H(S)  normal curvature vector at  x . 

   ∂t S  time partial derivative of  S . 

 gt  orthogonal speed   g(u,v,t)  defined from   (κ1,κ2)  on   St . 

  (κfloor,κceil) filter curvature bounds    λ0
−1≥κceil> κfloor>0 . 

   
!St  isotropically smoothed state of   St . 

  !t  smoothing strength involved by    
!St . 

  !  denote values defined from    
!St  – e.g.,    !κ1 ,

   !κH ,  !gt . 
 S  discrete embedding of  S . 
 S  topological structure of  S – i.e., a TIN   (V,E,T) . 
 V  set of    |V |  vertices  v . 
 E  set of    |E |  edges. 
 T  set of    |T |  triangles. 

  pi  location  px  py  pz  in   R3  of the i-th vertex of  V . 
 G  graph   (V,E)  of  S  – i.e., its 1-Skeleton. 

  NG
k (v)  set of neighboring vertices of  v , up to its k-ring. 

  H(S)  discrete normal curvature vector at  p . 

    (δt,δ
!t )  main and secondary time steps of the filter. 

   (m, !m)  main and secondary iteration bounds of the filter. 
  ̂S  anisotroprically filtered state of  S . 
 ̂  denote values defined from   ̂S  – e.g.,    κ̂C ,   κ̂P . 
 K  ridgeness indicator map    κ̂C sgn κ̂P | sin 2κ̂P |n . 

  (Ω
+,Ω−)  partition of  Ω  following   sgnK . 

  K
med,K mad MED and MAD of  K  over  Ω+ . 

 h  ridgeness threshold on  K . 
  h*  indirect setting of  h  through    K

med+h*K mad . 

  M0  threshold vertex mask   K ≥ h  – inverse   M0 . 
 M    M0  without holes and without CC area    <aCCmin . 

  KR  geodesic reconstruction of   K
maxM  over  K . 

  MSK  geodesic skeleton of  M  over   KR , no CC area    <aSKmin . 

 lij  path hypermetric 
    
1
2
(KR(i)+ KR(j)) ||pj −pi || . 

  MBR  arborescent setup of   MSK , no branch length    < lBRmin . 

  lTHmin  minimum cord length of smoothed paths. 

 .*  denote   aCCmin   aSKmin   lBRmin   lTHmin  in number of points. 

  (tF,nF,bF) tangent, normal, binormal along smoothed path. 
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