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The design of an autopilot for a space launcher during the atmospheric

stage is known to be a hard control problem, which contains an impor-

tant number of conflicting specifications. This difficulty is increased by the

presence of flexible modes, some of them acting inside the bandwidth, and

parameter uncertainties.

To solve such a problem, a multi-objective approach is proposed in this

paper, which combines the Youla parameterization, suitable translations of

the different specifications into linear matrix inequalities (LMI), and convex

optimisation using a cutting plane algorithm (CPA).

These tools together can handle high order controllers without numer-

ical difficulties. They can also efficiently provide an answer to the crucial

question of the feasibility or unfeasibility of the specifications. Although

they can be used for a wide class of multi-objective problems, the paper

doesn’t particularly focus on the theoretical developments (which can be

found in recently published works) but rather on their application to the

space launcher control problem.

Nomenclature

G Centre of gravity

GXYZ Guidance attitude reference
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Gxyz Launcher reference

Pc Useful thrust for piloting

β Thruster angle of deflection

ψ Deviation angle around axis w.r.t the guidance attitude reference

W Wind velocity

ż Lateral drift rate

i Angle of attack

V Absolute velocity

VR Relative velocity

ηi Generalized coordinate of the i-th bending mode

ωi, ξi Natural frequency and damping of the i-th bending mode

ωT , ξT Natural frequency and damping of the actuator

ωG, ξG Natural frequency and damping of the gyrometer

ht(i) Deviation of the i-th bending mode in front of the thruster

h
′

cl(i) Slope of the modal deformation in front of the inertial measurement unit

h
′

Gy(i) Slope of the modal deformation in front of the gyrometer

I. Introduction

M
ore attention has been paid in recent years to the space launcher controller design

problem (see for instance1,2, 3, 4, 5, 6), where different modern synthesis methods are con-

sidered starting from LQG synthesis to multi-objectives design. This interest is motivated

by the difficulty to control the space launcher during the atmospheric stage, where each

launching is becoming a prowess. This difficulty is explained by the economics constraints,

since the space launcher is a disposable machine so that the strategy is to reduce the ex-

penses on the structure and also to make it lighter in order to launch heavier satellites. All

these arrangements lead to a difficult control problem and perhaps even to an unfeasible one.

The multi-objectives synthesis is becoming an unavoidable technique of control for space

launcher problems, because all other methods add some conservatism (as H∞- synthesis)

or yield to non robust controllers (as H2-synthesis). The combination of different criteria

enables to precisely specify the constraints imposed by manufacturer, but to this end they

have to be translated using a similar and numerically tractable formalism, which is still an

important area of research.7,8, 9, 10 The worrying point is that in major cases the criteria are

unfortunately conflicting. Therefore the main goal of the multi-objectives design is to express

the criteria in such way that the conservatism introduced by translating the manufacturer
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specifications is as less as possible, in order to reduce the conflict between them and to lead

to a satisfying controller.

For this goal the methodology used to translate the constraints must be able to propose

a mathematical formulation which is as close as possible to the manufacturer specifications.

This part of the synthesis procedure appears undeniably crucial for a hard control problem,

such as the one of the space launcher.

The translation of the constraints is also depending on the controller synthesis tools.

Consequently the choice of a synthesis method should allow to consider a set of controllers

as large as possible. For linear plants, the Youla parameterization11,7 defines a convex set

describing all stabilizing controllers, so that no possible solution is lost.

To preserve the convexity property brought by the Youla parameterization, the manu-

facturer specifications can be translated using the Linear Matrix Inequalities (LMI) frame-

work.12 However, if LMI formulations are well known for H2 and H∞ norm constraints or

for pole placement for instance,8 such constraints are only indirect translations of the spec-

ifications in most cases (for instance, pole placement handles imperfectly a requirement on

the settling time). In this paper, recently proposed formulations13 are used for time-domain

templates, stability margins and constraints in a given frequency range, together with H2-

norm constraints.

The application of the Youla parameterization induces a huge controller order, especially

for harsh control problems. Moreover, most commonly used LMI formulations generally re-

quire introducing matrices of the same order as the closed-loop plant, so that the problem can

become numerically infeasible. In order to avoid such additional variables, Kao14 presents

a method based on the eigenvalues of some Hamiltonian matrix, and the application of a

Cutting Plane Algorithm (CPA) instead of using the interior point algorithm. Although this

method is more sensitive to numerical conditioning, it is less affected by the order of the plant.

In this paper the problem of using the CPA is not detailed (more information can be

found in Ref. 13), but a brief presentation of the algorithm is given, aiming to understand

the different tools and results given in the paper. The paper is devoted to surround the con-

trol problem of a space launcher during the atmospheric stage, using new LMI formulations

and a suitable analysis to decide the feasibility or unfeasibility of the specifications.

The paper is organized as follows: section 2 presents the problem formulation with the
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model of the space launcher during the atmospheric stage and the different objectives stipu-

lated by the manufacturer; section 3 contains a brief presentation of the Youla parametriza-

tion and the CPA ; section 4 explains the translation of the control objectives into LMI

constraints and deals with intrinsic properties of the control problem of the launcher ; in

section 5 the numerical results are discussed. The last section is the conclusion.

II. Problem formulation

A. Aerospace launcher modelling

The dynamics of the Europeean space launcher are described by the variables given on

figure 1 and the nomenclature. Only the yaw axis is considered, assuming that the other

axes (roll and pitch axes) are decoupled. The sloshing effect are also neglected.4

x

Z

W

V

X

b
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Figure 1. Two dimension launcher representation

The model of the launcher is derived according to the block-diagram given on figure 2.a

It is decomposed into four parts:

Rigid launcher model:

Assuming all angles remain small, the linearised dynamics of the launcher can be de-

aThis work being based on real idustrial data provided by CNES, the authors are not allowed to publish
the numerical values of the parameters and the specifications; all numbers have been therefore removed from
the figures but the later will appear explicitely.
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rigid

launcher

bending

mode 5

flexible launcher

bending

mode 2

bending

mode 1

servo-guidance

inertial mesurement unit

gyrometer

wind :

Figure 2. Block diagram of the launcher model

scribed by the following state-space model:

d

dt







ψ

ψ̇

ż







=








0 1 0

A6 0
A6

V
a1 0 a2














ψ

ψ̇

ż







+








0 0

K1 −A6

V
a3 −a2











β

W



 (1)

where ψ is the deviation angle and ż the lateral drift rate; β is the thruster angle of

deflection and W the wind velocity. Parameters A6 and K1, which are slowly varying, are

respectively the coefficients of aerodynamic efficiency and thruster efficiency. The control

law being designed using a LTI model, most modeling uncertainties can be handled by

considering uncertainties on these two parameters.

Moreover, the angle of attack i is defined by:

i = ψ +
ż − W

V
(2)

Flexible modes:

Each bending mode can be represented by a second-order model with natural frequency

ωi and damping ξi:

d

dt




ηi

η̇i



 =




0 1

−ω2
i −2ξiωi








ηi

η̇i



 +




0

−ω2
i Pcht(i)



 β
(3)

Taking into account the first five bending modes and assuming the other ones are neg-
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ligible, the effect of the bending modes can be handled by adding pertubation terms on ψ

and ψ̇:

ψ
′

= ψ +
5∑

i=1

h
′

cl(i)ηi

ψ̇′ = ψ̇ +
5∑

i=1

h
′

Gy(i)η̇i

(4)

Actuator:

The servo-guidance is modelled as a second order system:

β̈ + 2ξT ωT β̇ + ω2
T β = ωT βc (5)

where ξT , ωT and βc are respectively the damping, the natural frequency and the com-

manded angle of deflection.

Sensors:

Two measures are available: the deviation angle ψ is measured using an inertial mea-

surement unit, which is considered as a constant gain; its derivative ψ̇ is obtained using a

gyrometer which is modelled as a second-order system:

ψ(3)
m + 2ξGωGψ̈m + ω2

Gψ̇m = ωGψ̇′ (6)

where ξG, ωG and ψ̇m are respectively the damping, the natural frequency and the mea-

sure obtained at the output of the sensor.

B. Design specifications

As explained above, the main modeling uncertainties on the rigid dynamics are captured

by considering uncertainties on parameters A6 and K1; all parameters defining the bending

modes are also uncertain. Some worst case configurations, where the combination of param-

eter values is particularly critical, have been identified.5 They are listed in Table 1 and are

used to evaluate the performance and robustness of the control law.

The control problem15 is to design a discrete-time controller (with fixed sampling period

T ) according to the following objectives:

• the angle of attack i has to be limited to some specified value imax despite measurement

noise and wind and gust disturbances (typical wind profiles are shown on figure 3) ,

• closed-loop stability is obtained with minimal decreasing and increasing gain margins

DGM and IGM and a delay margin at least equal to the sample time T ,
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Table 1. Worst cases configurations.

K1 A6 modal deformation ωi

parametric ±20% ±10%

cases ±10% ±40% (±30% for the (±15% for the

first mode) first mode)

1 + − + +

2 + − + nominal

3 + − + −
4 − + + +

5 − + + nominal

6 − + + −

• a minimal open-loop attenuation XHF dB (with XHF < 0) is obtained for all bending

modes,

• the angle of attack, the angle of deflection and its velocity must remain below some

specified values, imax, βmax and β̇max respectively,

• in order to limit the consumption, the following indicator has to remain below some

specified value Cmax:

C =

Tfin∑

k=Tinit

|βk+1 − βk| (7)

where Tinit and Tfin are the initial and final time of the flight,

these specifications being satisfied for the nominal plant and for all worst case configu-

rations listed in Table 1.

Remark 1 In the initial problem (solved for instance in Refs. 5, 4, 16), the attenuation

constraint on the bending modes was relaxed for the first one. Following these results, it

has been added here both to examine its feasibility together with the other constraints and to

evaluate the efficiency of the proposed approach.

C. Synthesis model

A particular model has to be chosen to perform the controller design. The actuator and

sensor dynamics being faster than those of the launcher, their dynamics will not be taken

into account in the synthesis model; regarding the high complexity of the complete model

and the design specifications together with the wide range of uncertainties, only the rigid
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time

Figure 3. Wind profiles

model (1) without bending modes will be used, with nominal values for A6 and K1. Since

a discrete-time controller is looked for, this model is discretized with sampling period T by

considering a zero-order hold on the control input β.

Of course the design specifications will be checked by considering the complete model

(with five bending modes together with the actuator and sensor dynamics), for all configu-

rations listed in Table 1.

III. The Youla parameterization and the Cutting Plane

Algorithm

A. Youla parameterization

Since the work of Ref. 17, the Youla parameterization has often been used in multiobjec-

tive control problems.18,19 Consider a continuous or discrete-time plant G with state space

realization:

G :

w u

z

y







A B1 B2

C1 D11 D12

C2 D21 D22







(8)

where z is the output to be controlled despite disturbance w, using control input u and

measurement y. All stabilizing controllers are described by the Redheffer product K = J ∗Q

(see the interconnection structure of Figure 4), where the Youla parameter Q is any stable

transfer function. System J depends both on G22 (the transfer between u and y) and an initial

compensator K0, more precisely on stable coprime factorisations G22 = NM−1 = M̃−1Ñ and
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K0 = U0V
−1
0 .

G

Q

J

w z

K

u y

yq uq

Figure 4. Closed-loop structure using Youla parameterization

An initial compensator must therefore be known to use the Youla parameterization. It

can be for instance a static one or any compensator of the same order as the plant put on

the LQG structure.20

The interconnection G ∗ J exhibits a transfer function identically equal to 0 between uq

and yq (Figure 4). As an interesting result, the closed loop transfer matrix Gzw (between

input w and output z) is affine in Q:

Gzw =
(

G11 + G12U0M̃G21

)

+ (G12M) Q
(

M̃G21

)

:= H11 + H12QH21 (9)

In all the literature concerning the Youla parameterization and convex optimization prob-

lems, it is a usual way to approximate the Youla parameter by truncating its projection on

a given basis.18,19 For MIMO models, such an approximation can be written:

Q(ς) =

m2∑

j=1

p2∑

u=1

(
nq∑

k=0

qk,j,uQk,j,u(ς)

)

eje
T
u =

∑

m2,p2

Qj,u(ς)eje
T
u (10)

where ei is the unitary vector whose i-th element is equal to 1, Qj,u is a SISO transfer

function and ς is either the discrete-time or Laplace operator; {Qk,j,u} is a chosen basis of

stable transfer functions and qk,j,u are the design parameters. Let (AQj,u
, BQj,u

, CQj,u
, DQj,u

)

be a state-space realization of Qj,u: matrices AQj,u
and BQj,u

are fixed by the choice of

{Qk,j,u}, so that all the design parameters qk,j,u enter in CQj,u
and DQj,u

only.

As it can be noticed, the order of the Youla parameter rises significantly for systems

with large numbers of inputs and outputs. Furthermore the state-space representation of

the closed-loop plant which will be derived below is a non minimal one. For these reasons,

the synthesis method must be little sensitive to the state-space order.

The design variables must appear only in the output matrices Czw and Dzw of the state-

space realization of the closed-loop plant Gzw, for guaranteing in most cases the linearity

of the matrix inequalities constraints with respect to the design parameters. A suitable

technique has been proposed by Hindi,18 which consists in increasing the representation of
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Gzw using the Kronecker product. Taking (10) on Gzw given by (9) leads to:

Gzw = H11 + H12

(
∑

m2,p2

Qj,ueje
T
u

)

H21

= H11 +
∑

m2,p2

Qj,u ⊗ Tj,u

(11)

with: Tj,u = (H12ej)
(
eT

u H21

)
.

Let (A11, B11, C11, D11) and
(
ATj,u

, BTj,u
, CTj,u

, DTj,u

)
be state-space representations of

H11 and Tj,u for each values of j, u respectively. The Kronecker product Qj,u ⊗ Tj,u has the

following state-space realization:




AQj,u⊗Tj,u

BQj,u⊗Tj,u

CQj,u⊗Tj,u
DQj,u⊗Tj,u



 =







AQj,u
⊗ Im1

BQj,u
⊗ CTj,u

BQj,u
⊗ DTj,u

0 ATj,u
BTj,u

CQj,u
⊗ Im1

DQj,u
⊗ CTj,u

DQj,u
⊗ DTj,u







(12)

As it can be noticed from (12), all design variables enter only in matrices CQj,u⊗Tj,u
,

DQj,u⊗Tj,u
and consequently, from (11), they appear only in matrices Czw and Dzw.

This representation leads to a state space realization (Azw, Bzw, Czw, Dzw) of Gzw having

a high order (that is n + 2 n m p2 + 2 m p1 nQ m1, where n and nQ are respectively the

dimensions of matrices A, AQ). This means that for avoiding numerical infeasibility, all

methods based on introducing a matrix having the same order as Azw should be avoided.

Remark 2 Scherer19 presented another technique, where a minimal form of Gzw is used but

suitable transformations are required to restore the linearity of the constraints. Note also that

the transformation is done for H∞ and H2 norm constraints, but does not apply for some of

the constraints that are considered below.

B. The Cutting Plane Algorithm

This section presents a variant of the Cutting Plane Algorithm (CPA) introduced by Kao.14

Only the case of a feasibility problem is presented.

The presentation of the method is divided into two parts: the first one gives the general

principle of the algorithm. The second one brings the details on the operations happening

at each step.
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1. Algorithm

Consider the following convex feasibility problem:

Find x subj to Sx > 0 (13)

where x is the vector of decision variables, and Sx is a real symmetric matrix, affine on x,

which expresses a set of constraints on matrix form. The problem (13) can be reformulated

into an equivalent eigenvalue maximization problem:

sup
x,y

y subj to Sx − yI > 0 (14)

The problem (14) is feasible if y > 0. From (14) a concave function is defined:

q(x) := sup {y : Sx − yI > 0} (15)

Using q(x), problem (15) can be replaced by the equivalent optimization problem:

yopt = sup
x

q(x) (16)

In Ref. 14, a technique has been developed for automatic control problems, which involves

a Linear Programming Problem (LPP). The function q(x) is bounded iteratively by a set of

hyperplanes, leading to a piecewise linear function pk(x):

q(x) ≤ pk(x) := min
1≤i≤k

{aix − bi} (17)

In the following, it is assumed that there exists a mechanism which checks the constraints

and generates the hyperplanes (such a mechanism will be derived in the next part). The

algorithm begins with an initial value yl belonging to the feasible set. At iteration k the

following LPP is solved:

max
xmin≤x≤xmax

pk(x) (18)

with xmin and xmax defining some numerical limits of the components of vector x. Let

y(k) be the solution of this problem. A linear interpolation involving a parameter α ∈ [0, 1]

derives a new value of y:

ŷ(k) = αy(k) + (1 − α)yl (19)

If the set of constraints Sx − ŷ(k)I > 0 is verified (figure 5(a)), the value of yl is replaced

by ŷ(k) else, new hyperplanes are added (figure 5(b)), so that a new LPP can be solved at

iteration k + 1. The principle of the CPA is very simple, but the main task is to verify the
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constraints and to generate the hyperplanes.

(a) (b)

Figure 5. The CPA in the scalar case

2. The mechanism for verifying the constraints and generating the hyperplanes

Since the verification of the constraints and the generation of the hyperplanes are linked, they

are considered in the same mechanism. Only general principles are given here: the reader

can find in Ref. 13 more information on the different elements involved in the generation of

the hyperplanes and their dependance on the criteria specificities.

Two types of constraints have to be considered: in the first case, the constraints are ex-

plicit translations of the specifications, so that the verification is done by directly computing

the eigenvalues of the corresponding symmetric matrix. A second case arises for frequency-

dependent constraints, which are translated using some equivalent proposition introduced

by the Kalman-Yakubovich-Popov (KYP) lemma:12 it allows to replace an infinite number

of frequency-dependent constraints by a unique one, using the Hamiltonian matrix H associ-

ated to the constraint. If the Hamiltonian has some eigenvalues on the imaginary axis, they

can be reported in the constraint as the frequencies where it is not satisfied.

The generation of the hyperplanes is done using the eigenvectors associated to the neg-

ative eigenvalues of the matrix Sx − ŷ(k)I. For each negative eigenvalue λi, a hyperplane is

generated from the associated eigenvector vi, which verifies:

vT
i (Sx − ŷ(k)I)vi < 0 (20)

Since Sx is affine in x, the quadratic product vT
i (Sx)vi has the form:

vT
i (Sx)vi = aT

i x + bi (21)
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and a hyperplane corresponding to the new added constraint is described by:

aT
i x + bi −

(
vT

i vi

)
y > 0 (22)

Section IV gives LMI forms of the different constraints listed in Section II.B, which are

suitable for applying the CPA.

IV. Translation of the manufacturer objectives into LMI

constraints

The design specifications contain four temporal constraints, corresponding to the angle

of attack, the angle of deflection and its velocity and the consumption; and three frequential

ones, where two of them concern the gain and delay margins and the last one the roll-off

(i.e. the attenuation of the bending modes). In this part all these constraints are translated

into suitable forms to avoid as much as possible any relaxations, which can give the problem

unfeasible. Another goal is to preserve the convexity by using LMI formulations which are

also suitable to apply the CPA.

Only the expression of the LMI for each constraint is given without specifying the pro-

cedure to get them, except for the delay margin: the derivation of the other constraints are

presented in Ref. 13.

Remark 3 For the frequency-domain constraints the continuous-time formulation is con-

sidered to simplify the application of the KYP lemma. The results are then used by applying

first the Tustin transform to the discrete-time closed-loop plant, i.e. by replacing matrices

Azw, Bzw, Czw, Dzw by the following ones:

Azwc
= − 2

T
I +

4

T
Azw(I + Azw)−1

Bzwc
=

4

T
(I + Azw)−1Bzw

Czwc
= Czw(I + Azw)−1

Dzwc
= Dzw − Czw(I + Azw)−1Bzw

(23)

It should be noticed that such a transformation preserves the linearity of the output ma-

trices Czw and Dzw with respect to the design variables of the Youla parameter, and does not

dispatch them in the other matrices Azw and Bzw.
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A. Angle of attack

Consider the wind profiles shown on figure 3. The specification on the angle of attack i has

to be considered for each of them, and for each sampling time.

1. Wind sampling

To handle the wind velocity W as disturbance input, the discrete-time model of the plant is

first completed by considering a first-order hold on input W , as suggested in Ref. 21. As it

can be seen on figure 6, such an approach gives almost identical frequency responses for the

continuous-time plant and the discretized one, which is not the case if a zero-order hold is

used.

P
h
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e

(d
e

g
)

A
m

p
lit

u
d

e
(d

B
)

continuous

ZOH
FOH

Figure 6. Bode diagrams of the transfer from the wind velocity to the angle of attack.

2. Application of the CPA

The following objective has to be considered:

i2(nT ) < τ n = 0, 1, . . . , 1388 (24)

where T is the sample period and τ = i2max. The number of considered sampling times

corresponds to the duration of the atmospheric flight (namely 1388×T ).
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At each sampling time, this constraint can be written on the following LMI form:







1 ∗
(

Czw

(
n∑

k=1

Ak−1
zw Bzwŵn−k

)

+ Dzwŵn

)

1







> 0 (25)

where ŵn−k =
wn−k√

τ
, k = 0, ...n and wn are the samples of the wind input.

The constraint (25) should be duplicated 1338 times, in order to respect the specification

throughout the atmospheric phase. However, it can more simply be applied only on some

critical interval of time, during which the gust of wind acts.

At each iteration of the CPA, the constraint is directly checked by computing the eigen-

values of the matrix (25): the constraint is fullfiled if and only if all eigenvalues are positive.

If not, a new hyperplane is generated from the eigenvector associated to the most negative

eigenvalue.

B. Consumption

1. Formulation as a H2-norm constraint

The indicator (7) used to represent the consumption strongly depends on the measurement

noises which affect the outputs of both sensors, as it can be noticed on figure 7, where the

evolution of C is represented with and without measurement noises.
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Figure 7. Consumption indicator of the launcher with and without measurement noises.

It is therefore relevant in this section to consider a model of the plant with βk as control

input and zk = βk−βk−1 as output to be controlled, the measured output yk being corrupted
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by a noise vector wk. Such a model writes:










xk+1

βk



 =




A 0

0 0








xk

βk−1



 +




B

1



 βk = Ac




xk

βk−1



 + Bcβk

zk =
(

0 −1
)




xk

βk−1



 + βk = Cc1




xk

βk−1



 + βk

yk =
(

C 0
)




xk

βk−1



 +




ν 0

0 1



 wk = Cc2




xk

βk−1



 + Dcwk

(26)

where A, B, C are the state space matrices of the discrete-time synthesis model. Param-

eter ν is used to weight both noises; it is chosen equal to the asymptotic value of the ratio

between the standard deviations Bψ and Bψ̇ of the measurement noises on ψ and ψ̇, which

is equal to 0.219.

In order to limit the consumption indicator, a constraint on the H2 norm of the transfer

between the measurement noises wk and the output zk is now considered.

2. Application of the CPA

Let Wc the controllability gramian of the closed-loop system; its H2 norm is less than
√

ξ if

and only if the following constraint is satisfied:








1 ∗
1√
ξ




(W

1/2
c )T 0

0 I








CT

zw

DT
zw



 I








> 0 (27)

Note that Wc has to be calculated only once time, because it doesn’t depend on the design

variables. As for the angle of attack, this constraint is simply checked by computing the

eigenvalues of the matrix in (27), whereas if the constraint is not satisfied, a new hyperplane

is generated from the eigenvector associated to the most negative eigenvalue.

In usual H2 control problems, the value of ξ is minimized under the LMI constraint (27).

However, since other constraints have to be considered in the control problem of the launcher,

a limitation on the H2 norm will be considered instead of minimising it.

In fact, the following subsection shows that the value of ξ is strongly related to the

consumption indicator.
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3. Analysis and initialization of ξ

It remains to choose the desired maximal value ξ of the H2 norm to be considered. To

this end, different controllers have been synthesised by increasing the order of the Youla

parameter from an initial controller with poor performance. For each order, the value of ξ is

decreased until the problem becomes unfeasible, and the consumption indicator is evaluated

for the optimal controller.

Table 2 and Figure 8 show that the relation between the H2 norm ξ and the indicator

C is almost affine. It validates the use of the H2 norm to limit the consuption indicator. In

the following, an initial value ξ = 0.33 has been chosen to limit C to (approximately) 0.75

Cmax (figure 8).

Table 2. H2-norm ξ and consumption indicator C.

nq ξ C/Cmax

1 0,3273 0,788

3 0,2908 0,698

5 0,2379 0,619

7 0,1792 0,536

9 0,1290 0,463
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Figure 8. Variation of consumption according to ξ.

C. Roll-off

This part is the most significant one, because in the preceding syntheses5,4 the roll-off con-

straint was removed for the first flexible mode, which is the most difficult to attenuate.
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1. Tranformation into a closed-loop constraint on the rigid model

The problem handled in this subsection is the following: the roll-off specification concerns

the open-loop transfer KGs (where K is the controller and Gs the flexible model of the

launcher), whereas only closed-loop constraints involving the rigid model G can be handled

in the proposed approach. Taking into account first that the resonances of the flexible

modes are almost equal to 35 dB in the worst cases configurations, the open-loop constraint

on |KGs| being less than XHF dB is replaced by the open-loop contrainst on |KG| being

less than XHF − 35 dB; for this small value of gain, the closed-loop transfer (I −KG)−1KG

can be considered as well (since |KG| ≪ 1 ⇒ (I − KG)−1KG ≃ KG). The considered

closed-loop constraint is therefore |(I − KG)−1KG| being less than XHF − 35 dB.

This transformation, which would be perfect if both K and G were SISO tranfer functions,

is not valid in the present case where G is SIMO (with 2 outputs) and K is MISO, since it

doesn’t take into account any phase consideration: figure 9 shows an example of controlled

open-loop response where the previous constraint is satisfied for the rigid model, whereas it

is obviously not the case for the flexible one.

A
m

p
lit

u
d

e
(d

B
)

flexible
rigid

Figure 9. Example of violation of the roll-off constraint.

To solve this problem two solutions have been considered:

• the first solution is to factorize the initial controller into K = K1K0 where K0 is

MISO and K1 is SISO and includes the common zeros and poles of both channels

(obviously one can choose K0 = K and K1 = 1). The synthesis is done on the new

SISO model K0G (figure 10). In that case, the previous transformation holds and the

Youla parameter is also SISO, which is the main interest of this solution. However it

introduces a restriction which reduces the space of solutions;

• the second solution consists in considering the attenuation constraint of XHF − 35 dB

on the transfer matrix between the input β and the vector of outputs (ψ ψ̇)T : the
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same attenuation is then guaranteed for each SISO transfer ψ/β and ψ̇/β. The interest

of this solution is to preserve the controller structure. However the Youla parameter

having two inputs in that case, the number of state-variables is twice the order chosen

for each corresponding transfer.

Figure 10. New synthesis model.

Both solutions will be presented in the next section.

2. Application of the CPA

According to a slightly modified version of the Kalman-Yakubovich-Popov (KYP) lemma,13

the closed-loop constraint σ(Gzw) < γ is satisfied for all s = jω in [jω1, jω2] if and only if

one of the two following equivalent propositions holds:

• Ĥ(ω) > 0 for all ω in [ω1, ω2], where:

Ĥ(ω) =








I ∗
1

γ

(

BT
zw

(
−jωI − AT

zw

)−1
I

)




CT

zw

DT
zw



 I








(28)

• R = γ2I −DT
zwDzw is invertible, ∃ ωi ∈ [ω1, ω2] such that Ĥ(ωi) > 0, and the Hamilto-

nian matrix H has no eigenvalue on the imaginary axis belonging in [jω1, jω2], where:

H =




Azw + BzwR−1DT

zwCzw BzwR−1BT
zw

−CT
zwCzw − CT

zwDzwR−1DT
zwCzw −AT

zw − CT
zwDzwR−1BT

zw



 (29)

According to these results, verifying that the closed-loop gain is less than γ in some

frequency domain [ω1, ω2] which includes the natural frequencies of the modes is done by

computing the eigenvalues of H. If it has a pure imaginary eigenvalue jω̂ belonging in

[jω1, jω2], new hyperplanes are generated by injecting the value jω̂ in (28) and considering

the eigenvectors associated with the negative eigenvalues of Ĥ(ω̂).
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D. Stability margins

1. General LFT form

The manufacturer specifications contain three constraints on the stability margins: two of

them concern the gain margins and one the delay margin. Using a suitable LFT form13

enables to consider that the margin specification is satisfied if and only if the closed-loop

plant remains stable for any scalar uncertainty δ ∈ [0, 1]. Thus the Nyquist criterion can be

used on the closed-loop plant Gzw looped again by −δ (figure 11).

Gzw

d-

Figure 11. The stability margin formulated as an uncertainty

For the gain margin, such an LFT has been already derived in Refs. 13, 22; the corre-

sponding state space representation of the open-loop plant G to be considered is then:

G :

w u

z

y








A B2 B2
(

0 . . . 0
)

0 g

C2 D22 D22








(30)

where g = 1 − 10GM/20 specifies the margin to be attained, GM being either equal to

DGM or IGM with dB unit.

It remains to derive a similar LFT form for the delay margin: this is done in the Appendix.

2. Application of the CPA

From the Nyquist criterion, since Gzw is stable, the loop on figure 11 is stable for all δ ∈ [0, 1]

if and only if the Nyquist diagram of Gzw does not cut the half line (−∞,−1] of the real

axis. To derive a convex formulation, this constraint is substituted by a harsher one, where

the Nyquist diagram must not go into the half-plane to the left of −1. This later constraint

directly becomes a passivity condition if Gzw is replaced by Gzw + 1:

(Gzw(jω) + 1) + (G∗
zw(jω) + 1) ≥ 0 ∀ω ∈ [0,∞) (31)
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Using the Kalman-Yakubovich-Popov (KYP) lemma,23 this constraint is equivalent to

Ĥ(ω) > 0 for all ω in [0,∞), where:

Ĥ(ω) =
(

BT
zw(−jωI − AT

zw)−1 I
)




0 CT

zw

Czw Dzw + DT
zw + 2








(jω − Azw)−1Bzw

I





(32)

It is equivalently satisfied if and only if R = Dzw + DT
zw + 2 > 0 and the Hamiltonian

matrix:

H =




Azw − BzwR−1CT

zw BzwR−1BT
zw

−CT
zwR−1Czw −AT

zw + CT
zwR−1BT

zw



 (33)

has no eigenvalue on the imaginary axis.

As for the roll-off constraint, the stability margin constraint is checked by computing the

eigenvalues of H. If it has a pure imaginary eigenvalue jω̂, new hyperplanes are generated by

injecting the value jω̂ in (32) and considering the eigenvectors associated with the negative

eigenvalues of Ĥ(ω̂).

E. Multiobjective problem

From all the results exposed above, the multiobjective control problem to be solved is finally

the following:

find x under the constraints:

• Angle of attack: (25) for n = 0, ...1388

• Consumption: (27)

• Roll-off: (28)

• Decreasing gain margin: (32) with open-loop plant (30) and g = 1 − 10DGM/20

• Increasing gain margin: (32) with open-loop plant (30) and g = 1 − 10IGM/20

• Delay margin: (32) with open-loop plant (43)

(34)

where vector x contains all the coefficients of the output matrices of the Youla parameter.

Problem (34) is solved for the aerospace launcher in the next section; note that the

maximal value of each constraint having been chosen, it is a feasibility problem instead of

an optimization problem, where the choice of the criterion could penalize the research of a
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solution.

V. Application to the launcher control problem

This section examines the results of the proposed approach on the launcher control prob-

lem. The initial controller was synthesized using the loop-shaping H∞ design approach.24

This controller checks the manufacturer specifications, except for the constraint of gain at-

tenuation on the first flexible mode.

The Youla parameter is searched as a Finite Impulse Response (FIR) filter, with an

initial order equal to 5. This value is gradually increased as long as problem (34) remains

unfeasible, until arriving at a feasible problem or obtaining the numerical unfeasibility.

The numerical interest of the method is pointed out when considering first the first

solution of section IV.C (where the plant to be controlled is the open-loop plant in cascade

with the initial compensator, see figure 10): indeed it has been able to consider a Youla

parameter of order 50 and more without numerical problems, and with an acceptable running

time (20 minutes, for the order 50 with an Intel P4 2.53GHz processor and 512 Mo RAM).

Merging the Youla parameter with the initial controller gives then a final controller of order

62.

If now the model in SIMO form is used, with a gain constraint XHF − 35 dB on each

transfer ψ/β and ψ̇/β, the order of the Youla parameter is less significant (22 state variables).

The resulting controller is of order 35.

In order to underline the efficiency of each controller, the main objectives are summarized

on figures 12 to 15, by considering the open-loop frequency responses and the closed-loop

time responses to the wind profiles of figure 3, for the nominal values of the parameters and

all the worst-case configurations listed in Table 1.

On the frequency responses, the gain margins specifications are summarized by a vertical

line above the critical point and the roll-off constraint by an horizontal one; on the time

responses, the limitation values on i, β, β̇ and C are explicitely indicated. It is therefore

easy to check that all these specifications are satisfied for both controllers. Note finally that

the delay margin constraint cannot be checked on the plots but is satisfied in each case, with

a value at least equal to 1.2 time the sampling period.

One can note also that the most demanding contraints are the gain margins specifications,

the roll-off constraints and the maximal allowable value of the angle of attack; in contrast,

the limitations on the deflection, its derivative and the consumption indicator are widely

satisfied, although the sensor noises are taken into account.
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Figure 12. Nichols charts of the worst cases: controller of order 62.

a) Angle of attack b) Consumption indicator

c) Angle of deflection d) Velocity of the angle of deflection

Figure 13. Time responses of the worst cases for all wind gusts: controller of order 62.

From the Nichols plots, a better attenutation is obtained for the bending modes with

the controller of order 35, which gives a higher gap with respect to the required value. This
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Figure 14. Nichols charts of the worst cases: controller of order 35.

controller also yields a better delay margin, which is at least 1.7 time the sampling period.

A similar observation can be made concerning the time responses, where the consumption

indicator is less significant; the responses also seem to be less sensitive to the uncertainties.

To see whether the Youla parameters of orders 50 and 22 can be reduced, their impulse

responses are presented on figures 16 and 17 (recall that the Youla parameter is an FIR filter).

From these figures, it seems difficult to reduce the order of the Youla parameter without

changing significantly its impulse response. This observation is checked by decreasing the

order gradually with least-squares approximation of the FIR filter with Infinite Impulse

Response (IIR) filter.25 Applying this procedure confirms the minimality of the order of the

Youla parameter, since the reduction of only one state involves several constraints to be not

satisfied.

After having checked that a reduction of the impulse response of the Youla parameter

is not possible, it can be said that the controller allowing to satisfy all the constraints is of

order 62 in the first approach (where a SISO controller is looked for) and 35 in the second.

Despite this statement, reducing the order of the controller can be undertaken by methods

which should allow simultaneously to take care to the design specifications, which are the

subject of forthcoming works.26

VI. Conclusion

In this paper a deep study of a space launcher control problem during the atmospheric

stage has been done. The manufacturer specifications are translated to suitable LMI con-

straints and for each objective physical considerations lead to a good choice of the maximal

value of each constraint. Such an analysis is very interesting to answer to the difficult ques-

tion of the feasibility or unfeasibility of a given set of control specifications. For the same
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a) Angle of attack b) Consumption indicator

c) Angle of deflection d) Velocity of the angle of deflection

Figure 15. Time responses of the worst cases for all wind gusts: controller of order 35.

reasons, the development of synthesis tools, where Youla parameter with huge orders can

be considered, have been done. Although their development is not the main subject of the

paper, their application to the difficult problem considered here has shown the advantages

brought by these tools, since a Youla parameter of order 50 was considered without numer-

ical problem (regarding the amount of time calculation and memory space involved). Note

also that all specifications are considered using new LMI formulations, which avoid (as much

as possible) any relaxation and any introduction of supplementary decision variables.

The methodology developed in this paper considers LTI plants. Since the launcher is

time-varying, it will be necessary to perform controller interpolation in order to attain the

objectives during the whole atmospheric flight. The development of such a procedure is the

subject of forthcoming works.
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time (sec)

Figure 16. Impulse response of the Youla parameter of order 50.

time (sec) time (sec)

(a) Q1,1 (b) Q1,2

Figure 17. Impulse response of the Youla parameter of order 22.

Appendix

In the manufacturer specifications the delay margin must be at least equal to the sampling

period T . To handle this constraint the delay must be expressed as an uncertainty δ ∈ [0, 1]

with δ = 0 corresponding to the not-delayed system.

Consider a continuous-time system described by the following state-space equation:

ẋ(t) = Ax(t) + Bu(t − τ) τ ≤ T (35)

with A ∈ R
n×n and B ∈ R

n×m. The corresponding discrete-time model with a zero order

hold is obtained by integrating equation (35) between two sampling times:

xk+1 = eAT xk +

(∫ T

T−τ

eAνBdν

)

uk−1 +

(∫ T−τ

0

eAνBdν

)

uk (36)
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Let B1 =
∫ T

T−τ
eAνBdν and B2 =

∫ T−τ

0
eAνBdν. B1 and B2 can be written in matrix

form:

B1 =
(

In 0nm

) (

eÂT − eÂ(T−τ)
)




0nm

Im





B2 =
(

In 0nm

)

eÂ(T−τ)




0nm

Im





(37)

with Â =




A B

0mn 0mm



. The representation (36) can be formulated as:




xk+1

uk



 =




eAT B1

0mn 0mm





︸ ︷︷ ︸




xk

uk−1



 +




B2

I





︸ ︷︷ ︸

uk

Ã B̃

(38)

Ã and B̃ are rewritten so that the term e−Âτ appears only one time:

Ã =








eAT
(

In 0nm

)

eÂT




0nm

Im





0mn 0mm








+




−

(

In 0nm

)

eÂT

0mn



 e−Âτ



 0(n+m)n




0nm

Im









B̃ =




0nm

Im



 +





(

In 0nm

)

eÂT

0mn



 e−Âτ




0nm

Im





(39)

Defining τ = δT , the new variable δ belongs to [0, 1]. To be able to put the problem in

LFT form, e−ÂδT must be linearly approximated, with δ = 0 and δ = 1 corresponding to

matrices I and e−ÂT respectively:

e−ÂδT ≈ I − δ(I − e−ÂT )
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Using this expression in (39) gives:

Ã =




eAT 0nm

0mn 0mm



 +





(

In 0nm

)

(eÂT − I)

0mn



 δ



 0(n+m)n




0nm

Im









B̃ =








(

In 0nm

)

eÂT




0nm

Im





Im








+




−

(

In 0nm

)

(eÂT − I)

0mn



 δ




0nm

Im





(40)

Taking into account the fact that δ is a scalar and considering the following matrices:

Ã0 =




eAT 0nm

0mn 0mm



 L =




−

(

In 0nm

)

(eÂT − I)

0mn








0nm

Im





B̃0 =








(

In 0nm

)

eÂT




0nm

Im





Im








(41)

the state-space equation (38) can be written:




xk+1

uk



 = Ã0




xk

uk−1



 + B̃0uk + L(−δ)(uk−1 − uk) (42)

which corresponds to the LFT form of figure 18. The open-loop state-space representation

to be considered is therefore:

G :

Xk wk uk

Xk+1

zk

yk








Ã0 L B̃0
(

0 . . . 0 1
)

0 −1

( C 0 ) 021 D








(43)
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G

Figure 18. LFT form related to the delay margin.
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