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Abstract — The theory of belief functions has been
formalized in continuous domain for pattern recogni-
tion. Some applications use assumption of Gaussian
models. Howewver, this assumption is reductive. Indeed,
some data are not symmetric and present property of
heavy tails. It is possible to solve these problems by
using a class of distributions called a-stable distribu-
tions. Consequently, we present in this paper a way
to calculate pignistic probabilities with plausibility func-
tions where the knowledge of the sources of information
is represented by symmetric a-stable distributions. To
validate our approach, we compare our results in special
case of Gaussian distributions with existing methods.
To illustrate our work, we generate arbitrary distribu-
tions which represents speed of planes and take deci-
sions. A comparison with a Bayesian approach is made
to show the interest of the theory of belief functions.

Keywords: Belief functions, pignistic probabilities,
plausibility functions, symmetric a-stable distributions.

1 Introduction

Stable distributions have been developed by Paul Lévy
in his study of normalized sums of independant and
identically distributed terms [1]. It is a class of dis-
tributions which includes special cases like Gaussian
or Cauchy distributions. Some applications are listed
in the literature like in radar [2], engineering [3], fi-
nance [4], (etc).

In general, classic statistical problem is dominated
by methods based on Gaussian models. However, in
many cases, signals are rarely Gaussian and are often
complex. Indeed, they can present properties of skew-
ness and heavy tails. A distribution is said to have
heavy tails if the tails decays slower than the tail of the
Gaussian distribution. Thefore, property of skewness
means that it is impossible to find a mode where curve
is symmetric. One of avantages of a-stable distributions
compared to Gaussian cases is that allows to represent
these properties. Consequently, a-stable distributions

can be a class of distributions which is used for example
to follow texture parameters for pattern recognition.

A Bayesian approach is often used to solve problem
of pattern recognition [5]. However, Bayesian approach
requires to know prior probabilities. To avoid to es-
timate prior probabilities, it is possible to use belief
functions.

The theory of belief functions in discret domain has
been developed by Dempster [6], and Shafer [7]. It can
be seen as an extension of theory of probabilities. One
of avantages of belief functions is that allows to consider
imprecision and uncertainty of measures.

Recently, some works extend theory of belief func-
tions in continuous domain [8]. The theory of belief
functions has been applied to Gaussian cases in [9].
Consequently, we try to develop the theory of belief
functions to a-stable distributions.

The structure of the paper is as follows: definitions
about a-stable distributions are given in section one.
Therefore, belief functions on discret and continuous
domain are explained in section two. Finally, in sec-
tion three, a method is proposed to calculate belief
functions where information transmitted by sensors are
modelized by a-stable distributions and the interest
of belief functions is showed compared a Bayesian ap-
proach.

2 «-stable distributions

a-stable distributions allow to represent phenomena of
skewness and heavy tails. Consequently, a definition of
stable random variable is given, then a way to calculate
a-stable distributions is developed.

2.1 Stable random variable

The notion of stability has been introduced by P. Lévy
in [1]. A random variable X is said stable if ¥(a,b) €
(RT)?, it exists ¢ € RT and d € R such as:

CLX1+bX2:CX+d (1)



with X7 and X5 independent copies of X. Equation (1)
define the notion of stability but gives no informa-
tion how to parametrize a-stable distributions. Con-
sequently, a-stable distributions are defined from char-
acteristic functions.

2.2 Characteristic functions

There are in the literature several parameterizations
of a-stable distributions, noted S, (3,7,d). The most
known definition is that used by Samorodnitsky and
Taqqu [10]. However, the most employed definition is
given by Zolotarev [11]. A random variable is said sta-
ble if his characteristic function verifies:

ifa#1

O(t) = explitd— yt]*[1+iBtan( T )sign(t) [t~ —
ifa=1

(1) = exp(itd — [ytl[1 + 6 sign(t) log ]}

)

with « €]0,2], 8 € [-1,1], y € R™ and § € R.
The four parameters can be interpreted as:

e « is called characteristic exponent
e [ is called skewness parameter

e v represents the scale parameter
e ( designates location parameter

It is possible to obtain probability density function
(pdf) by applying a Fourier transform to characteris-
tic function:

+oo
pdf () = / o(t) exp(—it)dt (2)

— 00

However, it is difficult to represent probability den-
sity functions for two reasons. Indeed, the characteris-
tic function is complex and the interval of integration
is infinite. Nolan [12] suggests to make variable modifi-
cations to have a set of integration finite. This method
has been programmed in a Matlab code [13].

Each parameter has an influence on plots. Indeed,
if « is small, the distribution presents a more impor-
tant peak (¢f. figure 1). When 8 — 1, distributions
is shapeless on left and conversely when 8 — —1 (cf.
figure 2). Moreover, parameter v allows to dilate and
compress distributions (c¢f. figure 3). Distributions are
translated on the abscissa when parameter 0 varies (cf.
figure 4).

2.3 Examples of pdf

Despite the lack of closed formulas, it is possible to
describe known distributions. Indeed, when oo = 2 and
B = 0, Gaussian distribution is defined:
1 . ( (x — 6)2>
xp [ - )
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Figure 1: Influence of parameter a with 5 =0, vy =1
and § = 0.
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Figure 2: Influence of parameter § with a = 1.5, v =1
and § = 0.
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Figure 3: Influence of parameter v with a = 1.5, 5 =0
and 0 = 0.
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Figure 4: Influence of parameter v with a = 1.5, 5 =0
and 6 = 0.

with § corresponding to the mean and ¢2 to the vari-
ance. To recognize a-stable distribution, we have
0% = 242, When a = 1 and 8 = 0, it is possible to
build a Cauchy distribution:

1 Y
= 4
@)= L @
It is usual to define symmetric a-stable distributions,
i.e. a class of distributions where g = 0.

3 Theory of belief functions

The theory of probabilities is limited because it is diffi-
cult to consider imprecisions of measures and it is neces-
sary to know prior probabilities. However, these prob-
lems can be solved by using works on belief functions.
In this part, the theory of belief functions is developed
in discret and continuous domains.

3.1 Discret belief functions

Firstly, it is necessary to consider a frame of discerne-
ment © = {C1,Cy,...,Cy}, where C; correspond to
a class. The belief is represented by a basic belief as-
signment m defined on 2° and in [0, 1]. m verifies by
construction Z m(A) = 1. When m(A4) > 0, A is

Ae2©
focal element. With these definitions, it is possible to

construct several functions:

e credibility function, noted bel, we can calculate it
by the formula:

bel(A) =

>

BCA,B#£0

m(B) (5)

e plausibility function, noted pl, We can define it by:

We can also calculate pignistic probability used for de-
cision step [14]. It is an operator which can give prob-
ability on every C; € ©. It is possible to determinate
this probability with:

m(A)

A —m@) "

ABethC%)ii

D

ACO,C €A

|A| represents the cardinality of A. The combinaison
between two mass functions can be realized with or-
thogonal rule of Dempster. Indeed, m; and ms and
VX € 2°:

> mi(Y)ma(Ya)

YiNYs=X

1-— :E: Tnl(}ﬁ)Tng(Yé)

YiNYo=0

m(X) = (8)

3.2 Continuous belief functions

The theory of belief functions on continuous domain
has been developed by Smets [8]. Compared to discret
domain, mass functions become mass density defined
on sets [a,b] of R with m([a,b]) = f(a,b) where f is
probability density of {(z,y) € R?|z < y} in [0, 00].
Credibility degree on set [a,b], noted bel([a,b]), is de-
fined with:

z=b y=b
bel([a,b]) = / / f(z,9)dydz (9)

=a =z
It is possible to define plausibility degree with:

y=+o0

z=b
pleth= [ [ e a0

Mass densities can be determinated from probability
density functions. However, many mass densities can
induce the same probability density function. The
transformation is said isopignistic. To avoid this prob-
lem, the hypothesis of consonant mass densities is
made, ie focal elements are nested. It is possible to
create an index u where focal elements are labeled I,,,
verifying I, C I; with v > w. It is necessary to apply
the principle of least commitment to have this property:
Authors [15] use this method to calculate plausibil-
ity functions where probability densities are unimodal
Gaussian distributions. Caron et al. [9] generalize this
approach in multidimensional case. The plausibility of
a point mass z is given by:

pl(x) =1 — Fupo((x — )" SNz — ) (11)

where p is the mean, ¥ represent matrix of covariance
and F, o is the cumulative density function of a x?
distribution with n 4+ 2 degrees of freedom, defined by:

2 +2
unT_1

X U
F, 2 :/ —————exp(—=)du
+2(X) o 2#1“(%2) XP( 2)

(12)



Then, several plausibility functions can be combined by
using general Bayesian theorem to obtain mass function
at x:

m(z)(A) = [] vli@) [T @ —pli)

CjeA C,eA”

(13)

The next step consists to convert mass functions into
pignistic probabilities by using equation (7). This cri-
terion distributes uniformly mass of focal elements on
singletons. Finally, the decision is taken by using the
maximum of pignistic probability.

4 Belief functions and a-stable

distributions

Belief functions have been applied to Gaussian cases
in pattern recognition. However, a-stable distribution
have better properties to represent noise [16]. Conse-
quently, we propose a way to calculate plausibility func-
tions where probability density functions are modelized
by symmetric a-stable distributions. Therefore, a com-
parison is made between method develop in section 3.2
and our method in Gaussian case. Bayesian approach
is compared with belief functions in stable cases. Fi-
nally, a problem of classification is simulated to show
the interest of a-stable distribution compared Gaussian
case.

4.1 Calculation of plausibility

Smets [8] defines plausibility functions in the case of
unimodal probability density, noticed Betf, of mode pu.
For x > pu, plausibility functions can be calculated by:

t=-+o0 e
pi(z) = /t (v(t) - t)dBTttf(t)dt

=z

(14)

where v(t) verifying Bet f(v(t)) = Betf(t). In symmet-
ric case, equation (14) can be simplified [8]:

t=+o00

pl(x) = 2(x — p)Betf(x) + 2/ Betf(t)dt (15)

t=x

From equation (15), we use relation of Chasles to ob-
tain:

t=—4o0 t=4oc t=x
/ pdf (t)dt = / pdf (t)dt — / pdf (t)dt
t=x t=—o0 t=—o00
(16)
where pdf designate the probability density functions
t=x
of a-stable distributions. However, pdf (t)dt
t=—o0

correspond to cumulative density function, also writ-

ten cdf, calculated at point z and by definition,
t=4+o0

/ pdf (t)dt = 1. Consequently, equation (15) be-
¢

=—00
comes:

pl(x) = 2(x — p)pdf (x) + 2(1 — cdf (x)) (17)

It will be useful to compare this result with plausibility
functions obtained by Caron et al. [9], where probability
densities are Gaussian, to validate it.

4.2 Validation of plausibility functions

We take up the application of identification of flying-
object published in [15]. Speed can be considered as
a feature. These features can be measure by sensors.
In general, these measures are imprecise. Distribution
of speed can be represented by a Gaussian or a-stable
distributions. In our example, three a-stable distribu-
tions are chosen arbitrary given by notations defined in
section 2.2:

e 55(0,8,722.5)
e 55(0,7,690)
e 55(0,10,730)
These three distributions are plotted in figure 5.
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Figure 5: Plot of three Gaussian distributions

As it is explained in section 2.3, these three distribu-
tions are Gaussian because a = 2 and 8 = 0. For each
distribution, a plausibility is calculated at every point
x between [620;800] with a step of 1. They are trans-
formed into mass functions by using general Bayesian
theorem. Finally, the decision is taken by using maxi-
mum of pignistic probability. Plots can be observed at
figure 6(a).

The same scheme is followed for approach of Caron
et al. [9]. We observe in figure 6(b) results of pig-
nistic probabilities. A comparison between two func-
tions can be made by estimating a coefficient of cor-

N-1
relation given by the formula: ¢ = Z znyy. Co-
=0

n—
efficients of correlation are superior than 0.99 in the
three distributions. The difference is due to numerical
approximations during calculations of a-stable distri-
butions. Consequently, we have shown that approach
with a-stable distributions, in the particular case of
three Gaussian distributions, is equivalent to current
approach of Caron. To conclude, a way to calculate
belief functions by supposing probability densities are
a-stable distributions has been developed.
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(a) pignistic probability of three a-stable distri-
butions
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(b) pignistic probability by using Caron method

Figure 6: Plots of pignistic probability

4.3 Comparison with Bayesian ap-
proach

In this section, we take now three distributions that
are not Gaussian. The three symmetric a-stable distri-
butions are chosen with parameters:

e S15(0,8,722.5)
e 515(0,7,690)

e S15(0,10,730)

---alpha=1.5 gamma=8 delta=722.5
— alpha=1.2,gamma=7,delta=690
alpha=1.2,gamma=10 delta=730

780 800

Figure 7: Plots of three a-stable distributions.

These distributions can modelize speed feature of differ-
ent planes. These graphics are represented at figure 7.

It is necessary to explain Bayesian approach in sev-
eral steps. Firstly, prior probability must be calculated
and can be modelized by:

+o00o
o(t) exp(—itz)dt

a/C) = [

— 00

(18)

(a) Class probabilities

640 660 680 700 720 740 760 780 800
x

(b) Pignistic class probabilities

Figure 8: Plots of Bayesian analysis and belief functions
analysis.

The application of Bayes theorem gives posterior
probability:

p(Cy /) = p(z/C;)p(C))

> lx/Cyp(C;)

=1

(19)

Finally, the decision is chosen by using the maximum of
posterior probability. Same steps are followed as them
described in section 4.2 to calculate pignistic probabil-
ities. Plots of theses two approach can be observed at
figure 8.

When we analyse class probabilities in figure 8(a), de-
cisions are clearly defined at the end of the tails. On
the contrary, pignistic class probabilities in figure 8(b)
show that it is difficult to take a decision. Indeed, tails
are mixed and it is difficult to choose one or the other
class. This remark is interesting for the classification
when we have a lack of data for learning database.

To show interest of belief functions, we try to classify



generated data. For example, 300 samples for each a-
stable distributions can be simulated by using the same
approach given in [17]. The rate of correct classifica-
tion are calculated. The two approaches are roughly the
same because rates are near 70 %. However, the crite-
rion of decision choosen considers only singletons. In
the literature, a criteron of decision, introduced in [18]
and used in [19] , allows to take decison on union of
classes. Consequently, the decision A of 2° is obtained
by:

A = argmaz(mp(X)(z)pl(X)(x)) (20)
where my, is a basic belief assignment given by:
1
mp(X) = Kphx () (21
(X) oG )

r is a parameter in [0,1]. When r — 0, we have a
lack of information and more weight is given to union
of classes. On the contrary, when r — 1, more weight
is allocated to singletons. K} is a constant of normal-
ization, which respects Z mi(X) = 1. Ax allows the

Xe20
integration of the lack of knowledge on one of the ele-

ments X € 2©. For our application, we choose r = 0.4
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Figure 9: Classification with possible decision on union

to consider ambiguity between the classes. The results
are illustrated in figure 9. The proportion given to the
subset Cy U Cj3 is important compared to the others. It
is logical due to the pignistic class probabilities. Conse-
quently, belief functions consider imprecisions of mea-
sures whereas it is impossible with a Bayesian approach.

4.4 Gaussian vs a-stable model

In this section, we try to show a-stable models are
more robust in classification compared to Gaussian
models. Firstly, 1000 samples of the three symmetric
a-stable distributions, defined in section 4.3, are gener-
ated. 1/3 is used for the learning database and 2/3 for
the test database. Therefore, in Gaussian case, mean
and standard-deviation are estimated. In a-stable case,
parameters «,y and J are estimated by using [20]. The
next step consists to applicate belief functions, devel-
oped in last parts, on test database. A final rate of

correct classification is calculated as a mean of 10 suc-
cessive runs. The obtained results are:

e 58.06 % in Gaussian case
e 67.24 % in a-stable distribution

The model of probability density functions with a-
stable distribution gives results roughly better than the
hypothesis of Gaussian case. We must take care to the
model of estimation.

5 Conclusions

This paper proposes a way to calculate belief functions
by using a-stable distributions in symmetric case. We
have confirm this approach with a measure a correlation
in Gaussian case. We have showed avantages of belief
functions compared a Bayesian approach in a perspec-
tive of classification. Indeed, this theory does not need
to know prior probability. Furthermore, the theory of
belief functions decide not necessary an exclusive class:
it is possible to consider a decision as being a union of
classes.

In our future works, we try to estimate unknown dis-
tributions. However, it is necessary to solve several
problems. We must generalize belief functions in non
symmetric case. Indeed, it is difficult to define v as
Betf(v(t)) = Betf(t). In symmetric case, the mode is
known and equal to § and the function v(t) = d —¢. On
the contrary, the mode and v are unknown in non sym-
metric case. Multimodal distributions can be estimated
with a mixture of a- stable distributions as it is realized
in [21]. However, it is difficult to define belief functions
in this case. However, it is possible to use works pub-
lished in [22] where consonant belief functions are build
form a multimodal distributions. Finally, our final ob-
jective is to develop classification from several SONAR
images by using a-stable distributions. Results have
been already given in Gaussian case [23] and it will be
interesting to compare with a-stable distributions.
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