
HAL Id: hal-00917013
https://ensta-bretagne.hal.science/hal-00917013

Submitted on 11 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA Implementation of a Parameterized Fourier
Synthesizer

Rui Yang, J.G. Wang, Benoit Clement, Ali Mansour

To cite this version:
Rui Yang, J.G. Wang, Benoit Clement, Ali Mansour. FPGA Implementation of a Parameterized
Fourier Synthesizer. IEEE International Conference on Electronics, Circuits, and Systems, Dec 2013,
Abu Dhabi, United Arab Emirates. �hal-00917013�

https://ensta-bretagne.hal.science/hal-00917013
https://hal.archives-ouvertes.fr

FPGA Implementation of a Parameterized Fourier

Synthesizer

R. YANG∗ †, J.G. WANG∗, B. CLEMENT† and A. MANSOUR†

∗College of Engineering, Ocean University of China, Qingdao 266100, China

Email: yang.rui@ensta-bretagne.fr, ckyiqi@ouc.edu.cn
†Lab-STICC, UMR CNRS 6285, ENSTA Bretagne, 29806 Brest Cedex 9, France

Email: benoit.clement@ensta-bretagne.fr, Mansour@ieee.org

Abstract— Field-Programmable Gate Array (FPGA) offers ad-
vantages for many applications, particularly where missions are
complex and time performance is critical. For small-production
digital acoustic synthesizers, FPGA can achieve the above-
mentioned tighter system requirements with low total system
costs on single chip. In this manuscript, a real-time acoustic
synthesizer is implemented using Fourier series algorithm on
Altera’s Cyclone II FPGA chip. This work emphasizes systematic
designs and parallel computations. The proposed system includes
a flexible processor and a parallel parameterized acoustic module.
On one hand, the Nios II embedded processor, which is relatively
low-speed component, is used to generate commands and config-
ure high-speed acoustic module parameters. On the other hand,
acoustic module which should require high-speed components
contains 4 parallel architectures to gain high-speed simultaneous
calculus of 4 independent digital timbres. Every timbre is
equivalent to 16 parallel high-precision harmonic channels with
0.3 % frequency error. Experimental results corroborate the fact
that a single FPGA chip can achieve complex missions and attain
real-time performances.

I. INTRODUCTION

Since the last two decades, FPGA has become widely used

in electronic engineering applications after its first product in

1984. Comparing with Application-Specific Integrated Circuit

(ASICs), FPGA is considered as the best technical solution for

small-production applications. According to [1], first FPGA

circuits are slower, less energy efficient and larger size than

fixed ASICs. However, FPGA has many advantages: Flex-

ibility, reconfigurability and low-cost. New technology and

devices enhance these features and make FPGA more and

more popular in many electronic applications.

It is well known that FPGA has the ability to implement any

combinational function implemented on ASICs. Programming

FPGA to form complex system logical functions can be

achieved by interconnecting Look-Up Table (LUT) elements

on a single chip [2].Comparing to digital computer architec-

tures, such as Von Neumann architecture or Harvard archi-

tecture [3], FPGA can provide more flexibility and achieve

better calculation performance. On one hand, FPGA allows

designers to make serial and parallel mixed designs that are

more flexible for complex missions. On the other hand, parallel

1R. Yang is a joint PhD student between ENSTA Bretagne and Ocean
University of China.

2This work was supported by the China Scholarship Council.

designs can produce more simultaneous calculus for high-

speed applications. In this paper, we focus on the case of

digital acoustic synthesizers.

The primary aim of a synthesizer is to generate different

acoustic timbres. Each timbre can be distinguished from others

by the quantity of different harmonics. Acoustic synthesizers

can be divided into two kinds: Analog and digital synthesizers.

Actually, analog synthesizer applications have good sound

quality and are based on many well-defined algorithms, such as

Frequency Modulation (FM) which is popular and simple to be

implemented on electronic devices. Recently, more convenient

digital approach emerges with similar ideas. Main advantages

of digital synthesizers comparing analog ones are robustness,

cheap prices and simple architectures.

Two popular digital synthesizers focus on Direct Digital

Synthesizer (DDS) [4] and FM synthesizers [5]. The crucial

technique in DDS is the phase-amplitude conversion architec-

ture [6]. The main drawback of DDS is still the larger size of

needed ROM tables for higher performance. FM approaches

do not suffer from these inconvenient and they intend to mod-

ulate the frequency of carrier wave for generating the timbres.

In fact, FM methods can save more hardware resources than

DDS. The major drawback of FM techniques is still the need

for an expert to tune the multitude parameters. To evaluate

the ability of FPGA to handle a large amount of data, we

select the Fourier series, namely an extended DDS application,

instead of FM which can be easily implemented on FPGA. Our

work challenges FPGA on special aspect of solving complex

missions and parallel calculations. It is worth mentioning that

the Fourier series designs don’t require the knowledge of

experts and parameters can be tuned automatically.

Using Fourier series, we can decompose a target timbre

F (2πf0t) as follows:

F (2πf0t) = A0 +

∞∑

i=1

Aisin(2πif0t+ ϕi) (1)

where f0 represents the frequency of the target timbre,Ai

and ϕi represent respectively the amplitude and phase of ith

harmonic. A0 is the average signal value. From the engineering

point of view, equation (1) need to be truncated at a finite order

of harmonic instead of using infinite frequency components.

In our case, all the high order harmonics that have less

energy than human hearing threshold should be ignored in

the synthesizer implementation. According to [7], the sum

in equation (1) can be truncated in worst case up to the

10th harmonic. To get better precision, we assumed the sum

truncated at the 16th harmonic is rich enough to generate a

single timbre.

In order to implement Fourier series on FPGA boards, we

designed a complete system which includes three main parts:

Human-Machine Interface, Coordinator Module (Embedded

Nios II Processor [8]) and Acoustic Module. The Nios II

Processor and the Acoustic Module are implemented on a

single FPGA chip; further details are given in the following

section.

II. SYSTEM DESIGN

As it was early mentioned, the implementation of a com-

plex application, such as acoustic synthesizer, on hardware

components is still very challenging. Serial as well as parallel

structures are both required. In the following, the whole

system architecture is described and the Timbre Module using

parallel structure and requiring high computational efforts is

emphasized.

Nios II

I2C Bus

Cyclone II FPGA
EP2C20

MAX232
WM8978

Audio Codec

UART

Audio Codec

Commands

Acoustic Module

Commands&

Parameters

Virtual Keyboards

PC: Human-Machine Interface
Commands&Parameters

panels
Adobe Audition

Acoustic Module

I2S Driver

Timbre 1

Timbre 3 Timbre 4

Timbre 2

Polyphonic Module

Digital data

Commands &
Parameters

Audio signal

Fig. 1. System Diagram of Fourier Synthesizer

A. System Architecture

In order to generate 16 harmonics at each of the imple-

mented timbres, our system can be divided into three major

parts, (the first one is realized using a PC, the two other using

FPGA), see Figure 1:

1) Human-Machine Interface: This part is done using a

classic PC architecture and it should handle the human

commands, sound generation and recording,sound anal-

ysis tools, etc.

The synthesizer user interface, Commands and Param-

eters Panel, is developed using a VC++ software to

monitor and manage the synthesizer (For example, users

can modify frequency or amplitude parameters on-line

via this interface). The audio analysis tools have been

done using available commercial software, i.e. Adobe

Audition.

2) Embedded Nios II Processor: Flexible Nios II embedded

processor is relatively low-speed comparing to parallel

architecture as it runs codes in serial sequence. In fact,

its ultimate processing speed is limited by the CPU

clock rate. However, Nios II shows better flexibility

and robustness in responding to random environmental

changes with interrupt mechanism which are ideally for

human-machine interface tasks. In our system, Nios II

is dedicated to communicate with the PC, to manage

audio codec, to respond to keyboards and to configure

acoustic module.

3) Acoustic Module: High-speed Acoustic Module can

reach real time performance by mean of parallel archi-

tectures which can solve large calculations in short time.

In the Acoustic Module we have 4 independent Tim-

bre Modules which simultaneously generate 4 different

timbres. The real time timbre data is processed in the

Polyphonic Module to get a 32 bits polyphonic audio

stream. The I2S Driver converts digital audio stream into

serial I2S [9] format and finally analog audio signal is

generated using an audio codec (such as WM8978).

B. Timbre Module

Previously, we mentioned that a timbre can be synthesized

as a truncated sum of equation (1). In this section, we focus

on the realization of the jth timbre by electronic circuits. By

adjusting A0 to be zero, adding the shape of ADSR (µj(t),
Attack-Decay-Sustain-Release envelope techniques are used to

reshape signal in time domain to mimic the acoustic sounds of

real instruments.) and multiplying by the strength parameters

(σj), equation (1) can be rewritten as:

Vj = µj(t)σj

16∑

i=1

αijsin(2πfijt+ ϕij) = µj(t)σjTj (2)

In this case, each timbre is characterized by three main

features:

a) Harmonics: Up to 16 harmonics.

b) Strength (σj) is equivalent to volume parameters.

c) Attack-Decay-Sustain-Release envelope µj(t).

Each of the above features is implemented in different stage

of the pipelined Timbre Module, see Figure 2.

Frequency

Divider

Table Router

Amplitude

Tuning

Table

Sin Wave

Table

Frequency

Divider

Phase

Accumulator

Phase

Accumulator

clk

Multiply-Accumulator

Tj

Strength

parameter

ADSR

Table

Uj

Vj

b

c

a

Fig. 2. Diagram of Timbre Module

Concerning the first feature, we need to generate Tj , as

described in equation (2). To generate the main sinusoidal

wave, we may use paralleled conventional DDS concept as

shown in Figure 3.

Phase

Accumulator

Sin Wave

Table

clk

Phase

Accumulator

Sin Wave

Table

1
th

16
th

Frequency

Divider

Frequency

Divider

α1j

α16j

Tj

Fig. 3. Simple Fourier Synthesis by Sinusoidal DDS

In conventional DDS method, Frequency Divider is a digital

counter that divides system clock by a chosen factor into de-

sired frequency. Phase Accumulator is another digital counter

that generates addresses to activate the RAM table which used

to generate Sin Wave Table (SWT). The output Tj of the DDS

component is obtained as the sum of all partial outputs. It

is worth mentioning that the above structure becomes very

expensive as it used 16 SWT and 16 multipliers per Timbre

Module. This problem is a major one because the FPGA

resources are limited.

To solve this problem we proposed another time-division

multiplexing (TDM) structure to share one SWT for all the

16 parallel channels. As shown in Figure 2 (a), Frequency

Dividers and Phase Accumulators still work in parallel mode,

because they require high speed processing and their operating

clock rates are usually comparable to the Nios II processor

clock. SWTs of the conventional DDS on the contrary run

at comparatively lower speed. They are reduced into one

sequential access table in our TDM architecture. In order to

prevent access conflict among channels, a Table Router was

added to control the access priority. The added router can solve

half of the problem, because using the router we can’t obtain

the total sum of the sinusoidal waves as described in equation

(2). The total sum can be however obtained by using the

Multiply Accumulator (MAC), seeing in previous Figure 2 (a).

In our architecture, each Timbre Module will only consume

one SWT , one extra small size Amplitude Tuning Table (ATT)

and one MAC.

To provide the details of this parallel and sequential mixed

structure, we separate the TDM architecture into Process

Control Channel (PCC) and Data Processing Channel (DPC),

seeing in Figure 4.

Finite State Machine

Frequency Dividers &
Phase Accumulators

Sin Wave
Table

Depth: 64

MAC

Amplitude
Tuning
Table

Frequency Dividers &
Phase Accumulators

PCC

DPC

Tj

States/Flags

Buffer
1

Commands

Buffer
16

MUX

Fig. 4. SWT and MAC Shared Fourier Synthesis

PCC consists of a finite state machine, its function is

detecting and coordinating the workflow of DPC. It gathers

states information of the DPC, especially the Flags posted by

the parallel counting channels. This Flag is triggered to apply

for access of Sin Wave Table. When PCC recieve a Flag, PCC

send coordinating orders to MUX, SWT, ATT and MAC in the

piplined DPC to make a calculation cycle.

DPC is used to receive orders from PCC and process data

as fast as possible. It separates into a parallel region and

sequential region, they deal with high speed missions and

low speed missions respectively. 16 parameteried channels

run simultaneously and independently. This design gains more

speed in calculating the sum in equation (2). Whenever a

channel finishes counting with a result of table address, it will

require PCC to make a sequential calculation cycle. PCC is

the coordinator and core mechanism connecting parallel with

serial.

The PCC follows the mechanism that low frequency chan-

nels get higher priority to Sin Wave Table. In each calculation

cycle, MUX connect one channel to SWT, and correspond-

ing Phase Accumulator provide an address pointing to the

SWT memory unit, which is current normalized sinusoidal

amplitude. Because every harmonic channels share the same

sine wave that discreted into 64 points in length and 16

bits in amplitude. Therefore, ATT is essential to provide

different amplitude for different harmonics. This coefficient

from ATT is multipied with SWT result and storaged in the

corresponding buffer in MAC. Then PCC ask MAC to update

the sum to the following circuits. After the PCC clear the

responded Flag, it will be ready for the next cycle. This kind

of pipeline structure is also used to add Strength and ADSR

parameters.

.

III. EXPERIMENTAL RESULTS

Many experiments have been conducted in order to evalu-

ate operational properties and performances of the proposed

Fourier synthesizer (such as high-speed, high-precision, real-

time and flexibility). We also implemented a test board accord-

ing to Figure 1 and Tab I . FPGA design software Quartus II

9.0 [10] is used to make a logic synthesis.

TABLE I

SYNTHESIS PARAMETERS

Experimental parameters Quantity

Logic elements consumption 60%

total Memory consumption 27%

9 bits Multiplier 44

System clock 50 Mhz

Frequency error < 0.3%
Output bandwidth 20-20kHz

Step-by-step experiments were carried out to test frequency-

amplitude accuracy and the functionality of our ADSR. In the

test of frequency-amplitude accuracy,we compared the output

signal frequency spectrum with an off-line pre-prepared target

signal. The match between the two signals is accepted if they

share the same first five harmonics, as shown in Figure 5 that

indicates a good accuracy in both frequency and amplitude of

each harmonic.

A (in db)

500

-90

-60

-30

-120

f (in Hz)800 1000 1400 1700 2000

0

Fig. 5. Frequency accuracy analysis

To confirm the functionality of every component, we played

several music compositions on our synthesizer. The output

signal in time-domain and its frequency domain are shown in

Figure 6. In Figure 6(a), the time-domain data show an obvious

shape of ADSR envelop and strength vary which prove the

functionality of the proposed Timbre Module. Meanwhile, its

time-frequency representation, Figure 6(b), shows the overlap

of 2 timbres (A, B). The experimental studies show that the

proposed synthesizer can perform all tasks in real-time manner.

1.0 1.5 2.0 2.5

X(t)

10

0

10

20

20

(a) Time-domain representation, x(t) in % of maximum audio output level

1.0 1.5 2.0 2.5

f (in kHz)
16

12

4

8

t (in s)

(b) Time-frequency domain

Fig. 6. Time domain signal and its frequency spectrum

IV. CONCLUSIONS

In this paper a systematic design of Fourier Synthesizer

is proposed and implemented on a single FPGA chip. The

proposed circuit, especially the parallel design of Timbre

Modules, shows efficient flexibility and large calculation capa-

bilities in achieving real-time, high-speed and high-precision

applications, as the implementation of digital acoustic syn-

thesizer in FPGA field. We should highlight the fact that the

small-size and low-cost FPGA boards are efficient to perform

small-producion applications where tasks are complex and

time performance is critical.

REFERENCES

[1] I. Kuon and J. Rose,”Measuring the Gap between FPGAs and ASICs,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 26, NO. 2, Feb. 2007, pp. 203 - 215.

[2] K. Compton and S. Hauck, Reconfigurable computing: A survery of
system and software, ACM Computing Surveys, vol. 34, no. 2, pp.
171210, Jun. 2002.

[3] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal
Processing, 2nd ed, California Technical Publishing, San Diego, CA,
1999.

[4] V. Kroupa, Direct Digital Frequency Synthesizers, IEEE Press, Piscat-
away, NJ, 1999.

[5] J. Chowing, The synthesis of complex audio spectra by means of
frequency modulation, J. Aud. Eng. Soc., pp. 526529, Sept.1973.

[6] J. Vankka, Digital Synthesizers and Transmitters for Software Ra-
dio.Dordrecht, Springer, 2005.

[7] L. Qiwen, L. Qiwu. Principle of Keyboard Maintenance. Electronic
Industry Press, China, 1991.

[8] Altera Inc. Nios II Software Developer’s Handbook, Document Version:
11.0, May 2011.

[9] I2S bus specification, Phillips Semiconductors, 1996.
[10] Altera Inc. Quartus II Handbook, Document Version: 12.1.0, Nov 2012.

