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Abstract—This work proposes an adaptation of the Empirical

Mode Decomposition Time-Frequency Distribution (EMD-TFD)

to non-analytic complex-valued signals. Then, the modified ver-

sion of EMD-TFD is used in the formation of Inverse Synthetic

Aperture Radar (ISAR) image. This new method, referred to

as NSBEMD-TFD, is obtained by extending the Non uniformly

Sampled Bivariate Empirical Mode Decomposition (NSBEMD)

to design a filter in the ambiguity domain and to clean the Time-

Frequency Distribution (TFD) of signal. The effectiveness of the

proposed scheme of ISAR formation is illustrated on synthetic

and real signals. The results of our proposed methods are

compared to other Time-Frequency Representation (TFR) such

as Spectrogram, Wigner-Ville Distribution (WVD), Smoothed

Pseudo Wigner-Ville Distribution (SPWVD) or others methods

based on EMD.

Index Terms—Inverse Synthetic Aperture Radar, Image forma-

tion, Time-Frequency Representation, Empirical Mode Decom-

position.

I. INTRODUCTION

In the ISAR imagery, a classic approach is to consider

the data as stationary signals. Then, the image is built

using Fourier Transforms (FT) [1]. However the ISAR

technique is characterised by the movement of the target

that induced the apparition of Doppler frequency making

signals non-stationary [2]. Thus, the image construction goes

through a chain composed of FT and movement estimation

to compensate the non-stationary nature of the ISAR data

[1]. Due to this nature, time-frequency methods have been

introduced in the radar imaging field [3], [4]. By generating

a TFR from each Doppler profile, a cube of data is build. It

constitutes the evolution through time of the ISAR images.

In [3], TFR like the Spectrogram or the WVD are used.

Others have tried less conventional TFR like a S-method [5]

or a harmonic wavelet decomposition [6]. In time-frequency

methods, the WVD has a number of desirable properties that

make it a good indicator of how the energy of the signal

can be viewed. Nevertheless, drawbacks of the WVD are

the presence of interferences for multicomponent signals.

These cross-terms make the transform space of WVD

difficult to visually interpret [7]. This statement leads to the

attempt to reduce them and to keep a good resolution. In

this objective, the SPWVD sets two filters, one to filter in

the time domain and another to filter in the frequency domain.

On one side of our approach, we will use some of those TFRs

after decomposing the signal. A decomposition is done to

reduce cross-term interferences. The Empirical Mode Decom-

position (EMD) is a process put in place in the late 90’s which

decomposes iteratively a real signal into monocomponent

signals [8]. Those signals extracted from high frequency to

low frequency are called Intrinsic Mode Functions (IMF) and

the last signal extracted which depicts the trend of the signal is

the residu. These IMF are defined with the following properties

[8]: all the local maxima must be positive, all the local minima

must be negative and the sum of the upper hull and the lower

hull built by interpolating the local extrema should be null.

Hence, the signal x is decomposed:

x(t) =

N
∑

i=1

IMFi(t) + r(t) , (1)

where r is the residual signal and IMFi is the ith IMF

extracted. The sifting algorithm (process to extract IMFs)

shows some issues [9]. The identification of local extrema

is crucial to the good construction of the hulls so as the

interpolation of the extrema. In general, a cubic spline

interpolation is used. Another matter is about the signal

edges and the interpolation of the extrema at these locations.

Some solutions are provided to these issues like mirroring

the signal or weighting it with a smooth window in order to

avoid divergences at the hulls edges. The EMD has also the

property to act as a filter bank on the signal [10].

With the complex non-analytic ISAR data, we will use the

complex versions of the EMD. There are two main ver-

sions: CEMD (Complex Empirical Mode Decomposition) and

BEMD (Bivariate Empirical Mode Decomposition).

CEMD [11] decomposes the original signal by separating the

positive from the negative components of the signal spectrum.

These two analytic sub-signals are made real in order to be

able to apply the original EMD. With two sets of IMF, one

corresponding to the positive frequency components of the

signal and the other one to the negative. The IMF of the signal

are the analytic form of each IMF. This method have been

applied on radar [12] and ISAR imagery [13].

BEMD [14] is closer to the EMD process than the CEMD.

By looking at the signal as two components making it

rotating through time it defines a signal hull as a surface



embracing the shape of the signal. The local mean is defined

as the centre of each section of this surface. Like the original

EMD the subtraction of the local mean to the signal gives

the next IMF to treat. In practice, to compute the signal

hull is the result of interpolating maxima from projections

of the signal along different directions. This approach is

suitable to Doppler profiles generated with a modeled target

by scatterers. Doppler profiles are then composed of several

time-frequency chirps (i.e. rotating signals) due to the target’s

motion.

A variation of the BEMD, NSBEMD (Non uniformly

Sampled BEMD), have been proposed in [15]. Instead of

taking a uniform distribution of directions in the bivariate

plane, we can look at the main direction of the signal in the

complex plane and then sample the directions on the ellipse

defined with this main direction and the power imbalance of

the two signal components (real part and imaginary part). In

[14], it is recommended to use no more than 16 directions to

compute a BEMD. This is the same number of directions used

for the BEMD and the NSBEMD in the following approaches.

The paper is organized as follows. Section II gives an overview

of ISAR formation with TFR and the methods based on

complex versions of EMD. Some simulations and comments

are proposed in section III. Finally, the last section gives some

conclusions and remarks.

II. ISAR IMAGING USING TIME-FREQUENCY ANALYSIS

A. Principle of Radar Imaging Based on Time-Frequency

To compute a focused ISAR image of maneuvering targets, a

Time-Frequency Transforms is desirable. Figure 1 shows the

radar imaging system based on the TFR [1].

Fig. 1. Flowchart of ISAR image formation based on joint TFR.

As in [13], the combination of CEMD and TFR can be

applied on ISAR image formation. On each Doppler profile, a

complex EMD is performed. Summing the TFRs from IMFs

generates the TFR of the profile as shown in figure 2.

In fact, in these approaches, complex EMD methods (e.g.

CEMD, BEMD, NSBEMD) are used in conjunction with TFR

(e.g. Spectrogram, WVD, SPWVD. . . ). The output is a Time-

Frequency representation which could be approximated as:

Υ x
EMD−TFR[t, f ] ≃

N
∑

i=1

TFR[IMFi(t)] . (2)

However the main problem with such methods is that the EMD

does not always accurately decompose multicomponents non-

stationary signals.
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Fig. 2. Flowchart of TFR using complex versions of EMD based on [13].

B. Principle of Modified Version of EMD-TFD

An interesting time-frequency method called EMD-TFD is

developed in [16], [17]. The approach rests on filtering the

WVD interferences through the ambiguity function Ax(ν, τ)
of x is defined as [7]:

∫∫ +∞

−∞

Ax(ν, τ)e
−2iπ(νt+τf) dν dτ = WVx(t, f) , (3)

where WVx(t, f) denotes the WVD of x, Ax(ν, τ) is the

ambiguity function, τ is time-lag and ν is Doppler variable.

To threshold the ambiguity function, two criteria are proposed:

• Energy criterion [16]: The user sets the energy ratio

th between the filtered ambiguity function of the IMF

and the ambiguity function of the signal (equation (4)).

This ratio is reached by finding the good threshold r

to apply on the ambiguity function of the considered

IMF AIMFi
(ν, τ) (equation (5)). If this ratio r cannot

be reached for any r then the IMF is left out.
∫∫ +∞

−∞
GIMFi

(ν, τ)AIMFi
(ν, τ) dν dτ

∫∫ +∞

−∞
Ax(ν, τ) dν dτ

≥ th , (4)

GIMFi
(ν, τ) =

{

1 if |AIMFi
(ν, τ)| ≥ r

0 otherwise
. (5)

• Criterion on the maximum [17]: The user defines

directly the threshold r used in the equation (5). This

threshold is used for every IMF.

The EMD-TFD uses the EMD to design a filter and then

to clean in the ambiguity domain the analytic signal. After

computing the ambiguity function for each IMF, they are

thresholded using an energy criterion or a criterion on the

maximal value of the function. Those thresholded functions



are combined by meaning them or by applying a logical OR.

This combination provides a coarse filter that will be smoothed

through a 2D window before cleaning the ambiguity function

of the signal. The scheme (figure 3) summaries this process.

So, the EMD-TFD is then defined as [17]:

ΥEMD−TFD(t, f) =

+∞
∫∫

−∞

G(ν, τ)Ax(ν, τ)e
−2iπ(νt+τf)dνdτ

(6)
where G(ν, τ) = Rn

i=1[GIMFi
(ν, τ)].

C. ISAR Imaging Algorithm Based on NSBEMD-TFD

The adaptation of the EMD-TFD to complex signal is done

by using the NSBEMD instead of the original EMD (figure

3).
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Fig. 3. Flowchart of the NSBEMD-TFD based on [17].

A box is the transformation from a signal to its ambiguity

function (3), NSBEMD box provides IMFs of the input signal,

G boxes are the operations done to smooth the thresholded

ambiguity functions, R box represents the operation of filters

combination and X operand is the filter operation in the

ambiguity domain.

In order to determine the value of the threshold and the length

of the window used to smooth the thresholded ambiguity

function, the intensive simulations have been computed on

a known signal. In general, thresholding the modulus of the

ambiguity function shows nicer performance in keeping the

sharpness of the representation and removing interferences.

Good results can be obtained with a threshold set between

0.2 and 0.5 and a ratio between the length of the Hanning

window and the signal around 0.06. The second way to create

filters based on a energy criterion is left out due to its poor

performance. Likewise these parameters used to define the

method can be determined for the creation of ISAR images.

III. RESULTS

A. Simulated Data

We tested our approach on the simulated MIG25 dataset

described in [1]. Figure 4(a) shows the simulated target

model, and it consists of 120 point scatterers of equal

reflectivity. The raw data contains 512 recurrences of 64
range bins. All simulations are first put on a logarithmic

scale and then normalised. The Spectrogram applied to create

ISAR image uses a Hanning window with the same length

as the Doppler profil. A Hanning windows of one tenth

(respectively a quarter) of the Doppler signal length is used

to filter in time (respectively in frequency) the WVD in the

SPWVD method. For the NSBEMD-TFD based on equation

(6), the threshold is set at 0.35 and the Hanning window is

one-sixteenth of the Doppler profile length.

Figure 4(c) shows the ISAR image using WVD. The WVD

shows the blurred effects. It is explainable by the intense

interference in the image and then the low contrast between

the background and the target representation. Figures 4(b)

and 4(d) show reasonable agreement with the ideal point

scatterers using Spectrogram and SPWVD, respectively.

From these results, SPWVD has better performance of

resolution than the Spectrogram or WVD. On the results

obtained from NSBEMD-TFD (Figure 4(e)), we can observe

that the components are well estimated, reduced cross-term

interference with a good resolution and shows a nice dynamic.

Figures 5, 6 and 7 show the results of combining the complex

EMDs and TFRs based on equation (2): CEMD-TFR, BEMD-

TFR and NSBEMD-TFR, respectively. For these TFRs are

Spectrogram, WVD and SPWVD, respectively. Comparing the

{CEMD,BEMD,NSBEMD}-WVD against the WVD, we see

that the components are well estimated and reduced cross-

term interference. The NSBEMD-SPWVD (figure 7(c)) shows

a very interesting performance in the image dynamic, a good

resolution and, in reducing interferences but the smoothing

effect is too harsh. So, the scattering points have a nice

resolution but the intensity of point scatterers is much less

than Figure 4(e). Large number of the methods based on

complex EMDs provide interesting performance when the

time-frequency energy is presented by the concentration and

resolution of TFR along the individual component of the multi-

components (non-stationary) signals.

B. Real Data

We put under trial the time frequency methods and the

quality criteria by acquiring data with the anechoic chamber

of ENSTA Bretagne. In order to be close to the target model,

we build a target composed of three metal balls. They are

placed in a isosceles triangle configuration. The height of

this triangle is 60cm and the length of the base is 33cm. The

diameter of each ball is 4.5cm. An optical picture of the target

is shown in Figure 4. This target is rotating from [−30o, 30o]
with an angular step of 0.4o. We use a step-frequency radar

with a central frequency of 10GHz, a bandwidth of 8GHz

and 101 points of measures (i.e. a frequency step of 78MHz).

This set up allows us to have a range resolution of 1.8cm

and a cross-range resolution of 1.4cm.

The figure 8(b) shows ISAR images generated from

Spectrogram, WVD, SPWVD, NSBEMD-SPWVD based on

equation (2) and, NSBEMD-TFD based on equation (6),

respectively. The same observations as for the simulated data



can be made. For the NSBEMD-TFD, we have a better view

of the interference within each IMF effects. We can also

notice that in this case the SPWVD is filtering better than

on simulated data and in general, there are less interferences.

This last statement can be due to the fact that we use only

three balls when with simulated data 120 points are used.

IV. CONCLUSIONS

This paper presents the adaptation of a TFR using the

EMD to non-analytic complex signal and its application to

ISAR image formation. Those adaptations have been tested

first on simulated data and then on data acquired from an

anechoic chamber. The performance of the proposed method

is compared with conventional TFR methods (Spectrogram,

WVD, SPWVD). The most original approach employs the

EMD to design a filter used in the ambiguity domain of

the signal. The strength of the method relies on building a

filter without preconceived considerations on its shape thanks

to the EMD. The obtained results show that the proposed

approach is an effective and a promising imaging method

for ISAR image formation. Nevertheless, this technique is

empirical, so further theoretical explanation work is needed

and a large class of data are necessary to con?rm the obtained

results. As future work, we plane to study the NSBEMD-TFD

in noisy environment and we intend to address the general

decision-making process (target identi?cation).
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(d) SPWVD.

NSBEMD-TFD.

Cross-range (m)
-10 -5 0 5 10

R
a
n

g
e
 (

m
)

-8

-6

-4

-2

0

2

4

6

8

(e) NSBEMD-TFD.

Fig. 4. Comparison of ISAR image based on TFR (frame 391).
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(b) CEMD-WVD.
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(c) CEMD-SPWVD.

Fig. 5. Comparison of CEMD-TFR based image (frame 391) [13].
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(b) BEMD-WVD.

BEMD-SPWVD.
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(c) BEMD-SPWVD.

Fig. 6. Comparison of BEMD-TFR based image (frame 391).
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(b) NSBEMD-WVD.
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(c) NSBEMD-SPWVD.

Fig. 7. Comparison of NSBEMD-TFR based image (frame 391).
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(e) NSBEMD-SPWVD.
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(f) NSBEMD-TFD.

Fig. 8. Comparison of ISAR images generated with different TFR on real
data (frame 36, angle= −16

o).


