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The theory of belief functions has been formalized in continuous domain for pattern recognition. Some applications use assumption of Gaussian models. However, this assumption is reductive. Indeed, some data are not symmetric and present property of heavy tails. It is possible to solve these problems by using a class of distributions called α-stable distributions. Consequently, we present in this paper a way to calculate pignistic probabilities with plausibility functions where the knowledge of the sources of information is represented by symmetric α-stable distributions. To validate our approach, we compare our results in special case of Gaussian distributions with existing methods. To illustrate our work, we generate arbitrary distributions which represents speed of planes and take decisions. A comparison with a Bayesian approach is made to show the interest of the theory of belief functions.

Introduction

Stable distributions have been developed by Paul Lévy in his study of normalized sums of independant and identically distributed terms [START_REF] Lévy | Théorie des erreurs : La loi de Gauss et les lois exceptionelles[END_REF]. It is a class of distributions which includes special cases like Gaussian or Cauchy distributions. Some applications are listed in the literature like in radar [START_REF] Achim | SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modelling[END_REF], engineering [START_REF] Nikias | Signal processing with alpha-stable distributions and applications[END_REF], finance [START_REF] Mcculloch | Financial applications of stable distributions[END_REF], ( etc).

In general, classic statistical problem is dominated by methods based on Gaussian models. However, in many cases, signals are rarely Gaussian and are often complex. Indeed, they can present properties of skewness and heavy tails. A distribution is said to have heavy tails if the tails decays slower than the tail of the Gaussian distribution. Thefore, property of skewness means that it is impossible to find a mode where curve is symmetric. One of avantages of α-stable distributions compared to Gaussian cases is that allows to represent these properties. Consequently, α-stable distributions can be a class of distributions which is used for example to follow texture parameters for pattern recognition.

A Bayesian approach is often used to solve problem of pattern recognition [START_REF] Williams | Bayesian Data Fusion of Multi-View Synthetic Aperture Sonar Imagery for Seabed Classification[END_REF]. However, Bayesian approach requires to know prior probabilities. To avoid to estimate prior probabilities, it is possible to use belief functions.

The theory of belief functions in discret domain has been developed by Dempster [START_REF] Dempster | Upper and Lower probabilities induced by a multivalued mapping[END_REF], and Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF]. It can be seen as an extension of theory of probabilities. One of avantages of belief functions is that allows to consider imprecision and uncertainty of measures.

Recently, some works extend theory of belief functions in continuous domain [START_REF] Ph | Belief functions on real numbers[END_REF]. The theory of belief functions has been applied to Gaussian cases in [START_REF] Caron | Least Committed basic belief density induced by a multivariate Gaussian pdf[END_REF]. Consequently, we try to develop the theory of belief functions to α-stable distributions.

The structure of the paper is as follows: definitions about α-stable distributions are given in section one. Therefore, belief functions on discret and continuous domain are explained in section two. Finally, in section three, a method is proposed to calculate belief functions where information transmitted by sensors are modelized by α-stable distributions and the interest of belief functions is showed compared a Bayesian approach.

α-stable distributions

α-stable distributions allow to represent phenomena of skewness and heavy tails. Consequently, a definition of stable random variable is given, then a way to calculate α-stable distributions is developed.

Stable random variable

The notion of stability has been introduced by P. Lévy in [START_REF] Lévy | Théorie des erreurs : La loi de Gauss et les lois exceptionelles[END_REF]. A random variable X is said stable if ∀(a, b) ∈ (R + ) 2 , it exists c ∈ R + and d ∈ R such as:

aX 1 + bX 2 = cX + d (1)
with X 1 and X 2 independent copies of X. Equation ( 1) define the notion of stability but gives no information how to parametrize α-stable distributions. Consequently, α-stable distributions are defined from characteristic functions.

Characteristic functions

There are in the literature several parameterizations of α-stable distributions, noted S α (β, γ, δ). The most known definition is that used by Samorodnitsky and Taqqu [START_REF] Taqqu | Stable nongaussian random processes[END_REF]. However, the most employed definition is given by Zolotarev [START_REF] Zolotarev | One-dimensional stable distributions[END_REF]. A random variable is said stable if his characteristic function verifies:

if α = 1 φ(t) = exp(itδ-|γt| α [1+iβtan( πα 2 )sign(t)(|t| 1-α -1)]) if α = 1 φ(t) = exp(itδ -|γt|[1 + iβ 2 π sign(t) log |t|]) with α ∈]0, 2], β ∈ [-1, 1], γ ∈ R + * and δ ∈ R.
The four parameters can be interpreted as: 

• α is called characteristic exponent
pdf (x) = +∞ -∞ φ(t) exp(-itx)dt (2)
However, it is difficult to represent probability density functions for two reasons. Indeed, the characteristic function is complex and the interval of integration is infinite. Nolan [START_REF] Nolan | Numerical calculation of stable densities and distribution functions[END_REF] suggests to make variable modifications to have a set of integration finite. This method has been programmed in a Matlab code [13].

Each parameter has an influence on plots. Indeed, if α is small, the distribution presents a more important peak (cf. figure 1). When β → 1, distributions is shapeless on left and conversely when β → -1 (cf. figure 2). Moreover, parameter γ allows to dilate and compress distributions (cf. figure 3). Distributions are translated on the abscissa when parameter δ varies (cf. figure 4).

Examples of pdf

Despite the lack of closed formulas, it is possible to describe known distributions. Indeed, when α = 2 and β = 0, Gaussian distribution is defined: with δ corresponding to the mean and σ 2 to the variance. To recognize α-stable distribution, we have σ 2 = 2γ 2 . When α = 1 and β = 0, it is possible to build a Cauchy distribution:

f (x) = 1 √ 2πσ exp - (x -δ) 2 2σ 2 (3)
f (x) = 1 π γ γ 2 + (x -δ) 2 (4) 
It is usual to define symmetric α-stable distributions, i.e. a class of distributions where β = 0.

Theory of belief functions

The theory of probabilities is limited because it is difficult to consider imprecisions of measures and it is necessary to know prior probabilities. However, these problems can be solved by using works on belief functions. In this part, the theory of belief functions is developed in discret and continuous domains.

Discret belief functions

Firstly, it is necessary to consider a frame of discernement Θ = {C 1 , C 2 , . . . , C n }, where C j correspond to a class. The belief is represented by a basic belief assignment m defined on 2 Θ and in [0, 1]. m verifies by construction

A∈2 Θ m(A) = 1. When m(A) > 0, A is focal element.
With these definitions, it is possible to construct several functions:

• credibility function, noted bel, we can calculate it by the formula:

bel(A) = B⊆A,B =∅ m(B) (5) 
• plausibility function, noted pl, We can define it by:

pl(A) = A∩B =∅ m(B) (6) 
We can also calculate pignistic probability used for decision step [START_REF] Ph | Constructing the pignistic probability function in a context of uncertainty[END_REF]. It is an operator which can give probability on every C j ∈ Θ. It is possible to determinate this probability with:

BetP (C j ) = A⊆Θ,Cj ∈A m(A) |A|(1 -m(∅)) (7) 
|A| represents the cardinality of A. The combinaison between two mass functions can be realized with orthogonal rule of Dempster. Indeed, m 1 and m 2 and ∀X ∈ 2 Θ :

m(X) = Y1∩Y2=X m 1 (Y 1 )m 2 (Y 2 ) 1 - Y1∩Y2=∅ m 1 (Y 1 )m 2 (Y 2 ) (8)

Continuous belief functions

The theory of belief functions on continuous domain has been developed by Smets 

It is possible to define plausibility degree with:

pl([a, b]) = z=b z=-∞ y=+∞ y=max(a,z) f (z, y)dydz (10) 
Mass densities can be determinated from probability density functions. However, many mass densities can induce the same probability density function. The transformation is said isopignistic. To avoid this problem, the hypothesis of consonant mass densities is made, ie focal elements are nested. It is possible to create an index u where focal elements are labeled I u , verifying I u ⊆ I u with u > u. It is necessary to apply the principle of least commitment to have this property: Authors [START_REF] Ristic | Belief function theory on the continuous space with an application to model based classification[END_REF] use this method to calculate plausibility functions where probability densities are unimodal Gaussian distributions. Caron et al. [START_REF] Caron | Least Committed basic belief density induced by a multivariate Gaussian pdf[END_REF] generalize this approach in multidimensional case. The plausibility of a point mass x is given by:

pl(x) = 1 -F n+2 ((x -µ) T Σ -1 (x -µ)) ( 11 
)
where µ is the mean, Σ represent matrix of covariance and F n+2 is the cumulative density function of a χ 2 distribution with n + 2 degrees of freedom, defined by:

F n+2 (χ 2 ) = χ 2 0 u n+2 2 -1 2 n+2 2 Γ( n+2 2 ) exp(- u 2 )du (12) 
Then, several plausibility functions can be combined by using general Bayesian theorem to obtain mass function at x:

m(x)(A) = Cj ∈A pl j (x) Cj ∈A c (1 -pl j (x)) (13)
The next step consists to convert mass functions into pignistic probabilities by using equation ( 7). This criterion distributes uniformly mass of focal elements on singletons. Finally, the decision is taken by using the maximum of pignistic probability.

Belief functions and α-stable distributions

Belief functions have been applied to Gaussian cases in pattern recognition. However, α-stable distribution have better properties to represent noise [START_REF] Georgiou | Alpha-stable modeling of noise and robust timedelay estimation in the presence of impulsive noise[END_REF]. Consequently, we propose a way to calculate plausibility functions where probability density functions are modelized by symmetric α-stable distributions. Therefore, a comparison is made between method develop in section 3.2 and our method in Gaussian case. Bayesian approach is compared with belief functions in stable cases. Finally, a problem of classification is simulated to show the interest of α-stable distribution compared Gaussian case.

Calculation of plausibility

Smets [START_REF] Ph | Belief functions on real numbers[END_REF] defines plausibility functions in the case of unimodal probability density, noticed Betf , of mode µ. For x > µ, plausibility functions can be calculated by:

pl(x) = t=+∞ t=x (ν(t) -t) dBetf (t) dt dt (14) 
where ν(t) verifying Betf (ν(t)) = Betf (t). In symmetric case, equation ( 14) can be simplified [START_REF] Ph | Belief functions on real numbers[END_REF]:

pl(x) = 2(x -µ)Betf (x) + 2 t=+∞ t=x Betf (t)dt (15)
From equation ( 15), we use relation of Chasles to obtain: 

t=+∞ t=x pdf (t)dt = t=+∞ t=-∞ pdf (t)dt - t=x t=-∞ pdf (t)dt ( 
pl(x) = 2(x -µ)pdf (x) + 2(1 -cdf (x)) ( 17 
)
It will be useful to compare this result with plausibility functions obtained by Caron et al. [START_REF] Caron | Least Committed basic belief density induced by a multivariate Gaussian pdf[END_REF], where probability densities are Gaussian, to validate it.

Validation of plausibility functions

We take up the application of identification of flyingobject published in [START_REF] Ristic | Belief function theory on the continuous space with an application to model based classification[END_REF]. Speed can be considered as a feature. These features can be measure by sensors. In general, these measures are imprecise. Distribution of speed can be represented by a Gaussian or α-stable distributions. In our example, three α-stable distributions are chosen arbitrary given by notations defined in section 2.2:

• S 2 (0, 8, 722.5)

• S 2 (0, 7, 690)

• S 2 (0, 10, 730)

These three distributions are plotted in figure 5.

Figure 5: Plot of three Gaussian distributions

As it is explained in section 2.3, these three distributions are Gaussian because α = 2 and β = 0. For each distribution, a plausibility is calculated at every point x between [620; 800] with a step of 1. They are transformed into mass functions by using general Bayesian theorem. Finally, the decision is taken by using maximum of pignistic probability. Plots can be observed at figure 6(a). The same scheme is followed for approach of Caron et al. [START_REF] Caron | Least Committed basic belief density induced by a multivariate Gaussian pdf[END_REF]. We observe in figure 6 x n y * n . Coefficients of correlation are superior than 0.99 in the three distributions. The difference is due to numerical approximations during calculations of α-stable distributions. Consequently, we have shown that approach with α-stable distributions, in the particular case of three Gaussian distributions, is equivalent to current approach of Caron. To conclude, a way to calculate belief functions by supposing probability densities are α-stable distributions has been developed. 

Comparison with Bayesian approach

In this section, we take now three distributions that are not Gaussian. The three symmetric α-stable distributions are chosen with parameters:

• S 1.5 (0, 8, 722.5)

• S 1.2 (0, 7, 690)

• S 1.2 (0, 10, 730) Figure 7: Plots of three α-stable distributions.

These distributions can modelize speed feature of different planes. These graphics are represented at figure 7.

It is necessary to explain Bayesian approach in several steps. Firstly, prior probability must be calculated and can be modelized by: The application of Bayes theorem gives posterior probability:

p(x/C j ) = +∞ -∞ φ(t) exp(-itx)dt (18) 
p(C j /x) = p(x/C j )p(C j ) n j=1 p(x/C j )p(C j ) (19) 
Finally, the decision is chosen by using the maximum of posterior probability. Same steps are followed as them described in section 4.2 to calculate pignistic probabilities. Plots of theses two approach can be observed at figure 8.

When we analyse class probabilities in figure 8(a), decisions are clearly defined at the end of the tails. On the contrary, pignistic class probabilities in figure 8(b) show that it is difficult to take a decision. Indeed, tails are mixed and it is difficult to choose one or the other class. This remark is interesting for the classification when we have a lack of data for learning database.

To show interest of belief functions, we try to classify generated data. For example, 300 samples for each αstable distributions can be simulated by using the same approach given in [START_REF] Chambers | A method for simulating stable random variables[END_REF]. The rate of correct classification are calculated. The two approaches are roughly the same because rates are near 70 %. However, the criterion of decision choosen considers only singletons. In the literature, a criteron of decision, introduced in [START_REF] Appriou | Approche générique de la gestion de l'incertain dans les processus de fusion multisenseur[END_REF] and used in [START_REF] Martin | Decision support belief functions theory for seabed characterization[END_REF] , allows to take decison on union of classes. Consequently, the decision A of 2 Θ is obtained by:

A = argmax(m b (X)(x)pl(X)(x)) (20) 
where m b is a basic belief assignment given by:

m b (X) = K b λ X 1 |X| r (21)
r is a parameter in [0, 1]. When r → 0, we have a lack of information and more weight is given to union of classes. On the contrary, when r → 1, more weight is allocated to singletons. K b is a constant of normalization, which respects X∈2 Θ m j b (X) = 1. λ X allows the integration of the lack of knowledge on one of the elements X ∈ 2 Θ . For our application, we choose r = 0.4 

Gaussian vs α-stable model

In this section, we try to show α-stable models are more robust in classification compared to Gaussian models. Firstly, 1000 samples of the three symmetric α-stable distributions, defined in section 4.3, are generated. 1/3 is used for the learning database and 2/3 for the test database. Therefore, in Gaussian case, mean and standard-deviation are estimated. In α-stable case, parameters α,γ and δ are estimated by using [START_REF] Mcculloch | Simple consistent estimators of the parameters of stable laws[END_REF]. The next step consists to applicate belief functions, developed in last parts, on test database. A final rate of correct classification is calculated as a mean of 10 successive runs. The obtained results are:

• 58.06 % in Gaussian case • 67.24 % in α-stable distribution The model of probability density functions with αstable distribution gives results roughly better than the hypothesis of Gaussian case. We must take care to the model of estimation.

Conclusions

This paper proposes a way to calculate belief functions by using α-stable distributions in symmetric case. We have confirm this approach with a measure a correlation in Gaussian case. We have showed avantages of belief functions compared a Bayesian approach in a perspective of classification. Indeed, this theory does not need to know prior probability. Furthermore, the theory of belief functions decide not necessary an exclusive class: it is possible to consider a decision as being a union of classes. In our future works, we try to estimate unknown distributions. However, it is necessary to solve several problems. We must generalize belief functions in non symmetric case. Indeed, it is difficult to define ν as Betf (ν(t)) = Betf (t). In symmetric case, the mode is known and equal to δ and the function ν(t) = δ -t. On the contrary, the mode and ν are unknown in non symmetric case. Multimodal distributions can be estimated with a mixture of α-stable distributions as it is realized in [START_REF] Salas-Gonzalez | Finite mixture of α-stable distributions[END_REF]. However, it is difficult to define belief functions in this case. However, it is possible to use works published in [START_REF] Doré | Constructing consonant belief function induced by a multimodal probability[END_REF] where consonant belief functions are build form a multimodal distributions. Finally, our final objective is to develop classification from several SONAR images by using α-stable distributions. Results have been already given in Gaussian case [START_REF] Fiche | Bayesian approach and continuous belief functions for classification[END_REF] and it will be interesting to compare with α-stable distributions.
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  β is called skewness parameter • γ represents the scale parameter • δ designates location parameter It is possible to obtain probability density function (pdf ) by applying a Fourier transform to characteristic function:
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  [8]. Compared to discret domain, mass functions become mass density defined on sets [a, b] of R with m([a, b]) = f (a, b) where f is probability density of {(z, y) ∈ R 2 |z ≤ y} in [0, ∞]. Credibility degree on set [a, b], noted bel([a, b]), is defined with: bel([a, b]) = z=b z=a y=b y=z f (z, y)dydz

  [START_REF] Georgiou | Alpha-stable modeling of noise and robust timedelay estimation in the presence of impulsive noise[END_REF] where pdf designate the probability density functions of α-stable distributions. However, t=x t=-∞ pdf (t)dt correspond to cumulative density function, also written cdf , calculated at point x and by definition, t=+∞ t=-∞ pdf (t)dt = 1. Consequently, equation (15) becomes:

  (b) results of pignistic probabilities. A comparison between two functions can be made by estimating a coefficient of correlation given by the formula: c = N -1 n=0

  (a) pignistic probability of three α-stable distributions (b) pignistic probability by using Caron method
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 6 Figure 6: Plots of pignistic probability
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 8 Figure 8: Plots of Bayesian analysis and belief functions analysis.
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 9 Figure 9: Classification with possible decision on union to consider ambiguity between the classes. The results are illustrated in figure 9. The proportion given to the subset C 2 ∪ C 3 is important compared to the others. It is logical due to the pignistic class probabilities. Consequently, belief functions consider imprecisions of measures whereas it is impossible with a Bayesian approach.