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Controling the number of focal
elements

Some combinatorial considerations

Christophe Osswald

Abstract A basic belief assignment can have up to 2n focal elements, and
combining them with a simple conjunctive operator will need O(22n) opera-
tions. This article proposes some techniques to limit the size of the focal sets
of the bbas to be combined while preserving a large part of the information
they carry.
The first section revisits some well-known definitions with an algorithmic
point of vue. The second section proposes a matrix way of building the least
committed isopignistic, and extends it to some other bodies of evidence. The
third section adapts the k-means algorithm for an unsupervized clustering of
the focal elements of a given bba.

Key words: Basic belief assignments, Combinatorial complexity, Focal ele-
ments, k-means, Pignistic probability, Body of evidence, Least commitment

1 General considerations on basic belief assignments

Let the finite set X = {x1, . . . , xn} be our frame of discernment. The size of
X will be noted n = |X |. The set of all the subsets of X will be noted 2X .

Definition 1. [Shafer(1976)] The application m from 2X to [0, 1] is a basic
belief assignment (bba) if :

∑

A⊆X

m(A) = 1 (1)

The constraint of closed world is modeled by m(∅) = 0. If m(∅) is greater
than 0, we either have an open world or a conflict within the information.
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2 Christophe Osswald

Definition 2. Let m be a bba on X . A ⊆ X is a focal element of m if
m(A) > 0. The focal set of m is composed of all its focal elements :

F (m) = {A ⊆ X | m(A) > 0} (2)

The size of m is noted |m| = Card(F (m)).

Of course, |m| 6 2n. In most applications, |m| will be very small compared
to 2n when a bba is constructed from a source’s information, but after some
steps of combination, this limit can be reached.

Definition 3. Let m be a bba on X . The most usual bodies of evidence are :

• The belief:
bel(A) =

∑

B⊆A,

B 6=∅

m(B) =
∑

B⊆A,

B 6=∅,

B∈F (m)

m(B) (3)

• The plausibility:

pl(A) =
∑

B∩A 6=∅

m(B) =
∑

B∩A 6=∅,

B∈F (m)

m(B) (4)

• The commonality:

q(A) =
∑

B⊇A

m(B) =
∑

B⊇A,

B∈F (m)

m(B) (5)

• The pignisitic probability, which is additive (knowing betP({x}) for all
x ∈ X is sufficient):

betP(A) =
1

1−m(∅)

∑

B⊆X

|A ∩B|

|B|
m(B) =

1

1−m(∅)

∑

B∈F (m)

|A ∩B|

|B|
m(B) (6)

When the context is not obvious, the bba used to define the body of evidence
will be placed as an index : betPm(A) instead of betP(m).

In the definition 3, the first expression concerns all the subsets of X , and
the second expression concerns only the focal elements. Therefore, if f is
either of the bodies of evidence, and A a subset of X , a natural implemen-
tation of the equation brings an algorithm which calculates f(A) in O(2n)
operations with the first expression. As the second expression only browses
the focal set of m, its complexity is O(|m|), for the same result.

The most popular combination operator is the non-normalized conjunctive
rule, also known as Smet’s rule. It is a quite simple operator to implement;
it is associative, and therefore allows to combine many sources.
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Definition 4. Let m1 and m2 be two bbas on X . The conjunctive combina-
tion of m1 and m2 is a bba on X , m1 ⊕m2, defined by :

(m1 ⊕m2)(A) =
∑

B⊆X,

C⊆X,

B∩C=A

m1(B)m2(C) =
∑

B∈F (m1),

C∈F (m2),

B∩C=A

m1(B)m2(C) (7)

The cost for calculating B ∩ C is O(n). The first expression brings an al-
gorithm in O

(

n22n
)

operations for calculating (m1 ⊕m2)(A), and O
(

n23n
)

for determining m1 ⊕ m2. The second expression brings an algorithm in
O (n|m1||m2|) operations for calculating (m1 ⊕ m2)(A) = (m1 ⊕ m2)(A),
and O (n2n|m1||m2|) for determining m1 ⊕m2.

Smets [Smets(2002)] proposed a nice implementation in O(n2n) operations
for transformations between bba and commonality. The conjunctive combina-
tion of the commonality functions is a simple multiplication, which is linear,
but on vectors having a size of 2n.

The expression (7), nor the commonality, can prevent us from making
operations on non-focal elements of m1⊕m2. Let the bba be implemented by
an adaptive structure that contains information only for its focal elements. A
hashtable is a convenient way for it. The algorithm 1 uses only O(n|m1||m2|)
to build m1 ⊕m2.

The size ofm∩ is at most |m1||m2|. The algorithm coming from (7) needs to
be executed for all the subsets of X , but the algorithm 1 only works on the fo-
cal elements ofm∩, and does not compute useless intersections [Smets(1994)].
Using a hashtable for the focal elements, with a hashcode calculation in O(n)
operations, the conjunctive combination takes O(n|m1||m2|) operations.

Data: bbas m1, m2

Result: bba m∩

forall B ∈ m1 do
forall C ∈ m2 do

if B ∩ C ∈ m∩ then
m∩(B ∩ C)← m∩(B ∩ C) +m1(B)m2(C)

else
Add B ∩ C to m∩

m∩(B ∩ C)← m1(B)m2(C)

Algorithm 1: Conjunctive combination

However, the very nature of the combination operator brings a combina-
torial explosion of the focal set. Let mi be the bba defined by mi(X) = 1

2
and mi(X\{xi}) =

1
2 : |mi| = 2. Let m∩ be the conjunctive combination of all

those bbas : m∩ = m1 ⊕ . . .⊕mn. For any A ⊆ X , m∩(A) =
1
2n . Therefore,

F (m∩) = 2X and |m∩| = 2n.

The objective of the following sections will be to guarantee that the size
of a bba cannot be too large, and to respect its nature as much as possible.
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2 Linear algebra for bbas

The definition 3 builds the bodies of evidence bel, pl, betP and q as linear
transformations of m. Considering a bba m on X and an integer K, our
objective will be to build an bba m′ on X such that |m′| 6 K and fm′(A) =
fm(A) for some bodies of evidence f and some subsets A of X .

Within this section, we forbid ∅ to be a focal element of m, and we do
not allow it to become a focal element of m′. As convenient consequences, we
have bel(A) 6 betP(A) 6 pl(A), bel(X) = 1, and pl(X) = 1.

A popular and efficient way to build a bba from a probability or another
source of uncertain information is to build a least committed bba having the
same pignistic probability than the source [Smets(1990)].

Definition 5. Let m be a bba on X . A bba m′ is an isopignisitic of m if

∀x ∈ X, betPm(x) = betPm′(x) (8)

The bba m′ is the least committed isopignistic of m if for any isopignistic m′′

of m and for any A ⊆ X , plm′(A) > plm′′(A).

The algorithm 2 builds the least committed isopignistic in O(n2 + n|m|)
operations. It contains at most n focal elements.

Data: bba m on X

Result: bba m′ on X

forall x ∈ X do
Calculate p[i] = betP(x)

A← X ; k ← |X |
while max(p) 6= 0 do

i← argmin(p)
m′(A)← kp[i]
forall j ∈ p do

p[j]← p[j]− p[i]
Delete element i from p

A← A\{xi}; k ← k − 1

Algorithm 2: Building the least committed isopignistic

If we calculate betP(x) for all x ∈ X , and order the elements of X such
that pi = betP(xi) > betP(xi+1) = pi+1, the focal elements of the least
committed isopignistic are a subset of the Ai = {x1, . . . , xi}.

We have

pi = betP(xi) =

n
∑

k=i

1

k
m′(Ak) (9)

Let p be the vector of the pi and y be the vector of the m′(Ai). We
have p = Bety with Bet a n× n matrix, triangular and inversible. Therefore
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y = Bet−1p, with

Bet =
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(10)

As Bet−1 is a triangular band matrix, we can compute all the m′(Ai) from
pi in O(n) operations.

With O(n|m|) operations for computing betP, O(n lnn) operations for
sorting X , O(n) operations for building the sets Ai (with an adapted
data structure) and O(n) operations for solving the linear system, building
the least committed isopignistic costs O(n(lnn + |m|)) operations. Usually,
|m| ≫ lnn, and the cost of the least committed isopignistic is not greater
than the cost of computing betP(x) for the elements of X .

The interval [bel(A), pl(A)], containing betP(A), can be interpretated as
an uncertainty on A [Janez and Appriou(1996)]. For singletons, bel is trivial:
bel(x) = m(x). For sets of size n− 1, pl is trivial: pl(X\{x}) = 1−m({x}).
Considering the non-trivial bodies of evidence on the sets of interest {x1},
. . . , {xn}, B1 = X\{x1}, . . . , Bn = X\{xn}, we search a bba m′ with those
focal elements, forming a vector

y = (m′({x1}), . . . ,m
′({xn}),m

′(B1), . . . ,m
′(Bn))

T
(11)

which verifies:

∀i ∈ ⌊1, n⌋, plm′({xi}) = plm({xi}) (12)

∀i ∈ ⌊1, n⌋, belm′(Bi) = belm(Bi) (13)

We have:

plm′({xi}) = m′({xi}) +
∑

j 6=i

m′(Bj) (14)

belm′(Bi) =
∑

j 6=i

m′({xj}) +m′(Bi) (15)

As ∀i, plm′({xi}) + belm′(Bi) =
∑

im
′({xi}) +

∑

i m
′(Bj), there are only

n+1 independent equations among the 2n listed above: we cannot guarantee
to kep at the same time plm({xi}) and belm(Bi) on those 2n focal elements.

As q(Bi) = m(Bi) +m(X) and q({xi}) = pl({xi}), introducing common-
ality does not bring any new independent equation.
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2.1 Mixing Bet with other bodies of evidence

Here we search a bba with 2n focal elements which is an isopignistic of m and
respects an other body of evidence on some focal elements. In the following
examples, we allow the Ai obtained in section 2 to be focal elements, and we
complete them with ({xi})i∈⌊1,n⌋ or the (Bi)i∈⌊1,n⌋.

With plausibility, we should use the focal elements ({xi})i∈⌊1,n⌋. We
build a vector

y = (m′({x1}), . . . ,m
′({xn}),m

′(A1), . . . ,m
′(An))

T
(16)

The constraints are:

betP(xi) = m′({xi}) +
n
∑

k=i

1

k
m′(Ak) (17)

pl({xi}) = m′({xi}) +
n
∑

k=i

m′(Ak) (18)

As A1 = {x1}, we cannot have m′(A1) 6= m′({x1}); we have only 2n−1 focal
elements. We drop the term m′({x1}) in y, and the constraint on pl({xi}) to
obtain a matrix P such that

Py = (plm({x2}), . . . , plm({x2}), betP(x1), . . . , betP(xn))
T (19)

The matrix P4 and more generally Pn are:

P4 =





















0 0 0 1 1
2

1
3

1
4

1 0 0 0 1
2

1
3

1
4

0 1 0 0 0 1
3

1
4

0 0 1 0 0 0 1
4

1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 0 0 1





















, Pn =























0 · · · 0

In−1
Betn

In−1

0
... Un−1

0























(20)

where Betn is matrix obtained in the section 2 and Un−1 the upper triangular
(n−1)×(n−1) matrix full of 1.

The matrix Pn is inversible, and we can solve this system in O(n3) oper-
ations. Overall, we can reduce the focal set of m to 2n− 1 focal elements in
O(n(n2 + |m|)) operations, respecting betP and pl on the singletons.

With commonality, we obtain the same results : q({xi}) = pl({xi}).

With belief, we should use (Bi)i∈⌊1,n⌋ as focal elements instead of ({xi}).
As bel(Bi)+pl({xi}) = 1, we obtain another – but similar – (2n−1)×(2n−1)
inversible matrix.
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3 Optimatization by k-means

[Denoeux and Yaghlane(2002)] proposed to reduce a bba by adapting the sin-
gle linkage hierarchical clustering algorithm to coarsen its focal set. Another
interesting family of unsupervized clustering algorithm are the k-means tech-
niques, born from the ISODATA method of [Ball and Hall(1965)]. One can
adapt this method to find a subset K of 2X limited in size: |K| 6 k.

Usual k-means does not guarantee an optimal choice of centers: finding
them is equivalent to the minimum-k center, which is a NP-Complete prob-
lem [Garey and Johnson(1979)]. The convergence of the k-means algorithm
is guaranteed, but only to a local minimum of the intra-cluster variance.

Data: bba m, integer k with k 6 |m|
Result: bba mk

Let C[1], . . . , C[k] be k focal elements of m [1]

repeat
forall j 6 k do C[j]← ∅
forall A ∈ m do [2]

C[argmin(dist(A,Cj))]← C[argmin(dist(A,Cj))] ∪ {A}
forall j 6 k do C[j]← center of C[j]; [3]

until ending condition reached [4]

forall j 6 k do
mk(C[j])←

∑

A∈C[j] m(A)

Algorithm 3: k-means, in a general way that applies to focal elements.

[1] It is natural to initialize the algorithm with the k focal elements with
the greatest masses. But, as the algorithm converges – if it converges – to
a local minimum, it should be a good idea to execute various instances,
with random starting sets.

[2] The focal element A is affected to the center C[j] such that

dist(A,C[j]) =
∣

∣

∣

(

A ∩ C[j]
)

∪
(

A ∩C[j]
)

∣

∣

∣ (21)

is minimal. It corresponds to a natural L1 distance based on an exclusive
or. In case of equal distances to different centers, it is possible to:

• choose a random one (the algorithm is no longer deterministic)
• use a lexicographical order (elements are no longer equivalent)
• try to build balanced clusters (the underlying problem is NP-complete)

[3] The usual k-means technique uses the geometrical barycenter of the
focal sets of C[j] seen as points of [0, 1]n : C[j]←

∑

A∈C[j] m(A)A.
It would build fuzzy focal elements, which is not the way the definition 2
accepts them. Therefore, we put x in the new C[j] if and only if :

∑

A∈C[j],x∈A

m(A) >
∑

A∈C[j],x 6∈A

m(A) (22)
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[4] As we “move” the centers of the classes to the nearest sharp subset of
X , the total intra-cluster variance is not necessarily decreasing. Therefore,
the ending condition must include a maximum steps number, and/or test
the cycles it should encounter.

A step of the algorithm 3 costs O(kn|m|) operations. A reasonable number
of steps before ending the loop is k, and we obtain an algorithm in O(k2n|m|)
operations. If we want to compare this approach with the ones of the section
2.1, we should use k = 2n− 1, and get an algorithm in O(n3|m|) operations.

4 Conclusion

In a general way, dealing with basic belief assignments on large frames of
discernment need a proper encoding of the focal sets. We propose to use
hashtables for this purpose, but this not the only way. We propose two cate-
gories of methods for restricting any bba to a bba modest in focal set size.

We extend the principle of isopignistic to other bodies of evidence to build
a bba with only 2n−1 focal elements, respecting both the pignistic probability
and another body of evidence of the original bba. We first determine the value
of the bodies of evidence on some simple elements, and then determine the
restricted focal set. A linear equation gives the restricted bba.

Trying to restrict the focal set to a number of respresentative elements
leads to a NP-Complete problem. We adapt the k-mean algorithm to build
a heuristical solution. It is more expensive, but it does not need to define a
priori a focal set, and can adapt to more situations.
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