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Abstract The principle behind VSLAM applications like
3D object reconstruction or indoor mapping is to estimate
the spatial transformation between two large clouds of
points, which represent two poses of the same scene.
They can further be processed to obtain detailed surfaces.
Since its introduction in 1992, the standard algorithm for
finding the alignment between two point clouds is ICP
(Iterative Closest Point) and its variants, combined with
RANSAC (RANdom SAmple Consensus). This paper
presents a new approach using interval analysis. The idea
is to define large intervals for the transformation
parameters between the poses then to successively
contract those intervals using the equations of the
transformation of corresponding points between the
poses. To contract those intervals faster, we added an
IMU (Inertial Measurement Unit) to our system so the
initial intervals of the parameters are already small before
applying the implemented our
algorithm using the middleware ROS (Robot Operating
System) and stated our performances.

contractions. We

Keywords VSLAM, 3D Reconstruction, Interval Methods,
Contractors, Kinect, IMU
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1. Introduction

The Microsoft Kinect sensor device was released for the
Microsoft Xbox 360 video game console at the end of the
year 2010. The device allowed a user to play video games
just by moving his body and therefore allowed gaming
without the use of any game pad or joystick. In brief, the
Kinect includes a color (RGB) camera, an infrared depth
sensor, an accelerometer, four microphones and a motor
to adjust the tilt. In addition to the commercial success of
the Kinect as a gaming device, it attracted a lot of interest
from the scientific/robotic community thanks to its
numerous integrated features, its low price and its shelf
availability. The depth sensor is in fact a near-infrared
projector that projects a known structured pattern of
speckles that is being observed by a CMOS IR camera.
Each speckle is unique and can be recognize from the
others. The device then computes the triangulation of
each speckle between the known virtual pattern and the
observed pattern to construct the depth image. Of course,
the calibration between the projector and the camera has
to be known. The depth images can be represented as a
3D metric points cloud by projecting the image points
into the real world coordinate:
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where:

X is the homogeneous coordinate vector of a point in the
image,

Kis the intrinsic parameters matrix (available in the
datasheets),

Randtare the parameters
(respectively equal to identity and 0 since we do not
consider any rotation or translation here),

extrinsic matrices

X is the homogeneous coordinate vector of a point in the
world.

By expending the matrices, we obtain:

X
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where:

X,Y,Zare the homogeneous world coordinates of a
point, x,y,w are the homogeneous image coordinate of
the same point,

fX,fy are the focal length on each direction,

¢,,Cyare the coordinates of the principal point of the
camera.

Since we are in homogeneous coordinates, we can write
the inverse relation for X and Y as follows:

(ez o (yee)z \
f £ ®

Notice that the particularity of this type of camera is that
we know the depth Z . The device also has a RGB camera
which needs to be calibrated in order to associate a color
to a depth pixel. For that, we have to use the intrinsic
parameters of both cameras and the extrinsic mapping
between the two cameras [1]. The mapping can be
expressed as the following;:

Xrgb Xir
Yrgb =R Yir +t (4)
rgb Zir

where:

Xrgb,\/rgb,zrgb are the homogeneous coordinates of a

point in the rgb camera frame,
X,.,Y,.,Z, are the homogeneous image coordinates of a
point in the ir sensor frame,

R and trepresent the transformation between the rgb

camera and ir sensor.
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The RGB and depth images can therefore be represented
together as a colored metric points cloud. In section 2, we
will examine the standard methods used for finding the
transformation between two points cloud. We will
present our new approach using Interval analysis in
section 3 then add an IMU to the Kinect to optimize the
performances in section 4.

2. Standard Algorithms
A. Principle

We tested most of the existing open source methods
including:

— RGB-D Mapper by P. Henry, M. Krainin , E. Herbst, X.
Ren and D. Fox [2].

- RGBDemo by N. Burrus.

— RGB-D SLAM by N. Engelhard, F. Endres, J. Hess, J.
Sturm, W. Burgard [3].

- KinectFusion by A. Davison, S. Izadi, P. Kohli, O.
Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim
and A. Fitzgibbon [4].

Figure 1. Kinect’s projected IR structured light

We figured out that they all more or less use the same
algorithms based on 4 steps: First, they extract SIFT
features (or its variants like SURF) from the incoming
color images. Then they match these features against
features from the previous images. By evaluating the
depth images at the locations of these feature points, they
obtain a set of point-wise 3D correspondences between
any two frames. Based on these correspondences, they
estimate the relative transformation between the frames
using RANSAC. The third step is to improve this initial
estimate using a variant of the ICP algorithm. As the pair-
wise pose estimates between frames are not necessarily
globally consistent, they optimize the resulting pose
graph in the fourth step using a pose graph solver like
HOGMAN. The output of their algorithm is a globally
consistent 3D model of the perceived environment,
represented as a colored point cloud.
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B. About Sift

Scale-Invariant Feature Transform (or SIFT) [5] is an
algorithm in computer vision to detect and describe local
features in images.

The algorithm was published by David Lowe in 1999. For
any object in an image, interesting points on the object
can be extracted to provide a “feature description” of the
object.

This description, extracted from a training image, can
then be used to identify the object when attempting to
locate it in a test image containing many other objects. To
perform reliable recognition, it is important that the
features extracted from the training image be detectable
even under changes in scale, noise and
illumination. Such points usually lie on high-contrast

regions of the image, such as object edges.

image

[ Input:Stream of RGB-D Images |

| Feature extraction and matching (SIFT) |

[ Pose estimation (RANSAC) |

| Pose refinement (ICP) ]

[ Pose Grph Optimization ([HOGMAN) ]

[Output: 3D model (colored point cloud)|

Figure 2. Principle of existing methods

The key stages in the SIFT algorithm are:

— Scale-invariant feature detection: Lowe’s method for
image feature generation transforms an image into a
large collection of feature vectors, each of which is
invariant to image translation, scaling, and rotation,
partially invariant to illumination changes and robust
to local geometric distortion.

— Feature matching and indexing: Indexing consists of
storing the feature vectors and identifying matching
feature vectors from the new image. Lowe used a
modification of the k-d tree algorithm called the Best-
bin-first search method that can identify the nearest
neighbors with high probability using only a limited
amount of computation.

— Cluster identification by Hough transform voting:
Hough Transform is used to cluster reliable model
hypotheses to search for feature vectors that agree
upon a particular model pose. Hough transform
identifies clusters of features with a consistent
interpretation by using each feature to vote for all
object poses that are consistent with the feature. When

www.intechopen.com

clusters of features are found to vote for the same
pose of an object, the probability of the interpretation
being correct is much higher than for any single
feature. An entry in a hash table is created predicting
the model location, orientation, and scale from the
match hypothesis. The hash table is searched to
identify all clusters of at least 3 entries in a bin, and
the bins are sorted into decreasing order of size.

C. About SURF

Speeded Up Robust Feature [6] is also a robust image
detector & descriptor, first presented by Herbert Bay et al.
in 2006. It is partly inspired by the SIFT descriptor. The
standard version of SURF is several times faster than SIFT
and claimed by its authors to be more robust against
different image transformations than SIFT. SURF is based
on sums of approximated 2D Haar wavelet responses and
makes an efficient use of integral images. It uses an
integer approximation to the determinant of Hessian blob
detector, which can be computed extremely quickly with
an integral image. For features, it uses the sum of the
Haar wavelet response around the point of interest.

D. About RANSAC

RANSAC is an abbreviation for “RANdom SAmple
Consensus” [7]. It is an iterative method to estimate
parameters of a mathematical model from a set of
observed data which contains outliers. It is a non-
deterministic algorithm in the sense that it produces a
reasonable result only with a certain probability, with this
probability increasing as more iterations are allowed. The
algorithm was first published by Fischler and Bolles in
1981. A basic assumption is that the data consists of
“inliers”, i.e., data whose distribution can be explained by
some set of model parameters, and ”outliers” which are
data that do not fit the model. In addition to this, the data
can be subject to noise. The outliers can come, e.g., from
extreme values of the noise or from erroneous
measurements or incorrect hypotheses about the
interpretation of data. RANSAC also assumes that, given
a (usually small) set of inliers, there exists a procedure
which can estimate the parameters of a model that
optimally explains or fits this data. RANSAC achieves its
goal by iteratively selecting a random subset of the
original data.

These data are hypothetical inliers and this hypothesis is
then tested as follows:

— A model is fitted to the hypothetical inliers, i.e. all free
parameters of the model are reconstructed from the
inliers.

— All other data are then tested against the fitted model
and, if a point fits well to the estimated model, also
considered as a hypothetical inlier.
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— The estimated model is reasonably good if sufficiently
many points have been classified as hypothetical inliers.

— The model is reestimated from all hypothetical inliers,
because it has only been estimated from the initial set
of hypothetical inliers.

Finally, the model is evaluated by estimating the error of the
inliers relative to the model. This procedure is repeated a
fixed number of times, each time producing either a model
which is rejected because too few points are classified as
inliers or a refined model together with a corresponding
error measure. In the latter case, we keep the refined model
if its error is lower than the last saved model. An advantage
of RANSAC is its ability to do robust estimation of the
model parameters, i.e., it can estimate the parameters with a
high degree of accuracy even when a significant number of
outliers are present in the data set. A disadvantage of
RANSAC is that there is no upper bound on the time it takes
to compute these parameters. When the number of iterations
computed is limited, the solution obtained may not be
optimal, and it may not even be one that fits the data in a
good way. In this way RANSAC offers a trade-off; by
computing a greater number of iterations the probability of a
reasonable model being produced is increased. Another
disadvantage of RANSAC is that it requires the setting of
problem-specific thresholds.

E. About ICP

Iterative Closest Point (ICP) [8][9] is an algorithm
employed to minimize the difference between two clouds
of points. ICP is often used to reconstruct 2D or 3D surfaces
from different scans, to localize robots and achieve optimal
path planning [10] (especially when wheel odometry is
unreliable due to slippery terrain), to co-register bone
models, etc. The algorithm is conceptually simple and is
commonly used in real-time. It iteratively revises the
transformation (translation, rotation) needed to minimize
the distance between the points of two raw scans. The
inputs are points from two raw scans, initial estimation of
the transformation, criteria for stopping the iteration, and
the output is the refined transformation.

Essentially, the algorithm steps are:

— Associate points by the nearest neighbor criteria.

— Estimate transformation parameters using a mean
square cost function.

— Transform the points using the estimated parameters.

— Iterate (re-associate the points and so on).

F. About HOG-Man

HOG-Man [11] is an optimization approach for graph-
based SLAM (Simultaneous Localization And Mapping).
It provides a highly efficient error minimization
procedure that considers the underlying space is a
manifold and not an Euclidian space. It furthermore
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generates a hierarchy of pose-graphs which is used
perform the operations during online mapping in a
highly efficient way.

3. Our method

We chose to keep the principle of finding the
correspondences between the two 2D images then use
them to compute the transformation between the 3D
points clouds. However, instead of using SIFT, we chose
to use A-SIFT, and instead of using probabilistic methods
like RANSAC, we developed our own algorithm based
on interval analysis techniques.

A. About A-SIFT

While SIFT is fully invariant with respect to only three
parameters namely zoom, rotation and translation, the new
method treats the two remaining parameters: the angles
defining the camera axis orientation. Methods like SIFT
and SURF normalize the translation and rotation
component and simulate the scale (zoom) through image
pyramids to obtain a description invariant to these
parameters and  partially invariant to  affine
transformations. ASIFT [12] (Affine SIFT) attempts to
obtain a
transformations. The method simulates all image views
obtainable by varying the latitude and longitude camera
angles. If a physical object has a smooth or piecewise
smooth boundary, its images obtained by cameras in
varying positions undergo smooth apparent deformations.
These deformations are locally well approximated by affine
transforms of the image plane. In consequence the solid
object recognition problem has often been led back to the
computation of affine invariant image local features. Such
invariant features could be obtained by normalization
methods, but no fully affine normalization method existed
before. Yet the similarity invariance (invariance to
translation, rotation, and zoom) is dealt with rigorously by
the SIFT method. By simulating on both images zooms out
and by normalizing translation and rotation, the SIFT
method succeeds in being fully invariant to four out of the
six parameters of an affine transform.

invariant to affine

description  fully

Figure 3. Caparison of the number of correspondences found on a
mechanical prototype. SIFT is on the left and A-SIFT is on the right.
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ASIFT is therefore much more efficient for our purposes.
Moreover we believed it was possible to retrieve the
rotation and translation parameters computed by ASIFT
to obtain an estimation of those parameters to use them in
our algorithm in the next chapter. However we haven't
being able to do so yet.

B. System of equations

In the next part of this paper, we’ll solve the equations
of the transformation between two poses using interval
and constraints propagation [13]. Let’s
consider the following definition of the transformation
matrix:

analysis

T=(R t) 6)

where:

T is the transformation matrix,
R is the rotation matrix,

t is the translation vector.

The transformation T is estimated such that for each
couple of corresponding points i and j, ideally:

X) %
%=1 =0 (©)
Z, 4

where Xi, Yi and Zi are the coordinates of a point at the
first pose and Xj,Yjand Zjare the coordinates of the
corresponding point at the second pose. We define the
translation vector as

t=(t t, tZ)T (7)

and the rotation matrix as the standard orthogonal matrix
corresponding to a clockwise/left-handed rotation with
Euler angles ¢, 0,1 with x — y — z convention :

cosflcosy) —cos¢siny +singsinfcosy  singsiny + cos¢sinf cosy

R =| cosfsiny cos¢pcosty+singsinfsiny  —singcos + cos@sinfsiny (8)

—sinf sin¢cosf cos¢pcost

Developing 8 gives us three equations for each
corresponding points. We'll call them contractors and see
what this means in the next chapter.
(Cl) X, - (Cosécosw.X}. + (—Cosgzbsim/; + singzbsin@cosw).Yj
+ (sin(bsim/; + COS(bsinBcosw).Zj +t ) =0
(Cz) 1Y, - (Cosﬁsin@b.xj + (cosd)cosw + singbsin@sim/)).Yj
+ (—sinz;bcosw + Cosgbsinb’sinw).zj + ty) =0
(C3) 27, — (—sinG‘Xj + (sinczﬁcos@).Yj + (cos¢c050).Zj
+ tz) =0
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C. About Interval Analysis

We define [x] as the interval that encloses a random
variable x of R with the support of its probability
function. This representation presents
advantages: It allows us to represent random variable
with imprecise probability density functions, deal with
uncertainties in a reliable way and last but foremost, it is
possible to contract the interval around all feasible
values given a set of constraints (i.e, equations or
inequalities). We can apply arithmetic operators and
functions to intervals to obtain all feasible values of the

several

variable. For example:

[-1,3]+[3,7]=[2,10]
[-1,3][3,7]=[-7,21]
[-1,3]/[3,7]=[-1/31]
Cos[O,fz] = [—1,1]

Let's now illustrate the principal of constraints

propagation. Consider the constraintx; =x; +x, where
first define

we
[XJ = [—00,2],[x2] = [—00,3]and[x3] = [4,00]. We can
easily contract those intervals without removing any
feasible value:
X3=X;+X, >Z€ [4,00] a) ([—00,2] + [—00,3])
=[4,0]"[-,5]|=[4,5]
X =X3 =X, > X &[~0,2] m([4,oo] —[—oo,S:I)
=[-0,2]n[1L»]=[1,2]
Xy =Xg—X; —>ZE€ [700,3] N ([4,00] + [700,2])

=[-,3]n[2,0]=[2,3]

We obtain much smaller intervals:

|:X1:| = [l,Z],[sz = [2,3]and[x31 = [4,5].

This contraction operator is called a contractor. We can
have many of them and apply the contractions one after
the other. Let’s consider three contractors:

(Cl):y:x2
(Cz):xy:Z
(C3):y:—x+1

If we have no idea of the maximum or minimum x and
y can take, we assign them the domain [—w,oo]. Then,
these applying the
contractors until the contractions a not significant
anymore. Notice that the resulting domains are not
dependent of the order in which we apply the
contractors. However, computation time will be. Let’s
apply them in the following order:

we contracts domains by

Aymeric Bethencourt and Luc Jaulin: 3D Reconstruction Using Interval
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(C1) >y e[ ~[0,]

(Cz) —>Xe 2/[0,@] = [0,00]

()~ y e[0.2]n((-3) {0, +1)=[0.1]
xe[0,%]|N(-[0,1]/3+1/3)=[0,1/3]

(C)=vye[01]n[0,1/3] =[0,1/9]

(C,)>xe[0,,1/3]n1/[0,1/9]= 4
yel[0,1/9]n1/ 0 =4

We obtain empty intervals which means that there is no
feasible value forx andy that satisfies the system. In
practice, one of the most efficient orders to apply the
contractor is called forward-backward propagation. First,
we write the equation under the formf ,=0.For
example, consider t,=0 where
f(x) =X *cos(x2)+exp(x3). Then we decompose the
equation in elementary operations and write the
algorithm that computes 'y = f(x). This part propagate s the
intervals from x to 0 and is called the forward
propagation:

1.[a1] = cos([x2]);
2[a, =[x J*[a ];
3.[&13] = exp([xﬂ);
4[y]=[a]+[a:];

5[y]=[y]n{0};//Sincef(x)=0

[al],[aﬂ,and[a?;e are intermediate interval variables of
the algorithm. If y] is empty, then we know that the
system has no solution. Else, [y] is replaced by {0} Then
the intervals are propagated from 0 tox. It is the
backward propagation.

6.[a2} = [aZ} N ([y] - [aﬂ);/ | Seestep4
7.[a3] = [a3] N ([y] - [aZ]);/ / Seestep4
8.[x3] = [x3] N log([a3]);/ / Seestep3
9.[a1] = [al] 8} ([aZ] / [xl]);/ / Seestep2
10.[x1]:=[x1]~([a2]/[a1]);/ / Seestep2
11.[x2] = [XZ} M Cos— 1([31});/ / Seestep1

Those steps therefore forms a forward-backward
algorithm  that  returns the  smallest boxes
[i] = [il].[izj.[iﬁ with enclose the solution set.

D. Our forward-backward Algorithm

Let us remind that in our problem of finding the
transformation parameters, we have three contractors per
couple of corresponding points. They have to be treated
simultaneously in a forward-backward alforithm to find

the smallest boxes [i] = [gﬂ[lﬂ[zﬂ[i] t }.FZJ which

y
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encloses the solution set. We applied the same principle
than the one presented above. Due to its size of 116 lines
we haven’t enclosed the full algorithm in this paper. It
can however be found at
www.AymericBethencourt.com/fbalgorithm.html

E. Result

We implemented our algorithm in C++ and developed an
interval library. The main advantage of an interval
approach is generally its speed for solving strongly non-
linear systems of equations as long as we have more
equations than unknown variables. In our problem, we
unknowns and three equations per
corresponding points. This means that only two couple of
corresponding points should be sufficient to solve the
problem using interval analysis. In practice, we first
obtained what seemed to be random results. We were
feeding the algorithm with as many couples of points as it
needed to contract the intervals to an acceptable width of
0.1 rad on the rotation angles and 0.05 m on the
translation parameters. To reach this goal, our algorithms
sometimes needed 200 couples of points (which was a
problem when we had less correspondences) and
sometimes needed as little as 4 points to attain this
precision, making the computation time varying from
0.13 to 6.1 ms (0.1 ms to initialize and 0.03 ms to compute
the forward-backward algorithm per corresponding
couple of points). We eventually figured out that it
depended on where the couples of point where in
correspondence to each other. Let’s explain this with fig.
4.

have six

Fig.4a shows 10 almost collinear correspondences with
which our contractors were not contracting well. We
needed 200 of those points to get exploitable results.
However, when using as little as 3 points that were
clearly not (fig.4b) we immediately
contracted the intervals to the requested width. This
comes from the fact that every isometry is completely
determined by its effect on three independent (not
collinear) points.

collinear

Figure 4. Selection of (a) 10 coplanar (b) 3 non-collinear
correspondances

Fig.5 shows two PNG pictures and point clouds taken
from a right pose and a left pose around a mechanical
prototype. For this we used ROS with the OpenNI
drivers.

www.intechopen.com



Figure 5. Capture of two poses

We ran the PNG pictures of the two poses in ASIFT to
obtain the correspondences. The algorithm computed
for 45s on a Intel core 2 duo which and found 287
correspondences all over the structure. (To compare
the results, we also ran SIFT which took only 11s but
found only 13 correspondences. Let also notice that
they were all on the hood of the prototype which
meant that the points were almost collinear and that
our forward-backward algorithm would have failed.
SIFT therefore requires to take intermediary poses to
reconstruct the structure, which finally isn’t making
the use of SIFT faster than A-SIFT. However, existing
reconstruction programs like RGBDSLAM use a
parallel version of SIFT called SIFT GPU using the
Nvidia CUDA technology which considerably reduce
its computation time. (Our team is currently interested
in parallelizing A-SIFT in the same way). We decided
to keep only 3 correspondences that we judged good
enough. (Red points on Fig.5) We eventually
implemented a way for the program to automatically
keep 3 points that were clearly not collinear:

Figure 6. The reconstructed object made from the two poses
using the computed transform.

www.intechopen.com

Figure 7. A car reconstructed from 7 kinect poses.

Among the correspondence points, we randomly
choose 3 points. If they are almost collinear, we discard
one point and randomly pick another one, and check
again if they are almost colinear until they are not.
Points can be shown to be almost collinear by
determining that the scalar product of two vectors
formed by the points is close to 0. In pratice, we choose
a arbitrary treshold depending on the performances
we want to achieve. Once we had our 3 clearly not
collinear corresponding points, we recovered the
depth information in the point clouds, converted the
points into world coordinates and ran the points one
after the other through our forward-backward
algorithm, successively contracting ¢,6,1 and tX,ty,tZ to
the requested precision. We first start with big
intervals, for instance, ¢ = [—3.14,3.14] and
t, = [—10,10].The program then outputs the contracted
intervals after each pass of the forward-backward
algorithm: Point 1¢ =[-3.122,2.593],t, =[1.241,1.489],
Point 2 1t =[-1523,-1.623],t, =[1.322,1.412], Point 3
(Last)

A Setution bo | T relased

e segton |
X I‘H
' X

Relaned bowes

Figure 8. Set inversion on outliers generates empty intersections.
We have to relax them to obtain the solution.

¢ =[-1572,-1573],t, =[1.345,1.385 .

The intervals are repeatedly contracted around the
solution and reached the requested width in 0.209 ms.
Fig.6 shows the reconstructed scene using the two point
clouds set with the computed transformation. We applied
the same algorithm to 7 different poses taken around a
car and displayed the result in fig.7.

Aymeric Bethencourt and Luc Jaulin: 3D Reconstruction Using Interval
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F. Robust set estimation

Until now, we had been choosing the points we wanted
to use in our forward-backward algorithm manually from
the correspondences returned by A-SIFT. However in
order to design an autonomous program capable of
choosing points on its own and appling the algorithm, we
have to be robust to outliers. Although rare, A-SIFT can
sometimes send back wrong corresponding points
(particularly with repeating patterns). In this case, our
forward-backward algorithm would return empty
intervals for the transformation parameters. To
counteract this effect, we used an algorithm for solving
relaxed set inversion problem presented in [14]. To
illustrate this principle of relaxation, let’s consider m sets
X,,..., X, of R".The g-relaxed intersection is the set of all
x in R™ which belong to allX;’s, exceptqat most.
Potential mis-corresponding points would then be
“relaxed” and wouldn’t be taken into consideration by
our algorithm.

4. Adding an IMU
A. Why ?

The IMU or Inertial Measurement Unit contains an
accelerometer, a magnetometer and a gyroscope. Those
last two combined allows us to obtain the orientation of
the IMU (and thus the Kinect) at any time, therefore
providing us with the rotation parameters between two
poses (or at least a small interval around it). We used the
IMU-UMS6 from CHRobotics and fixed it to the Kinect as
shown in Fig.9.

r

Figure 9. The IMI is fixed on the Kinect

In practice, the IMU turned out to be very precise about
its orientation. According to the datasheets, this model
was precise to +/- 0.035 rad, which was more than
sufficient for our purposes. With this
contracting the on ¢,0,1) was
anymore. However, an IMU doesn’t return its position so
we still had to apply our forward-backward algorithm to
compute the translation parameters. The IMU still
improved our performances
correspondence was then needed to contract those
parameters to an acceptable precision of 0.05m. The
computation then dropped to 0.1 ms to initialize + 0.03 ms
to run the forward-backward algorithm once. Moreover
the need of only one correspondence made possible the

accuracy,

intervals not needed

since  only one
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use of less effective but faster algorithm than A-SIFT.
Further studies could even lead to the implementation of
a very fast algorithm that would only compute one
correspondence and stop.

vV & (a)

IIII]I

b |

Figure 10. Representation of the speed intervals (a) with a
forward-only algorithm (b) with a forward-backward algorithm.

B. Position from acceleration

In order to discard all computation about solving the
transformation parameters, we tried to obtain the
position from the acceleration data from the IMU and
reconstruct the 3D scene according to them only. By
integrating twice the acceleration, we found the
translation between two poses. Knowing that the Kinect
(thus the IMU) was at zero speed at t =0 allowed us to get
rid of the constants. However, we decided to stop the
movement at each poses which meant that the Kinect was
also at zero speed at the end of the movement. We
therefore imagined an algorithm based on the
forwardbackward principle. While moving, the estimated
intervals of the speed of the Kinect are growing (see
fig.10a) which when integrated lead to a relatively
imprecise estimation of the position and an important
drift. Using the fact that the Kinect is at zero speed at the
end of the movement, we contracted the speed intervals
backward and obtain a more precise estimation of the
position (see fig.10b).

Interval Analysis is a “guaranteed” method which means
that the true solution is always in the given interval. At
line 6, if{O} is not included in the speed interval at the
end of the movement, it means that the IMU is not
stopped. In practice, the noise on the measures was very
important because of the acceleration from gravity. If the
Kinect stayed horizontally (like moving on a table), we
could just have subtracted the accelation from gravity
from the input acceleration on the z axis. However, in any
other cases, we had to project the gravity on the estimated
axis of the IMU. Although small, the noise and inaccuracy
on theses axis was amplified by the two integrations
which made the position very inaccurate. Translating the
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IMU of 1m without turning it already generated an error
of +/- 11cm. If we rotated the Kinect at the same time, the
error jumped to +/- 70cm, which was not usable.

C. Comparative results

Comparative results with RANSAC show similar
computation times, with a certain advantage for
RANSAC depending on the initial conditions. However,
one could argue about the purpose of discussing the
performances of algorithms in the tenths of milliseconds
when in both case one still need to run SIFT (11s) or A-

SIFT (45s) to first compute the correspondences.

Algorithm C, ¢ 5pog (in:[a] ,out: I:X:I)

U [T =0T = (o] = b=

2 fort=0:dt:T-dt

3 read[a]t;
4 |:V:|t+dt _ [V]t n [a]t *dt,
5 endfor
if {O} is not included in[v}t then error;
7 else
8 T
[v] ={o};
9 for t=T:-dt:T-dt
10 |:V:|t+dt _ I:V]tfdt \(|:V:|t _|:a:|t % dt),
11 enfor
12 for t=0:dt:T-dt

13 [X]t+dt _ I:X]t + [V]t *dt
14 endfor
15 | endfi

Table 1. Forward-backward algorithm acceleration for
computing pose from acceleration

Computation Time

0.25—

0204

0157

Computation time (ms)

010+

0.05+

0.00 T T T T - T T r -
1 2 2 4 5 8 7 ]
Test number

Figure 11. Performance tests. RANSAC in red. Forward-
Backward in blue.
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Our algorithm is therefore a proof of concept, an
alternative method, but not in any case a better approach
to solving the transformation parameters.

5. Conclusion

Our researches showed that it was possible to apply
interval analysis to find the transformation between two
3D images. We therefore have been able to reconstruct
object and scenes in 3D. The addition of the IMU showed
that it was possible to do so without any computation.
We however still have to figure out how to robustly know
the position of the IMU at any time. Future researches
may include loop closure detection and the integration of
3D SUREF [15] instead of A-SIFT. 3D SUREF is specially
realized to take into consideration the depth information
and should be more adapted to our purposes. Let’s also
notice that we tried to integrate the reconstructed car into
a game engine. However, to do so, we had to convert the
points cloud into a mesh. We tried different algorithm in
different software but the results were either containing
too many polygons for a game engine to run it, or too
simplified to still look like a car. This problematic is a
very active topic of research in the graphics world. A
company named JCL found a side solution by developing
a game engine exclusively for displaying clouds of
trillions of points in real time. It will therefore be very
easy for developer to scan an object or a scene with the
Kinect or any other 3D scanner and include it in the
game. Finally, we believe that it is possible to build
complete robot navigation [16][17] and interaction
systems solely based on cheap depth cameras like the
Kinect [18][19]. To prove our point we mounted our setup
on a mobile robot and were able to reconstruct a 3D
model of the environment, the exact same way we did for
an object. We then were able to localize the robot in this
3D map.
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