A column generation approach for coordination and control of multiple UAVs

D. M. Nguyen¹, F. Dambreville², A. Toumi³, J. C. Cexus⁴, and A. Khenchaf⁵

¹Department of Mathematics and Informatics, Hanoi National University of Education 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam

²⁻⁵Lab-Sticc UMR CNRS 6285, ENSTA Bretagne, Brest, France

Plan

- Introduction
- □ Formulation of problem
- Column generation method
- Branching
- Numerical experiments
- Conclusion and perspectives

Introduction

M1-M2	UAV
W1-W4	Waypoint
\circ	Position of UAV at each time-step
☐ Z1	Obstacle

Bi-level problem:

the upper-level: task assignment problem

[capability constraints]

the lower-level: constructs the detailed trajectory of UAVs

[dynamic system]
[avoidance the obstacles]
[dependency constraints]

Plan

- ☐ Introduction
- □ Formulation of problem
- Column generation method
- Branching
- Numerical experiments
- Conclusion and perspectives

Formulation (1/5)

 N_v : Number of vehicles (UAVs)

index : p

 N_w : Number of navigation points

index : i, (W_{i1}, W_{i2}) : position

N_z: Number of no-fly-zones

index: j

 N_T : time steps are used for planning

index: t

UAV: point mass moving in two dimensions with limited speed and turning rate

 \Longrightarrow state of UAV : (x, y, \dot{x}, \dot{y})

Formulation (2/5)

The model of aircraft dynamics:

$$\dot{x}_{tp} \sin\left(\frac{2\pi h}{N_c}\right) + \dot{y}_{tp} \cos\left(\frac{2\pi h}{N_c}\right) \le v_{max_p},
\forall t = 1, ..., N_T, \forall p = 1, ..., N_V, \forall h = 1, ..., N_C,$$
(1)

$$f_{x_{tp}} \sin\left(\frac{2\pi h}{N_c}\right) + f_{y_{tp}} \cos\left(\frac{2\pi h}{N_c}\right) \le f_p,$$

$$\forall t = 0, ..., N_T - 1, \forall p = 1, ..., N_V, \forall h = 1, ..., N_C.$$

$$(2)$$

$$\omega_p = \frac{f_p}{m_p \cdot v_{max_p}} \tag{3}$$

$$s_{(t+1)p} = \mathbf{A}s_{tp} + \mathbf{B}f_{tp},$$

 $\forall t = 0, ..., N_T - 1, \forall p = 1, ..., N_V.$ (4)

[1] A. Richards et al. (2002). *Co-ordination and Control of Multiple UAVs*. In: AIAA Guidance, Navigation, and Control Conference (GNC), 2002.

Formulation (3/5)

Avoid a rectangular obstacle:

$$\begin{aligned} x_{tp} - Z_{j3} & \geq -Rc_{jpt1}, \\ Z_{j1} - x_{tp} & \geq -Rc_{jpt2}, \\ y_{tp} - Z_{j4} & \geq -Rc_{jpt3}, \\ Z_{j2} - x_{tp} & \geq -Rc_{jpt4}, \\ \sum_{z=1}^{4} c_{jptz} & \leq 3, \\ \forall t = 1, ..., N_T, \forall p = 1, ..., N_V, \forall j = 1, ..., N_Z, \end{aligned}$$

Visit a waypoint:

$$x_{tp} - W_{i1} \leq R(1 - b_{ipt}),$$

$$x_{tp} - W_{i1} \geq -R(1 - b_{ipt}),$$

$$y_{tp} - W_{i2} \leq R(1 - b_{ipt}),$$

$$y_{tp} - W_{i2} \geq -R(1 - b_{ipt}),$$

$$\forall t = 1, ..., N_T, \forall p = 1, ..., N_V, \forall i = 1, ..., N_W.$$

$$(6)$$

[1] A. Richards et al. (2002). *Co-ordination and Control of Multiple UAVs*. In: AIAA Guidance, Navigation, and Control Conference (GNC), 2002.

Formulation (4/5)

Assignment and Time dependency:

Time dependency:

- Each couple:

$$D_k = (i_k, j_k)$$
 , t_{D_k}

The waypoint i_k must be visited after the waypoint j_k a duration of t_{D_k} time units.

Formulation (5/5)

Resources:

$$\sum_{t=0}^{N_T-1} (|f_{tp}^x| + |f_{tp}^y|) \le F_p, \forall p = 1, ..., N_V$$
(9)

The flight completion time:

$$t_p \ge \sum_{t=1}^{N_T} t b_{ipt}, \forall p = 1, ..., N_V, \forall i = 1, ..., N_W.$$
 (10)

The optimization problem:

$$\begin{cases} \max_{s,f,b,c} \left(\sum_{t=1}^{N_t} \sum_{j=1}^{N_W} \sum_{p=1}^{N_V} g_{ip} b_{ipt} \right) - \left(\epsilon_1 \left(\sum_{p=1}^{N_V} t_p + \epsilon_2 \sum_{t=0}^{N_t-1} (|f_{x_{tp}}| + |f_{y_{tp}}|) \right) \right) \\ \text{subject to : (1) - (10)} \\ \text{gain} \end{cases}$$

Plan

- ☐ Introduction
- Formulation of problem
- Column generation method
- Branching
- Numerical experiments
- Conclusion and perspectives

Column generation (1/11)

- ➤ **Column generation**: a prominent method to cope with linear programming (integer or mixed) with a huge number of variables
- ➤ In context of column generation, **branch-and-price** is an indispensable procedure for globally solving a problem. Several specialized branch-and-price algorithms: generalized assignment problem, vehicle routing problems, scheduling problems, etc.
 - [2] Dantzig GB, Wolfe P. *Decomposition principle for linear programs*. Operations Research 1960;8:101-111.
 - [3] Desaulniers G, Desrosiers J, Solomon MM (Eds.). *Column Generation*, Springer US (2005).
 - [4] Lübbecke M, Desrosiers J. *Selected Topics in Column Generation*. Operations Research 2005;53(6):1007-1023.

11/33

Column generation (2/11)

Feasible trajectory:

A feasible trajectory of a vehicle p is a trajectory starting from its departure, satisfying all moving constraints and visiting at least one waypoint i.

 $\Omega_{\rm p}$: the set of all feasible trajectories for the vehicle p.

 Ω : the set of all feasible trajectories

$$\Omega = \bigcup_{p \in N_V} \Omega_p \,.$$

Column generation (3/11)

Let $r=(r_1,r_2,...,r_{N_T})\in\Omega_p\subset\Omega$ be a feasible trajectory, where r_1,\cdots,r_{N_T} are waypoints visited by UAV p. The performance of this trajectory, denoted g(r), is calculated:

$$g(r) = \sum_{i \in N_W \cap r} g_{i,p} - \epsilon_1 \left(t_r^p + \epsilon_2 f_r^p \right).$$

 $\sum_{i \in N_W \cap r} g_{i,p}$: the gain of trajectory r

 t_r^p : the moment when UAV p visits the last waypoint of the trajectory r

 f_r^p : the total force used through the trajectory r

Column generation (4/11)

We define, for each waypoint $i \in N_W$, the parameter of visitation a_{ri} , by :

 $a_{ri} = 1$ if trajectory r passes waypoint i, $a_{ri} = 0$ otherwise.

- $t_r(i)$: the time-step for visiting waypoint i
- $\Omega_p(i)$: the set of all feasible trajectories of UAV p visiting waypoint i

Column generation (5/11)

Problem (11) can be reformulated:

$$\begin{cases}
\max \sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}} g(r) \cdot \theta_{r} \\
\text{s.t.} \sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}} a_{ri} \theta_{r} \leq 1, \forall i = 1, ..., N_{W}, \\
\sum_{r \in \Omega_{p}} \theta_{r} \leq 1, \forall p = 1, ..., N_{V}, \\
\sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}(i_{k})} t_{r}(i_{k}) \theta_{r} - \sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}(j_{k})} t_{r}(j_{k}) \theta_{r} \geq t_{D_{k}}, \forall k = 1, ..., N_{D}, \\
\sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}(i_{k})} \theta_{r} = 1, \forall k = 1, ..., N_{D}, \\
\sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}(j_{k})} \theta_{r} = 1, \forall k = 1, ..., N_{D}, \\
\theta_{r} \in \{0, 1\}, \forall r \in \Omega.
\end{cases}$$

The variable $\theta_r \in \{0, 1\}$ is a decision variable which describes whether a trajectory r is chosen or not.

Column generation (6/11)

Due to the first constraint, we can replace

$$\theta_r \in \mathbb{N}, \forall r \in \Omega. \quad \longleftarrow \quad \frac{\theta_r \in \{0,1\}, \forall r \in \Omega}{}$$

The linear relaxation of problem (12), i.e.,

$$\theta_r \geq 0, \forall r \in \Omega$$

is called Master Problem (MP).

Column generation (7/11)

• Given $\Omega_k^1 \subset \Omega_k, k \in K$ and $\Omega^1 = \bigcup_{k \in K} \Omega_k^1$. We consider the restricted Master Problem (RMP), denoted MP(Ω^1):

$$\begin{cases}
\max \sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}^{1}} g(r) \cdot \theta_{r} \\
\text{s.t.} \sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}^{1}} a_{ri} \theta_{r} \leq 1, \forall i = 1, ..., N_{W}, \\
\sum_{r \in \Omega_{p}^{1}} \theta_{r} \leq 1, \forall p = 1, ..., N_{V}, \\
\sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}^{1}(j_{k})} t_{r}(j_{k}) \theta_{r} - \sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}^{1}(i_{k})} t_{r}(i_{k}) \theta_{r} \leq -t_{D_{k}}, \\
\forall k = 1, ..., N_{D}, \\
\sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}^{1}(i_{k})} \theta_{r} = 1, \forall k = 1, ..., N_{D}, \\
\sum_{p=1}^{N_{V}} \sum_{r \in \Omega_{p}^{1}(j_{k})} \theta_{r} = 1, \forall k = 1, ..., N_{D}, \\
\theta_{r} \geq 0, \forall r \in \Omega^{1}.
\end{cases}$$

$$(13)$$

Column generation (8/11)

• The dual program of (13), denoted by $D(\Omega^1)$:

$$\begin{cases}
\min \sum_{i=1}^{N_W} \lambda_i + \sum_{p=1}^{N_V} \mu_p - \sum_{k=1}^{N_D} t_{D_k} . \alpha_k \\
\text{s.t. } \sum_{i=1}^{N_W} a_{ri} \lambda_i + \mu_p + \sum_{k=1}^{N_D} (t_r(j_k) . a_{r,j_k} - t_r(i_k) . a_{r,i_k}) \alpha_k \ge g(r), \\
\forall r \in \Omega_p^1, p \in N_V,
\end{cases}$$

$$\lambda_i \ge 0, \forall i \in N_W \setminus \mathbf{D},$$

$$\lambda_i \in \mathbb{R}, \forall i \in \mathbf{D},$$

$$\mu_p \ge 0, \forall p = 1, ..., N_V,$$

$$\alpha_k \ge 0, \forall k = 1, ..., N_D.$$
(14)

 λ_i : is the dual variable related to the visitation constraint of waypoint i

 μ_p : is the dual variable related to the implementation constraint of vehicle p.

 α_k : is the dual variable corresponding to the dependency constraint.

Column generation (9/11)

• Suppose that $(\bar{\lambda}, \bar{\mu}, \bar{\alpha}) = (\bar{\lambda}_1, ..., \bar{\lambda}_{N_W}, \bar{\mu}_1, ..., \bar{\mu}_{N_V}, \bar{\alpha}_1, ..., \bar{\alpha}_{N_D})$ is an optimal solution of the dual problem D(Ω^1), we have

$$\sum_{i=1}^{N_W} a_{ri} \bar{\lambda}_i + \bar{\mu}_p + \sum_{k=1}^{N_D} (t_r(j_k) . a_{r,j_k} - t_r(i_k) . a_{r,i_k}) \bar{\alpha}_k \ge g(r), \forall r \in \Omega_p^1, p \in N_V.$$
(15)

If this condition (15) holds for all $r \in \Omega_p, p \in N_V$ $(\bar{\lambda}, \bar{\mu}, \bar{\alpha})$ is also the optimal solution of the dual program of (MP).

If not \longrightarrow we will look for a trajectory $r \in \Omega_p \backslash \Omega_p^1$ for an UAV $p \in N_V$ such that :

$$\sum_{i=1}^{N_W} a_{ri} \bar{\lambda}_i + \bar{\mu}_p + \sum_{k=1}^{N_D} (t_r(j_k).a_{r,j_k} - t_r(i_k).a_{r,i_k}) \bar{\alpha}_k < g(r)$$
 (16)

→ The sub-problem

Column generation (10/11)

The sub-problem:

• Solving the sub-problem leads to solving a problem which is quite similar to (11), but with only one vehicle p so as to find a trajectory r which satisfies the condition (16):

```
Subject to:
```

[dynamic system]
[avoidance the obstacles]

[dependency constraints] : modified

$$\sum_{t=1}^{N_T} t b_{i_k,t} + R(1 - \sum_{t=1}^{N_T} b_{i_k,t}) \ge t_{D_k} + \sum_{t=1}^{N_T} t b_{j_k,t}.$$

- → The sub-problem is easier to solve than the original problem (11):
 - The set of compatible waypoints: sub-set.

Column generation (11/11)

Column generation-based algorithm:

Step 1. Generate initial sets Ω_p^1 for each vehicle $p \in N_V$

Step 2. Solve the problem (13) in order to obtain the optimal solution and its dual solution $(\bar{\lambda}, \bar{\mu}, \bar{\alpha})$,

Step 3. For each vehicle $p \in N_V$, solving the sub-problem optimally to find a trajectory $r \in \Omega_k \setminus \Omega_k^1$ satisfying the condition (16) and update

$$\Omega_k^1 := \Omega_k^1 \cup \{r\},\$$

Step 4. Iterate step 2-3 until there is no trajectory satisfying the condition.

Plan

- ☐ Introduction
- Formulation of problem
- Column generation method
- Branching
- Numerical experiments
- Conclusion and perspectives

Branching (1/4)

If θ_r is 0-1 \Longrightarrow the solution θ is optimal.

If θ_r is fractional \Longrightarrow Branching : 2 techniques

- Branching 1: there exists a pair (i, p), i is a waypoint and p is an UAV such that:

 $\frac{1}{2}$ 3 /33

Branching (2/4)

Branching (3/4)

- Branching 2: there exist a triple (i, p, t), i is a waypoint and p is an UAV, t is the visitation time such that:

Left Branching Right

UAV p visits waypoint i exactly at time t

UAV p does not visit waypoint i exactly at time t

 $\theta = (0; 0; 0; 0; 0; 1; 0.5384615; 0; 0.4615385; 0; 0; 0)$

Branching (4/4)

Plan

- ☐ Introduction
- □ Formulation of problem
- Column generation method
- Branching
- Numerical experiments
- Conclusion and perspectives

Simulation: Data 1

UAV	mass	Initial velocity		ω_{max}	v_{max}	f_{max}	F
	(kg)	X(m/s)	Y(m/s)	$(^o/s)$	(m/s)	(N)	(N)
1	5	0.1	0	15	1.5	1.9635	25
2	5	0.1	0	15	1.5	1.9635	25
3	5	0.1	0	15	1.0	1.3090	25
4	5	0.1	0	15	1.5	1.9635	25
5	5	0.1	0	15	1.0	1.3090	25
6	5	0.1	0	15	1.0	1.3090	25

5760 binary variables 1446 continuous variables 16116 constraints

28/33

Prob		CPLEX			Column generation					
	LP relaxation	Objective	Time(s)	Dual Bound	IP solution	Optimal	Time(s)	Nodes	Depth	
1	211.992952	203.858889	3600	205.857072	205.855858	205.855858	185.11	3	1	
2	196.991954	178.852894	3600	189.839830	189.839826	189.839826	134.10	1	0	
3	200.990944	194.858894	98.09	194.860893	194.856896	194.858894	293.14	3	1	
4	218.990941	194.866876	3600	210.860849	210.860849	210.860849	123.16	1	0	
5	202.992953	179.865901	3600	190.873856	190.863855	190.873856	348.59	11	5	
6	194.991954	185.861882	3600	190.852861	190.848847	190.849849	532.42	11	4	
7	197.990951	185.852879	3600	192.852859	192.850859	192.850859	262.08	5	2	
8	215.993944	199.869905	3600	203.372870	201.869867	202.873872	866.48	17	5	
9	215.992949	195.861886	3600	201.850853	201.840855	201.850853	498.75	13	6	
10	219.992940	208.846897	3600	217.372772	214.856853	214.856853	271.92	5	2	
		†								

Simulation: Data 2

UAV	mass	Initial	velocity	ω_{max}	v_{max}	f_{max}	F
	(kg)	X(m/s)	Y(m/s)	$(^o/s)$	(m/s)	(N)	(N)
1	5	0.1	0	15	1.5	1.9635	30
2	5	0.1	0	15	1.5	1.9635	30
3	5	0.1	0	15	2.0	2.6180	30
4	5	0.1	0	15	1.5	1.9635	30
5	5	0	0.1	15	2.0	2.6180	30
6	5	0	0.1	15	2.0	2.6180	30
7	5	0	0.1	15	2.0	2.6180	30
8	5	0.1	0.1	15	2.0	1.9635	30

12200 binary variables 1608 continuous variables 32448 constraints

i_k	j_k	t_{D_k}
9	16	1
13	5	2
7	8	2
25	19	4
11	22	6

Simulation: Data 2 (cont.)

Prob	CPLEX				Column generation					
	LP relaxation	Objective	Time(s)	-	Dual Bound	IP solution	Optimal	Time(s)	Nodes	Depth
1	403.977926	214.821828	10800		283.860815	259.814764	262.823769	5770.24	197	11
2	412.980914	258.827792	10800		272.720970	258.823776	258.829777	3910.47	111	10
3	419.981909	293.833806	10800		324.427904	304.812780	314.817780	3635.91	89	12
4	409.977917	290.822784	10800		314.258042	297.814766	308.817762	1155.81	21	6
5	414.981904	284.808804	10800		288.494062	278.814781	285.810781	364.64	7	2
6	410.982910	275.817810	10800		290.433635	272.816770	277.815770	5267.93	101	9
7	439.981918	267.821817	10800		315.997591	285.816777	293.817771	4651.38	95	12
8	433.979908	271.825806	10800		315.708516	314.809763	314.810760	348.93	5	2
9	438.980907	296.821792	10800		320.794631	311.808781	314.812761	799.59	15	4
10	434.982908	279.825797	10800		304.881974	287.811773	294.809771	1179.29	37	9

2708.42s

Plan

- ☐ Introduction
- Formulation of problem
- Column generation method
- Branching
- Numerical experiments
- Conclusion and perspectives

Conclusion and perspectives

- Present the problem of coordination and control multiple UAVs.
- Propose a branch-and-price algorithm to solve the addressed problem.
- Compare numerical results obtained by our approach with those given by CPLEX.

Perspectives:

- Study and analyze other methods to build UAV trajectory
- Parallelize the trajectory search for all drones to speed up the computation time.

THANK YOU FOR YOUR ATTENTION!