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Abstract

The aim of this paper is to show the interest in fitting features with an α-stable distribution to classify imperfect
data. The supervised pattern recognition is thus based on the theory of continuous belief functions, which is a way to
consider imprecision and uncertainty of data. The distributions of features are supposed to be unimodal and estimated
by a single Gaussian and α-stable model. Experimental results are first obtained from synthetic data by combining two
features of one dimension and by considering a vector of two features. Mass functions are calculated from plausibility
functions by using the generalized Bayes theorem. The same study is applied to the automatic classification of three
types of sea floor (rock, silt and sand) with features acquired by a mono-beam echo-sounder. We evaluate the quality
of the α-stable model and the Gaussian model by analyzing qualitative results, using a Kolmogorov-Smirnov test (K-S
test), and quantitative results with classification rates. The performances of the belief classifier are compared with a
Bayesian approach.

Keywords: Gaussian and α-stable model, unimodal features, continuous belief functions, supervised pattern
recognition, Kolmogorov-Smirnov test, Bayesian approach.

1. Introduction

The choice of a model has an important role in the problem of estimation. For example, the Gaussian model is
a very efficient model which fits data in many applications as it is very simple to use and saves computation time.
However, as is the case for all distribution models, Gaussian laws have some weaknesses and results can end-up being
skewed. Indeed, as the Gaussian probability density function (pdf) is symmetrical, it is not valid when the pdf is not
symmetrical. It is therefore difficult to choose the right model which fits data for each application. The Gaussian
distribution belongs to a family of distributions called stable distributions. This family of distributions allows the
representation of heavy tails and skewness. A distribution is said to have a heavy tail if the tail decays slower than the
tail of the Gaussian distribution. Therefore, the property of skewness means that it is impossible to find a mode where
probability density function is symmetrical. The main property of stable laws introduced by Lévy [1] is that the sum
of two independent stable random variables gives a stable random variable. α-stable distributions are used in different
fields of research such as radar [2, 3], image processing [4] or finance [5, 6], ...

The aim of this study is to show the interest in fitting data with an α-stable distribution. In [7], the author pro-
poses to characterize the sea floor from a vector of features modeled by Gaussian mixture models (GMMs) using
an Autonomous Underwater Vehicle (AUV). However, the problem with the Bayesian approach is the difficulty in
considering the uncertainty of data. We therefore favored the use of an approach based on the theory of belief func-
tions [8, 9]. In [10], the authors compared a Bayesian and belief classifier where data from sensors are modeled using
GMMs estimated via an Expectation-Maximization (EM) algorithm [11]. This work has been extended to data mod-
eled by α-stable mixture models [12]. However, it is difficult to choose between these two models because the results
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are roughly the same. This paper raises two problems. Firstly, it is necessary to work on a data set where features are
modeled by α-stable pdfs. The second problem is to know how to apply the theory of belief functions when data from
sensors are modeled by α-stable distributions. This point has been dealt with in [13].

The recent characterization of uncertain environments has taken an important place in several fields of applica-
tion such as the SOund Navigation And Ranging (SONAR). SONAR has therefore been used for the detection of
underwater mines [14]. In [15], the author developed techniques to perform automatic classification of sediments on
the seabed from sonar images. In [10], the authors classified sonar images by extracting features and modeling them
with GMMs. In [16], the authors characterized the sea floor using data from a mono-beam echo-sounder. A data set
represents an echo signal amplitude according to time. They compare the time envelope of echo signal amplitude with
a set of theoretical reference curves. In this paper, we build a classifier based on the theory of belief functions where
a vector of features extracted from a mono-beam echo-sounder is modeled by a Gaussian and an α-stable distribution.
The feature pdfs have only one mode. We finally show that it would be interesting to fit features with an α-stable
model.

This paper is organized as follows: we first introduce the definition of stability, the method to construct α-stable
probability density functions and the methods of estimation in Section 2. The definitions in the multivariate case
are also presented. We introduce the notion of belief functions in discrete and continuous cases in Section 3. Belief
functions are then calculated in the particular case of α-stable distributions and a belief classifier is constructed in
Section 4. We finally classify data by modeling data with Gaussian and α-stable distributions before the generated
data are classified by comparing the theory of belief functions with Gaussian and α-stable distributions in Section 5.
We compare the results obtained with the theory of belief functions using a Bayesian approach.

2. The α-stable distributions

Gauss introduced the probability density function called “Gaussian distribution” (in honor of Gauss) in his study
of astronomy. Laplace and Poisson developed the theory of characteristic function by calculating the analytical ex-
pression of Fourier transform of a probability density function. Laplace found that the Fourier transform of a Gaussian
law is also a Gaussian law. Cauchy tried to calculate the Fourier transform of a “generalized Gaussian” function with
the expression fn(x) = 1

π

∫ +∞

0 exp (−ctn) cos (tx)dt, but he did not solve the problem. When the integer n is a real α, we
define the family of α-stable distributions. However, Cauchy did not know at that time if he had defined a probability
density function. With the results of Polya and Bernstein, Janicki and Weron [17] demonstrated that the family of
α-stable laws are probability density functions. The mathematician Paul Lévy studied the central limit theorem and
showed, with the constraint of infinite variance, that the limit law is a stable law [1]. Motivated by this property, Lévy
calculated the Fourier transform for all α-stable distributions. These stable laws which satisfy the generalized central
limit theorem are interesting as they allow the modeling of data as impulsive noise when the Gaussian model is not
valid. Another property of these laws is the ability to model heavy tails and skewness. In the following, we define the
notions of stability, characteristic function, the way to build a pdf from characteristic function, the different estimators
of α-stable distributions and the extension of α-stable distribution to the multivariate case.

2.1. Definition of stability

Stability is when the sum of two independent random variables which follow α laws, gives an α law. Math-
ematically, this definition means the following: a random variable X is stable, denoted X ∼ S α(β, γ, δ), if for all
(a,b) ∈ R+ × R+, there are c ∈ R+ and d ∈ R such that:

aX1 + bX2 = cX + d, (1)

with X1 and X2 two independent α-stable random variables which follow the same distribution as X. If Equation (1)
defines the notion of stability, it does not give any indication as to how to parameterize an α-stable distribution. We
therefore prefer to use the definition given by characteristic function to refer to an α-stable distribution.
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2.2. Characteristic function
Several equivalent definitions have been suggested in the literature to parameterize an α-stable distribution from

its characteristic function [18, 19]. Zolotarev [19] proposed the following:

φS α(β,γ,δ)(t) =


exp( jtδ − |γt|α[1 + jβ tan(

πα

2
)sign(t)(|t|1−α − 1)]) if α , 1,

exp( jtδ − |γt|[1 + jβ
2
π

sign(t) log |t|]) if α = 1,
(2)

where each feature has specific values:

• α ∈]0, 2] is the characteristic exponent.

• β ∈ [−1, 1] is the skewness parameter.

• γ ∈ R+∗ represents the scale parameter.

• δ ∈ R is the location parameter.

The advantage of this parameterization compared to [18] is that the values of the characterization and probability
density functions are continuous for all parameters. In fact, the parameterization defined by [18] is discontinuous
when α = 1 and β = 0.

2.3. The probability density function
The representation of an α-stable pdf, denoted fS α(β,γ,δ), is obtained by calculating the Fourier transform of its

characteristic function:

fS α(β,γ,δ)(x) =

∫ ∞

−∞

φS α(β,γ,δ)(t) exp(− jtx)dt. (3)

However, this definition is problematic for two reasons: while the integrand function is complex, its bounds are
infinite. Nolan [20] therefore proposed a way to represent normalized α-stable distributions (i.e. γ = 1 and δ = 0).
The main idea of Nolan [20] is to use variable modifications so that the integral has finite bounds. Each parameter
has an influence on the shape of the fS α(β,γ,δ). The curve has a large peak when α is near 0 and a Gaussian shape when
α = 2 (Figure 1(a)). The shape of the distribution skews to the left if β = 1, to the right if β = −1 (Figure 1(b))
while the distribution is symmetrical when β = 0. Finally, the scale parameter enlarges or compresses the shape of the
distribution (Figure 1(c)) and the location parameter leads to the translation of the mode of the fS α(β,γ,δ) (Figure 1(d)).

2.4. An overview of α-stable estimators
The estimators of α-stable distributions are decomposed into three families:

• the sample quantile methods [21, 22]

• the sample characteristic function methods [23, 24, 25, 26]

• the Maximum Likelihood Estimation [27, 28, 29, 30].

Fama and Roll [21] developed a method based on quantiles. However, the algorithm proposed by Fama and Roll
suffers from a small asymptotic bias in α and γ and restrictions on α ∈]0.6, 2] and β = 0. McCulloch [22] extended
the quantile method to the asymmetric case (i.e. β = 0). The McCulloch estimator is valid for α ∈]0.6, 2].

Press [23, 24] proposed a method based on transformations of characteristic function. In [31], the author com-
pared the performances of several estimators. For example, the Press method is efficient for specific values. Koutrou-
velis [25] extended the Press method and proposed a regression method to estimate the parameters of α-stable distri-
butions. He proposed a second version of his algorithm which is distinct that it is iterative [26]. In [32], the authors
proved that the method proposed by Koutrouvelis is better than both the quantile method and the Press method because
it gives consistent and asymptotically unbiased estimates.

The Maximum Likelihood Estimation (MLE) was first studied in the symmetric case [27, 28]. Dumouchel [29]
developed an approximate maximum likelihood method. The MLE was also developed in the asymmetric case.
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Nolan [30] extended the MLE in general case. The problem with the MLE is the calculation of the α-stable proba-
bility density function because there is no closed-form expression. Moreover, the computational algorithm is time-
consuming.

Consequently, we estimate a univariate α-stable distribution using the Koutrouvelis method [26].

2.5. Multivariate stable distributions
It is possible to extend the α-stable distributions to the multivariate case. A random vector X ∈ R is stable if for

all a, b ∈ R+, there are c ∈ R+ and D ∈ Rd such that:

aX1 + bX2 = cX + D, (4)

where X1 and X2 are two independent and identically distributed random vectors which follow the same distribution
as X.

The characteristic function of an multivariate α-stable distribution, denoted X ∼ S α,d(σ, δ), has the form:

φS α,d(σ,δ)(t) =


exp

(
−

∫
S d
| < t, s > |α(1 − jsgn(< t, s >) tan(

πα

2
)σ(ds) + j < δ, t >

)
if α , 1,

exp
(
−

∫
S d
| < t, s > |(1 + j

π

2
sgn(< t, s >) ln(< t, s >))σ(ds) + j < δ, t >

)
if α = 1,

(5)

with

• S d = {x ∈ Rd |||x|| = 1} the d-dimensional unit sphere.

• σ(.) a finite Borel measure on S d.

• δ, t ∈ Rd.

The expression for the characteristic function involves an integration over the unit sphere S d. The measure σ is called
the spectral measure and δ is called the location parameter. The problem with a multivariate α-stable distribution is
that characteristic function forms a non-parametric set. To avoid this problem, it is possible to consider a discrete
spectral measure [33] which has the form:

σ(.) =

K∑
i=1

γiδsi (.), (6)

with γi corresponding to weight and δsi the Dirac measure in si. For an α-stable distribution in R2 with K mass points,
the quantity si = {cos(θi), sin(θi)} with θi =

2π(i−1)
K .

There are two methods to estimate an α-stable random vector:

• the PROJection method [34] (PROJ)

• the Empirical Characteristic Function method [35] (ECF)

These two algorithms have the same performances in terms of estimation and computation time.
At this point, it is important to underline that the features extracted from mono-beam echo-sounders have the

properties of heavy-tails and skewness. Consequently, we decided to estimate the data with an α-stable model. These
data are however imprecise and uncertain: the imprecision and uncertainty of data can be linked to poor quality
estimation of these data. To take these constraints into consideration, we used an uncertain theory called the theory of
belief functions. Consequently, the goal of the next section is to present the theory of belief functions.

3. The belief functions

The final objective of this paper is to classify synthetic and real data using the theory of belief functions. Data
obtained from sensors are generally imprecise and uncertain as noises can disrupt their acquisition. It is possible to
consider these constraints by using the theory of belief functions. We will first develop the theory of belief functions
within a discrete framework before characterizing it in real numbers.
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3.1. Discrete belief functions
This section outlines basic tools in relation to the theory of belief functions.

3.1.1. Definitions
Discrete belief functions were introduced by Dempster [8], and formalized by Shafer [9] where he considers a

discrete set of n exclusive events Ci called the frame of discernment:

Θ = {C1, . . . ,Cn}. (7)

Θ can be interpreted as all the assumptions to a problem. Belief functions are defined as 2Θ onto [0,1]. The objective
of discrete belief functions is to attribute a weight of belief to each element A ∈ 2Θ. Belief functions must follow the
normalization: ∑

A⊆Θ

mΘ(A) = 1, (8)

where mΘ is called the basic belief assignment (bba).
A focal element is a subset of A where mΘ(A) > 0 and several functions in one-to-one correspondence are built from
bba:

belΘ(A) =
∑

B⊆A,B,∅

mΘ(B), (9)

plΘ(A) =
∑

A∩B,∅

mΘ(B), (10)

qΘ(A) =
∑

B⊂Θ,B⊇A

mΘ(B). (11)

The credibility function of A called belΘ(A) is all the elements B ⊆ A which believe partially in A. This function
can be interpreted as a minimum of belief in A. On the contrary, a plausibility function plΘ(A) illustrates the maximum
belief in A while commonality function qΘ(A) represents the sum of bba allocated to the superset of A. This function
is very useful as shown below.

3.1.2. Combination rule
We consider M different experts who give mass mΘ

i (i = 1, . . . ,M) on each element A ⊆ Θ. Alternatively, it is
possible to combine them using combination rules. There are several combination rules [36] in the literature which
differently address conflicts between sources. The most common rule is the conjunctive combination [37] where the
resultant mass of A is obtained by:

mΘ(A) =
∑

B1∩...Bn=A,∅

M∏
i=1

mΘ
i (Bi) ,∀A ∈ 2Θ. (12)

The mass of the empty set is given by:

mΘ(∅) =
∑

B1∩...Bn=∅

M∏
i=1

mΘ
i (Bi) ,∀A ∈ 2Θ. (13)

This rule allows us to stay in the open world. However, this is not practical as calculations are difficult. It is possible
to calculate resultant mass with communality functions where each mass mΘ

i (i = 1, . . . ,M) must be converted into its
communality function to calculate the resultant communality function as follows:

qΘ(A) =

M∏
i=1

qΘ
i (A). (14)

The final mass is obtained by carrying out the inverse operation of Equation (11) [9].
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3.1.3. Pignistic probability
To make a decision on Θ, several operators exist such that maximum credibility or maximum plausibility with

pignistic probability being the most commonly used operator [38]. This name comes from pignus, a bet, in Latin.
This operator approaches the pair (bel,pl) by uniformly sharing a mass of focal elements on each singleton Ci. This
operator is defined by:

betP(Ci) =
∑

A⊂Θ,Ci∈A

mΘ(A)
|A|(1 − mΘ(∅))

, (15)

where |A| represents the cardinality of A.
We choose the decision Ci by evaluating max

1≤k≤n
betP(Ck).

3.2. Continuous belief functions

The basic description of continuous belief functions was accomplished by Shafer [9], then by Nguyen [39] and
Strat [40]. Recently, Smets [41] extended the definition of belief functions to the set of reals R = R ∪ {−∞,+∞} and
masses are only attributed to intervals of R.

3.2.1. Definitions
Let us consider I = {[x, y], (x, y], [x, y), (x, y); x, y ∈ R} as a set of closed, half-opened and opened intervals of R.

Focal elements are closed intervals of R. The quantity mI(x, y) are basic belief densities linked to a specific pdf. If
x > y, then mI(x, y) = 0. With these definitions, it is possible to define the same functions as in the discrete case. The
interval [a, b] being a set of R with a ≤ b, the previous functions can be defined as follows:

belR([a, b]) =

∫ x=b

x=a

∫ y=b

y=x
mI(x, y)dydx, (16)

plR([a, b]) =

∫ x=b

x=−∞

∫ y=+∞

y=max(a,x)
mI(x, y)dydx, (17)

qR([a, b]) =

∫ x=a

x=−∞

∫ y=+∞

y=b
mI(x, y)dydx. (18)

3.2.2. Pignistic probability
The definition of pignistic probability for a < b is:

Bet f ([a, b]) =

∫ x=+∞

x=−∞

∫ y=+∞

y=x

|[a, b] ∩ [x, y]|
|[x, y]|

mI(x, y)dxdy. (19)

It is possible to calculate pignistic probabilities to have basic belief densities. However, many basic belief densities
exist for the same pignistic probability. To resolve this issue, we can use the consonant basic belief density. A basic
belief density is said to be “consonant” when focal elements are nested. Focal elements Iu can be labeled as an index
u such that Iu ⊆ I′u with u′ > u. This definition is used to apply the least commitment principle, which consists in
choosing the least informative belief function when a belief function is not totally defined and is only known to belong
to a family of functions. The least commitment principle relies on an order relation between belief functions in order
to determine if a belief function is more or less committed than another. For example, it is possible to define on order
based on the commonality function:

(∀A ⊆ Θ, qΘ
1 (A) ≤ qΘ

2 (A))⇔ (mΘ
1 ⊆q mΘ

2 ). (20)

The mass function mΘ
2 is less committed than mΘ

1 according to the commonality function.
The function Bet f can be induced by a set of isopignistic belief functions Biso(Bet f ). Many papers [41, 42, 43]

deal with the particular case of continuous belief functions with nested focal elements. For example, Smets [41]

6



proved that the least committed basic belief assignment mR for the commonality ordering attributed to an interval
I = [x, y] with y > x related to a bell-shaped 1 pignistic probability function is determined by 2:

mR([x, y]) = θ(y)δd(x − ζ(y)), (21)

with x = ζ(y) satisfying Bet f (ζ(y)) = Bet f (y) and θ(y):

θ(y) = (ζ(y) − y)
dBet f (y)

dy
. (22)

The resultant basic belief assignment mR is consonant and belongs to the set Biso(Bet f ). However, it is difficult to
build belief functions in the particular case of multimodal pdfs because the frame of discernment has connected sets.
In [44, 45], the authors propose a way to build belief functions with connected sets by using a credal measure and an
index function.

3.3. Credal measure and index function
In [44], the authors propose a way to calculate belief functions from any probability density function. They use an

index function f and a specific index space I to scan the set of focal elements F :

f I : I → F , (23)
y 7−→ f I(y). (24)

The authors introduce a positive measure µΩ such that
∫

I dµΩ(y) ≤ 1 describes unconnected sets. The pair ( f I , µΩ)
defines a belief function. For all A ∈ Ω, they define subsets which belong to the Borel set:

F⊆A = {y ∈ I| f I(y) ⊆ A}, (25)
F∩A = {y ∈ I| f I(y) ∩ A , ∅}, (26)
F⊇A = {y ∈ I| f I(y) ⊇ A}. (27)

From these definitions, they compute belief functions:

belΩ(A) =

∫
F⊆A

dµΩ(y), (28)

plΩ(A) =

∫
F∩A

dµΩ(y), (29)

qΩ(A) =

∫
F⊇A

dµΩ(y). (30)

They continue their study by considering consonant belief functions. The set of focal elements F must be ordered
from the operator ⊆. They define an index function f from R+ to F such that:

y ≥ x =⇒ f (y) ⊆ f (x). (31)

They generate consonant sets by using a continuous function g from Rd to I = [0, αmax[. The α-cuts are the set:

f I
cs = {x ∈ Rd |g(x) ≥ α}. (32)

They finally define the index function:

f I
cs : I = [0, αmax] → { f I

cs(α)|α ∈ I}, (33)
α 7−→ f I

cs(α). (34)

1i.e. the pdf is unimodal with a mode µ, continuous and strictly monotonous increasing (decreasing) at left (right) of the mode.
2δd refers to the Dirac’s measure.
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The information available is the conditional pignistic density Bet f . However, many basic belief densities exist for the
same pignistic probability Bet f . The least commitment principle allows the least informative basic belief density to
be chosen, where the focal elements are the α-cuts of Bet f such that 3:

dµΩ(y)(α) = λ( f I
cs(α))dλ(α). (35)

4. Continuous belief functions and α-stable distribution

In this section, we model data distributions as a single α-stable distribution. We must however introduce the
notion of plausibility function for an α-stable distribution. We first describe how to calculate the plausibility function
knowing the pdf in R before we extend to in R

d
. We finally explain how we construct our belief classifier.

4.1. Link between pignistic probability function and plausibility function in R
The information available is the conditional pignistic density Bet f [Ci] with Ci ∈ θ. The function Bet f [Ci] is

supposed to be bell-shaped for all α-stable distributions (proved by Yamazato [46]).
The plausibility function from a mass mR is obtained by an integral of Equation (22) between [x,+∞[:

plR[Ci](I) =

∫ +∞

x
(ζ(t) − t)

dBet f (t)
dt

dt. (36)

By assuming that Bet f is symmetrical, an integration by parts can simplify Equation (36) :

plR[Ci](I) = 2(x − µ)Bet f (x) + 2
∫ +∞

x
Bet f (t)dt. (37)

Now let us consider a particular case where symmetrical Bet f is an α-stable distribution (the parameter β = 0). We
already know that Bet f (x) = fS α(β,γ,δ)(x). We can calculate

∫ +∞

x Bet f (t)dt by using the Chasles’ theorem:∫ +∞

−∞

fS α(β,γ,δ)(t)dt =

∫ x

−∞

fS α(β,γ,δ)(t)dt +

∫ +∞

x
fS α(β,γ,δ)(t)dt. (38)

By definition, a pd f has the quantity
∫ +∞

−∞
fS α(β,γ,δ)(t)dt = 1 and

∫ x
−∞

fS α(β,γ,δ)(t)dt represents the definition of the
α-stable cumulative density function FS α(β,γ,δ).

Consequently, Equation (37) can be simplified:

plR[Ci](I) = 2(x − µ) fS α(β,γ,δ)(x) + 2(1 − FS α(β,γ,δ)(x)). (39)

The plausibility function related to an interval I = [x, y] can also be seen as the area defined under the αcut-cut such
that αcut = Bet f (x). The notation pl[Ci](x) is equivalent to pl[Ci](I).

Now us let consider an asymmetric α-stable probability density function. We must proceed numerically to cal-
culate plausibility function at point x1 > µ, with µ the mode of the probability density function (Figure 2). The
plausibility function related to an interval I1 = [x1, y1] is defined by the area defined under the αcut-cut such that
αcut = Bet f (x1):

plR[Ci](I1) =

∫ x1

−∞

Bet f (t)dt + (y1 − x1)Bet f (x1) +

∫ +∞

y1

Bet f (t)dt. (40)

By definition, a pd f has the quantity
∫ +∞

y1
fS α(β,γ,δ)(t)dt = 1 − FS α(β,γ,δ)(y1) and

∫ x1

−∞
fS α(β,γ,δ)(t)dt = FS α(β,γ,δ)(x1). In

general, we know only one point y1. We estimate numerically x1 such that fS α(β,γ,δ)(y1) = fS α(β,γ,δ)(x1). Finally, the
plausibility function related to the interval I1 is:

plR[Ci](I1) = 1 + FS α(β,γ,δ)(x1) − F(y1) + (y1 − x1) f (x1). (41)

3λ refers to the Lebesgue’s measure.
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In practice, we base the classification on several features defined for different classes Θ = {C1, ..,Cn}. For example,
the Haralick parameters “contrast” and “homogeneity” have different values for the classes rock, silt and sand. The
features are modeled by a probability density function because the features have continuous values. We can calculate
a plausibility function related to its probability density functions by using the least commitment principle. Several
plausibility functions associated to the same feature can be combined by using the generalized Bayes theorem [47, 48]
to calculate mass functions allocated to A of an interval I:

mR[x](A) =
∏
C j∈A

pl j(x)
∏

C j∈Ac

(1 − pl j(x)). (42)

For several features, it is possible to combine the mass functions with combination rules.
To validate our approach, we classify planes using kinematic data as in [42, 43] and compare the decision with the

approach of Caron et al. [43]. We associate a Gaussian probability density function for each speed’s target (Figure 3):

• Commercial defined by the probability density function of speed S 2(0, 8, 722.5).

• Bomber defined by the probability density function of speed S 2(0, 7, 690).

• Fighter defined by the probability density function of speed S 2(0, 10, 730).

We can observe that the decision is the same with the both approaches in the particular case of Gaussian probability
density functions.

4.2. Link between pignistic probability function and plausibility function to R
d

It is possible to extend plausibility function in R
d
. In [43], the authors calculate plausibility function in the

Gaussian pdf situation of mode δ and matrix of covariance Σ. Mass function is built in such a way that isoprobability
surfaces S i with 1 ≤ i ≤ n are focal elements. In R2, isoprobability points of a multivariate Gaussian pdf of mean
δ and covariance matrix Σ are ellipses. In dimension d, the authors defined focal elements as the nested sets HVα

enclosed by the isoprobability hyperconics HCα = {x ∈ Rd |(x− δ) tΣ−1(x− δ)}. They obtain bbd by applying the least
commitment principle:

mR
d

(HVα) =
α

d+2
2 −1

2
d+2

2 Γ( d+2
2 )

exp (−
1
2
α) with α ≥ 0. (43)

Equation (43) defines a χ2 distribution with d + 2 degrees of freedom. The plausibility function at point x belonging
to a surface S i corresponds to the volume delimited by S i (we give an example in Figure 4 for an α-stable pdf).
Consequently, the plausibility function at point x is defined by:

plR
d

(x ∈ Rd) =

∫ α=+∞

α=(x−δ) tΣ−1(x−δ)

α
d+2

2 −1

2
d+2

2 Γ( d+2
2 )

exp (−
1
2
α)dα. (44)

Equation (44) can be simplified by:

plR
d

(x ∈ Rd) = 1 − Fd+2((x − δ)(Σ)−1(x − δ)). (45)

The function Fd+2 is a cumulative density function of the χ2 distribution with d + 2 degrees of liberty (d is the
dimension of vector x).

The authors also calculate plausibility functions in the particular case of GMMs with their pdfs denoted by pGMM:

pGMM(x) =

k=n∑
k=1

wkN(x, δk,Σk), (46)

where N(x, δk,Σk) is the normal distribution of the k components with mean δk and matrix of covariance Σk and
wk is the weight of each mixture. They assign belief to nested sets belonging to a component. Consequently, the
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plausibility function of the GMMs can be seen as a weighted sum of plausibility functions defined by each component
of the mixture:

plR
d

(x ∈ Rd) = 1 −
k=n∑
k=1

wkFd+2((x − δk)(Σk)−1(x − δk)). (47)

We want to extend the calculation of plausibility function for any α-stable pdf. However, there is no closed-form
expression for α-stable pdf. We use the approach developed by Doré et al. [44] to build belief functions.

4.3. Belief classifier

Let us consider a data set with N samples from d sensors. For example, each feature of a vector x ∈ Rd can
be seen as a piece of information from a sensor. The classification is divided into two steps. N × p (with p ∈]0, 1[)
samples are first picked out randomly from the data set for the learning base, noted X, such that:

X =


x1

1 . . . xN×p
1

...
...

...

x1
d . . . xN×p

d


All columns of X belong to a class Ci with 1 ≤ i ≤ n. Probability density functions (Gaussian or α-stable models)

are estimated from samples belonging to classes. The rest of the samples is used for the test base (N × (1 − p)
vectors). We use a validation test to determine if samples belong to an estimated model. If the test is not valid, we
stop the classification, otherwise we continue the classification (Figure 5). The classification step diagram in one and
d dimensions is shown in Figure 6.

Plausibility functions knowing classes for x are calculated either from their probability density functions by using
Equation (41) for an unsymmetric α-stable probability density function or by using Equation (45) for a Gaussian
probability density function. We obtain d mass functions (one for each feature) at point x with the generalized Bayes
theorem [47, 48] (Equation (42)). These d mass functions are combined by a combination rule to obtain a single mass
function (section 3.1.2). Finally, the mass function is transformed into pignistic probability (Equation (19)) to make
the decision.

It is also possible to work with a vector x of d dimensions. For an α-stable probability density function, plausibility
functions are calculated for each feature by using the approach of Doré et al [44] (section 3.3). For a Gaussian
probability density function, we use Equation (45) to calculate plausibilty functions. We calculate one mass function
at point x by using the generalized Bayes theorem (Equation (42)). There is no combination step because we are
calculating a single mass function. We use Equation (19) to transform the mass function into pignistic probabilities.
The decision is chosen by using the maximum number of pignistic probabilities.

5. Application to pattern recognition

The aim is to build a belief classifier and to perform a classification of synthetic and real data by estimating
features using a Gaussian and α-stable pdf. In [12], synthetic data are classified by modeling features using Gaus-
sian and α-stable mixture models. By observing confidence intervals, the hypothesis of α-stable mixture models is
significantly better than the hypothesis of Gaussian mixture models. However, when the number of Gaussian distribu-
tions increases, classification accuracies are significantly the same. Images from a side-scan sonar are automatically
classified by extracting Haralick features [49, 50]. However, classification accuracies are roughly the same.

In this section, we limit algorithms with a vector of features in dimension d ≤ 2. Indeed, the generalization of
α-stable pdf in dimension d > 2 increases CPU time because there is no closed-form expression. Consequently, we
distinguish two cases during the classification step:

• The one dimension case: each dimension is considered as a feature.

• The two case: we considered a vector of two features.
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We also use a statistical test called Kolmogorov-Smirnov test (K-S test) to evaluate the quality of each model. A
Kolmogorov-Smirnov test (K-S test) with a significance level of 5 % is also used to determine if two datasets differ
significantly. Let us assume two null hypotheses:

• H1: “Data follow a Gaussian distribution”.

• H2: “Data follow an α-stable distribution”.

The notation H1 and H2 are used for the rest of the paper. If the test rejects a null hypothesis Hi, we stop the
classification. Otherwise, if the test is valid, we then classify the samples belonging to the test base by using the belief
classifier.

The results obtained with the belief functions are compared using a Bayesian approach. The prior probability p(Ci)
is first calculated corresponding to the proportion of each class in the learning set. For each class, the application of
Bayes theorem gives posterior probabilities:

p(Ci/x) =
p(x/Ci)p(Ci)

n∑
u=1

p(x/Cu)p(Cu)

. (48)

Finally, the decision is chosen by using the maximum nimber of posterior probabilities.
We first present a classification of synthetic data, belonging to Gaussian distributions, by modeling features using

a Gaussian distribution and α-stable pdf. We then compare the α-stable and Gaussian model with synthetic data
belonging to α-stable distributions. The same approach is finally applied to real data from a mono-beam echo-sounder.

5.1. Application to synthetic data generated by Gaussian distributions

In this subsection, we show that the α-stable and Gaussian model have the same behavior during the classification
when synthetic data are generated by Gaussian distributions.

5.1.1. Presentation of the data

µ V

First Gaussian pdf (C1)
(
2
3

) (
1 1.5

1.5 3

)
Second Gaussian pdf (C2)

(
1
1

) (
3 1.5

1.5 1

)
Third Gaussian pdf (C3)

(
−1
1

) (
1 0
0 3

)
Table 1: Numerical values for the Gaussian pdf.

We simulated three Gaussian pdfs in R ×R (c.f. Table 1). Each distribution holds 3000 samples. A mesh between
[−4, 4] × [−4, 4] enables the level curves of pdf to be plotted (Figure 7).

5.1.2. Results
We generated data and split samples randomly into two sets: one third for the learning base and the rest for the

test base. The learning base was used to estimate each mean and variance for the Gaussian distributions and each
parameter α, β, γ and δ for the α-stable distributions [6, 25, 51]. We needed to make a mesh between [−4, 4]× [−4, 4]
to calculate plausibility functions in R2 with the α-stable model. Consequently, samples were chosen possessing
features with dimensions within [−4, 4].
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H1 H2
p-value ksstat p-value ksstat

C1 first feature 0.7021 0.0542 0.9241 0.0422
second feature 0.8799 0.0452 0.9241 0.0422

C2 first feature 0.8693 0.0464 0.3736 0.0712
second feature 0.6855 0.0557 0.3736 0.0712

C3 first feature 0.8437 0.0464 0.4150 0.0667
second feature 0.6602 0.0551 0.7866 0.0493

Table 2: Statistical values for a Kolmogorov-Smirnov test with a significance level of 5 % (p-value: the critical value to reject the null hypothesis,
ksstat: the greatest discrepancy between the observed and expected cumulative frequencies).

The one dimension case.
For each class Ci, we consider each feature as a source of information. The estimated probability density functions
can be seen as pignistic probability functions. For each pignistic probability function, we associate a mass function
which will subsequently be combined with other mass functions.

The K-S test is valid for the two null hypotheses H1 and H2 (Table 2). We can assert that samples are drawn
from the same distribution. The proposed method performs well in the particular case of synthetic data belonging to
Gaussian distributions. However, the classification rates (Table 3) are very low because there is confusion between
classes (Figure 8). The classification accuracy obtained with the Bayesian approach is significantly the same as
the belief functions. Indeed, the Bayesian performs well provided that the probability density functions are well-
estimated. The classification results depend on the prior probabilitiy estimation: if a prior probability of a class is
underestimated, the confusion between classes increases.

We extended our study to a vector of two dimensions to try to improve the classification rate.

The two dimension case.
We generalized the study by considering a vector of two features. The learning base was used to estimate each mean
and matrix of covariance for the Gaussian distributions (Figure 9) and each parameter α, σ, θ and δ for the α-stable
distributions [35] (Figure 10).

As in one dimension, the two null hypotheses H1 and H2 were verified (Table 4). The classification results (Table 3)
are somewhat less than impressive because there is confusion between classes (between C1 and C2 cf. Figure 7).
Furthermore, the work in two dimensions enables better results to be obtained than the combination. The Bayesian
approach gives significantly the same results as the theory of belief functions. Indeed, the estimations of model and
the estimation of prior probabilities are well-estimated.

We extended our study by considering synthetic data generated by α-stable distributions.

Bayesian approach Belief approach
Classification accuracies (%) 95 % confidence intervals Classification accuracies (%) 95 % confidence intervals

H1 1 dimension 66.19 [65.13,67.25] 66.76 [65.71,67.81]
2 dimensions 76.14 [75.19,77.09] 75.35 [74.39,76.31]

H2 1 dimension 66.25 [65.19,67.31] 67.15 [66.10,68.20]
2 dimensions 76.31 [75.36,77.26] 74.50 [73.53,75,47]

Table 3: Classification accuracies and 95 % confidence intervals.

5.2. Application to synthetic data generated by α-stable distributions

In this subsection, we show the interest in modeling features in one and two dimensions with a single α-stable
distribution.
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H1 H2
p-value ksstat p-value ksstat

C1 0.1509 0.0873 0.1509 0.0873
C1 0.0490 0.0650 0.1997 0.0836
C3 0.1399 0.0870 0.1665 0.0841

Table 4: Statistical values for a Kolmogorov-Smirnov test with a significance level of 5 % (p-value: the critical value to reject the null hypothesis,
ksstat: the greatest discrepancy between the observed and expected cumulative frequencies).

α σ θ δ

First α-stable pdf (C1) 1.5
(
1
1

) (
0
π
2

) (
0
0

)
Second α-stable pdf (C2) 1.5

(
1
1

) (
0
π
2

) (
2

1.4

)
Third α-stable pdf (C3) 1.5

(
1
1

) (
0
π
2

) (
1

0.5

)
Table 5: Numerical values for the α-stable pdf.

5.2.1. Presentation of the data
Three classes of artificial data sets were generated from 2D α-stable distributions [33] (c.f. Table 5 and [52] for

the significance of σ and θ) with 3000 samples. A mesh between [−4, 4] × [−4, 4] enables the level curves of pdf to
be plotted (Figure 11).

5.2.2. Results
The one dimension case.
We can assert that the estimation with the α-stable hypothesis is better than the Gaussian hypothesis (Figure 12).
There is a difference between the mode of the Gaussian model and the mode of α-stable model. Indeed, the mean,
calculated from samples, for the Gaussian model does not correspond to the mode when samples do not belong to a
Gaussian law. Moreover, the values of pdfs are not the same compared to the real pdfs.

p-value ksstat
C1 first feature 0.1758 0.0851

second feature 0.7614 0.0517
C2 first feature 0.8487 0.0458

second feature 0.4794 0.0630
C3 first feature 0.5505 0.0621

second feature 0.2753 0.0776

Table 6: Statistical values for a Kolmogorov-Smirnov test with a significance level of 5 % (p-value: the critical value to reject the null hypothesis,
ksstat: the greatest discrepancy between the observed and expected cumulative frequencies).

The K-S test is not satisfied for the null hypothesis H1 for each class and each component. Consequently, we
stopped the classification step for the Gaussian model. However, the K-S test is valid for the null hypothesis H2
(Table 6). We can observe that the results obtained with the theory of belief functions are significantly the same as the
results obtained using the Bayesian approach. This phenomenon can be explained by the fact that prior probabilities
were well-estimated. Consequently, we changed voluntarily the values of prior probabilities. We fixed arbitrarily the
prior probabilities: p(C1) = 1/6, p(C2) = 2/3 and p(C3) = 1/6. The classification accuracy decreased to 53.10 %
(Table 7). Indeed, the learning base and the test base can sometimes be significantly different. For example, the
prior probability of class sand can be greater than the prior probabilities of classes rock and silt, although it does not
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represent the truth, and the classification rate of class sand can be favoured. This phenomenon introduces confusion
between classes and the classification rate can decrease. Consequently, the learning step is an important step for the
Bayesian approach and can have a bad effect on the classification rate whereas the theory of belief functions is less
sensitive to the learning step.

Bayesian approach
Classification accuracies (%) 95 % confidence intervals

H2 1 dimension 55.26 [54.15;56.37]
2 dimensions 53.10 [51.98;54.22]

Table 7: Classification accuracies and 95 % confidence intervals with the prior probabilities p(C1) = 1/6, p(C2) = 2/3 and p(C3) = 1/6.

The two dimension case.
We considered a vector of two features. In Figure 13, we draw the iso-contour lines of data estimated with the Gaus-
sian model and in Figure 14 the iso-contour lines of data estimated with the α-stable model
As in one dimension, the null hypothesis H1 is rejected at significance level 5 %, but the null hypothesis H2 is valid
(Table 8).
The classification results (Table 9) are somewhat less than impressive because there is confusion between classes.
Furthermore, we obtain the same classification accuracies with the vector of two dimensions compared to the com-
bination of two features. However, the classification decreases when the prior probabilities are not well-estimated
(Table 7).

We also compared these results with a GMM. It is well-known that the GMM can accurately model an arbitrary
continuous distribution. This model estimation can be performed efficiently using the Expectation-Maximization
(EM) algorithm. We compared classification accuracies by increasing the number of components. We drew the
classification accuracy (Figure 15) in relation to the number of components. Let us assume the null hypothesis:

• Gn: “Data follow a Gaussian mixture model with n components”.

The K-S test rejects the null hypothesis Gn for a number of components n < 4. The representations of iso-contour
lines (Figure 16, Figure 17 and Figure 18) confirm the K-S test. Furthermore, the classification accuracies are lower
than classification rates with a single α-stable pdf.

However, we can not increase indefinitely the number of components because a phenomenon of overfitting can
appear (for example the representation of iso-contour by using a GMM with 5 components). Consequently, the number
of 4 components seems to be a good compromise between the overfitting and good estimation. The classification
accuracies are roughly the same between the single α-stable model and the GMM with 4 components.

p-value ksstat
C1 0.0683 0.1003
C1 0.3694 0.0688
C3 0.1154 0.0932

Table 8: Statistical values for a Kolmogorov-Smirnov test with a significance level of 5 % (p-value: the critical value to reject the null hypothesis,
ksstat: the greatest discrepancy between the observed and expected cumulative frequencies).

5.3. Application to real data from a mono-beam echo-sounder
5.3.1. Presentation of data

We used a data set from a mono-beam echo-sounder given by the Service Hydrographique et Océanique de la
Marine (SHOM). Raw data represents an echo signal amplitude according to time. In [16], the authors classify seven
types of sea floor by comparing the time envelope of echo signal amplitude with a set of theoretical references curves.
In our application, raw data (Figure 19) were processed using the Quester Tangent Corporation (QTC) software [53] to
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Bayesian approach Belief approach
Classification accuracies (%) 95 % confidence intervals Classification accuracies (%) 95 % confidence intervals

H2 1 dimension 66.56 [65.51;67.62] 66.49 [65.44;67.55]
2 dimensions 66.05 [64.99;67.11] 65.16 [64.08;66.22]

Table 9: Classification accuracies and 95 % confidence intervals.

obtain some features, which were normalized between [0,1]. These data had already been used for the navigation of an
Autonomous Underwater Vehicle (AUV) [54]. The frame of discernment is Θ = {silt, rock, sand}, with 4853 samples
from silt, 6017 from rock and 7338 from sand. The selection of features plays an important role in classification
because the classification accuracy can be different according to the features. In [55], the author gave an overview of
methods based on features to classify data and choose features which discriminate all classes. Some features calculated
by the QTC software can be modeled by an α-stable pdf. There is a graphical test called converging variance test [56]
which enables us to determine if samples belong to an α-stable distribution. This test calculates the estimation of
variances by varying the number of samples. If the estimation of variance diverges, the samples can belong to an
α-stable distribution. We give an example of this test for the feature called “third quantile calculated on echo signal
amplitude” of the class rock (Figure 20). We chose the features called the “third quantile calculated on echo signal
amplitude” and the “25th quantile calculated on cumulative energy”.

5.3.2. Results
We randomly select 5000 samples for the data set. Half the samples were used for the learning base and the rest

for the test base. We first consider features in one dimension, i.e. two mass functions were calculated and combined
to obtain a single mass function.

The one dimension case.
We can observe that the assumption of the α-stable model can easily accommodate the data compared to the Gaussian
model (Figure 21).

The α-stable hypothesis is valid with the K-S test whereas the K-S test rejects the Gaussian hypothesis (Table 10).
The approach using the theory of belief functions (classification accuracy of 82.68 %) give better results than the
Bayesian approach (classification accuracy of 80.64 %) but not significantly. This phenomenon can be explained by
the fact that the estimated models and prior probabilities are well-estimated.

The two dimensions case.
We extended the study by using a vector of two features. The level curves of empirical data (Figure 22) show there is
confusion between the class silt and the class sand. The α-stable model (Figure 23) considers the confusion between
classes compared to the Gaussian model (Figure 24).

p-value ksstat
silt first feature 0.2310 0.0879

second feature 0.7240 0.0586
sand first feature 0.1206 0.0811

second feature 0.1419 0.0788
rock first feature 0.5784 0.0595

second feature 0.0599 0.1012

Table 10: Statistical values for a Kolmogorov-Smirnov test with a significance level of 5 % (p-value: the critical value to reject the null hypothesis,
ksstat: the greatest discrepancy between the observed and expected cumulative frequencies.)
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6. Conclusions

In this paper, we have shown the advantages in using the α-stable distributions to model data with heavy-tails. We
considered the imprecision and uncertainty of data for modeling pdf and the theory of belief functions offers a way
to model these constraints. We have examined the fundamental definitions of this theory and have shown a way to
calculate plausibility functions when the knowledge of sensors is an α-stable pdf. We finally validated our model by
making a comparison with the model examined by Caron et al. [43] where the pdf is a Gaussian.

Synthetic and real data were finally classified using the theory of belief functions. We estimated the learning base,
calculated plausibility functions, combined plausibility functions and calculated maximum pignistic probability to
obtain the classification accuracy. The K-S test shows that synthetic data can be modeled by an α-stable model. The
proposed method performs well for synthetic data. The consideration of two features improves the classification rate
compared to the combination of two features for the Gaussian data. This study was then extended to a real application
by using features extracted from a mono-beam echo-sounder. The Gaussian model is limited when modeling features
compared to the α-stable model because the α-stable model has more degrees of freedom. To sum up, the interest in
using an α-stable model is that data, in both one or two dimensions, can be modeled. The problem with the α-stable
model is the computation time. Indeed, we proceed numerically to calculate plausibility functions (discretization for
the bivariate α-stable pdf). Furthermore, it is difficult to generalize in dimension d > 2 without increasing CPU time.

We present preliminary results about classification problem by modeling features with α-stable probability density
functions in dimension d ≤ 2. In future works, we plan to make experiments in the high-dimensional case with d ≥ 3.
One solution in perspective to improve the computation time is to optimize the code in another language such that
C/C++. Another perspective to this work is the use of other features from sensors to improve the classification
accuracy, images from side-scan sonar.
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Figure 1: Different α-stable pdf.
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Figure 3: Representation of probability density function of speed and the pignistic probabilities calculated from the Fiche et al. and Caron et
al. [43] approaches.
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Figure 7: Iso-contour lines of generated Gaussian pdf.
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Figure 8: Empirical pdf and its estimations (The first row corresponds to the first feature and the second row corresponds to the second feature).

Figure 9: Iso-contour lines of data estimated with a Gaussian model.
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Figure 10: Iso-contour lines of data estimated with an α-stable model.

Figure 11: Iso-contour lines of generated α-stable pdf.
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Figure 13: Iso-contour lines of data estimated with a Gaussian model.

Figure 14: Iso-contour lines of data estimated with an α-stable model.
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Figure 15: Classification rates according the number of components.
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Figure 16: Representation of iso-contour by modeling data with a mixture of Gaussian for the class C1 (from left to right: 2, 3, 4 and 5 components).

Figure 17: Representation of iso-contour by modeling data with a mixture of Gaussian for the class C2 (from left to right: 2, 3, 4 and 5 components).

Figure 18: Representation of iso-contour by modeling data with a mixture of Gaussian for the class C3 (from left to right: 2, 3, 4 and 5 components).
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Figure 19: Example of echo signal amplitude from silt in low frequency.

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of samples

S
am

pl
e 

va
ria

nc
es

Figure 20: Running sample variances.
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Figure 21: Empirical pdf and its estimations (The first row corresponds to the feature called “third quantile calculated on echo signal amplitude”
and the second row corresponds to the feature called “25th quantile calculated on cumulative energy”).

Figure 22: Level curves of three empirical α-stable distributions with 10000 samples (The first column refers to the class rock, the second column
refers to the class sand and the third column refers to the class silt).

Figure 23: Level curves with an α-stable model estimation (The first column refers to the class rock, the second column refers to the class sand and
the third column refers to the class silt).
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Figure 24: Level curves with a Gaussian model estimation (The first column refers to the class rock, the second column refers to the class sand and
the third column refers to the class silt).
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