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∗ LUNAM Université, Université d’Angers - Laboratoire d’ingénierie
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Abstract: A variety of problems in non-linear time-evolution systems such as manufacturing
plants, operations research, computer networks, etc., can be modelled as min-max-plus systems
in which operations of min, max and addition appear simultaneously. It is well know that systems
with only maximum (or minimum) constraints can be modelled as max-plus system and handled
by max-plus algebra which changes the original non-linear system into linear system in this
framework. Several authors have developed methods, in max-plus algebra, to compute control
for max-plus systems. In general, these methods use the residuation theory to design a just-in-
time control such that the output of the controlled system is, on the one hand, less than the
desired reference signal but as close as possible to the given reference and, on the other hand,
the control is delayed as much as possible. In this paper, we consider min-max-plus systems
which are extensions of max-plus systems and non-linear even in the max-plus algebra view. We
proposes a new approach to solve the just-in-time control problem for a non-linear min-max-
plus system. This problem is cast into the more general framework of constraint satisfaction
problems. This makes it possible to propose a new algorithm that contracts the feasible domains
for each uncertain variable optimally (i.e., no smaller domain could be obtained) and efficiently.

Keywords: Max-plus Algebra, Timed Event Graphs, Min-Max-Plus, Interval Arithmetic,
Constraint Satisfaction Problem

1. INTRODUCTION

This paper proposes a set-membership approach to deal
with the control of Discrete Event Systems (DES). Many
engineering systems such as manufacturing (Ayhan and
Wortman (1999)), transport and communication networks
(Boudec and Thiran (2002)) and others, can be modelled
by using the Discrete Event Systems and in particular as
max-plus systems. Systems modelled as max-plus systems
can be handled by max-plus algebra methods which have
the great advantage of changing the original non-linear
systems into linear systems in the view of max-plus algebra
framework. Among them it can be noticed results about
performance analysis and controller synthesis. This kind
of systems can be represented graphically by using Timed
Event Graph (TEG), which is a particular class of timed
Petri net in which all places have single upstream and
single downstream transitions (Murata (1989)). TEG con-
trol problems are usually stated in a Just-in-time context.
The goal is to achieve some performance while minimizing
internal stocks (Cohen et al. (1998); Menguy et al. (2000);
Maia et al. (2003)). In general, max-plus system model
can only handle problems with maximum (or minimum)

constraints which are linear in the max-plus algebra view.
However, there exist a lot of problems with both min-
imum and maximum constraints in the real world (see
Baccelli et al. (1992), Gunawardena (1994), Zhu et al.
(2009)). These non-linear time-evolution systems can be
described by min-max-plus systems which include max-
plus systems as a special case and are non-linear even in
the max-plus algebra view. There has been much research
on min-max-plus systems in recent years. Some significant
results have been obtained for autonomous systems, such
as the existence and the calculation of a fixed point and
a cycle time (see Gunawardena and Keane (1995), Wen-
De Chen (2010) ; etc.). The control problems of min-max-
plus systems have been studied lately. De Schutter and
van den Boom investigated the model predictive control for
min-max-plus systems (see De Schutter and van den Boom
(2000); Necoara et al. (2007)); Chen and Tao investigated
the observability, reachability and cycle time assignment
Chen and Tao (2001). In this paper, we study extensions of
just-in-time control of max-plus systems to min-max-plus
systems. Such systems are non-linear in both the max-
plus and the min-plus algebra, then it is not possible to use
conventional tools such as the theory of residuation. Then,



we propose a new approach based on interval arithmetic
and constraint propagation methods for analysing the con-
trol of min-max-plus systems. This paper is organized as
follows. In section 2, notations and background concerning
min-max-plus systems is given. Section 3 introduces Timed
Event Graphs description and the just-in-time control
problem. Section 4 will recall the basic notions of interval
analysis and constraint propagation needed to solve the
control problems of DES. Then we illustrate the constraint
propagation using an example that can be described by
linear equations in max-plus algebra. In Section 5, we
apply the methods of constraint propagation on a just-
in-time control problem for min-max-plus system.

2. PRELIMINARIES

2.1 General min-max-plus systems

Let us begin with some notations which are used through
this paper. Let R be a set of all real numbers and Rn be an
n-dimensional column vector set over R. Vectors in Rn are
denoted by a bold lower-case letter, e.g., x and xj denote
the j-th component of x. The notation x ≤ y denotes the
usual partial order on Rn, i.e.,

x ≤ y ⇐⇒ xj ≤ yj , for 1 ≤ j ≤ n.
The notations a ∧ b and a ∨ b stand for minimum and
maximum of real numbers a and b, respectively, i.e.,

a ∧ b = min(a, b), a ∨ b = max(a, b).

Note that + distributes over both ∧ and ∨, then

(a∧b)+c = (a+c)∧ (b+c), (a∨b)+c = (a+c)∨ (b+c).

In the sequel, it is assumed that + always has higher
precedence than either ∧ or ∨. The equalities above can
hence be rewritten as

(a ∧ b) + c = a+ c ∧ b+ c, (a ∨ b) + c = a+ c ∨ b+ c.

The operations ∧ and ∨ are also used for the corresponding
operations on vectors :

(x ∧ y)j = xj ∧ yj and (x ∨ y)j = xj ∨ yj .

A min-max-plus function of type (n, 1) is any function
f : Rn → R1, which can be written as a term in the
following grammar :

f = x1, . . . xn | f + a | f ∧ f | f ∨ f, (1)

where x1, . . . , xn are variables, and a ∈ R is referred to
as a parameter. The vertical bars separate the different
ways in which terms can recursively be constructed. The
simplest term is one of the n variables, xj , thought of as
the j-th component function. Given any term, a new one
may be constructed by adding a ∈ R ; given two terms,
a new one may be constructed by taking the minimum
or the maximum. Only these rules may be used to build
terms. For example, (x1+5∨x2+8)∧x3 is a min-max-plus
function of type (3, 1), neither x1∨4 nor (x1+x2)∧(x3+3)
can be generated by grammar (1).

A min-max-plus function of type (n,m) is any function
F : Rn → Rm such that each component is a min-max-
plus expression of n variables x1, . . . , xn, and denoted by
Fi(x).The set of min-max-plus functions of type (n,m)
is denoted by MMP (n,m). A min-max-plus expression
which uses only ∨ and + is said to be max-plus only. A
min-max-plus function of type (n,m) is said to be max-
plus only if its components are all max-plus only. Now,

recall some basic properties of min-max-plus functions.
Let F (x) be a min-max-plus function of type (n,m). First
F (x) is continuous in x. Second, F (x) is monotone :
x ≤ y ⇒ F (x) ≤ F (y). Third, F (x) is homogeneous,
in the sense that, for any h ∈ R, F (x + h) = F (x) + h.

A min-max-plus system is a system described by{
x(k + 1) = F (x(k)) ∨G(u(k))
y(k) = C(x(k)), k = 0, 1, . . .

(2)

where x(0) = ζ ∈ Rn, F (x) ∈ MMP (n, n), G(u) ∈
MMP (q, n) and C(x) ∈ MMP (n, p) are system, in-
put and output functions respectively, and x(k) =

[x1(k), . . . , xn(k)]
t ∈ Rn, u(k) = [u1(k), . . . , uq(k)]

t ∈ Rq

and y = [y1(k), . . . , yp(k)]
t ∈ Rp are state, input and

output vectors, respectively.

A max-plus (dually, min-plus) system is a min-max-plus
system where all Fi components are max-plus only (re-
spectively min-plus only) expressions.

Rather than writing a max-plus system as (2) one often
writes

x(k + 1) = Ax(k) ∨Bu(k)
y(k) = Cx(k)

which is short-hand notation for

xi(k + 1) = max(ai1 + x1(k), . . . , ain + xn(k),

b1 + u1(k), . . . bn + un(k)),

yi(k) = max(ci1 + x1(k), . . . , cin + xn(k))

i = 1, 2, . . . , n. (3)

3. CONTROL PROBLEMS

This section deals with Petri Nets (PN) and Timed Event
Graphs (TEG) that provide an intuitive way of modelling
discrete-event systems. In this paper we address the prob-
lem of the just-in-time control of discrete-event systems.
This problem has been chosen for the following reasons (i)
it illustrate, simply, how interval propagation techniques
can be used for the control of a discrete event system.
Moreover, when we consider a linear system in max-plus
algebra, we obtain the same results as the residuation
theory (ii) the constraint propagation techniques are more
general than the residuation theory and can solve larger
problems (for example, min-max-plus systems which are
non-linear in (max-plus,min-plus algebra).

3.1 Timed Event Graphs (TEG)

A Petri net is a directed bipartite graph (P, T , E ,F) where
the set of nodes is divided into two categories : place in
P and transitions in T . The directed arcs lie either in
E ⊂ P × T or in F ⊂ T × P. Tokens circulate in such a
Petri net. The number of tokens in each place at time t,
constitute its marking at time t. A transition is enabled
if each upstream place contains at least one token. The
firing of an enabled transition removes one token to each
upstream place and adds one token to each downstream
place. Event graphs constitute a subclass of Petri net
i.e., those places have one and only one upstream and
downstream transition. In a Timed Event Graph (TEG),
a delay is associated to each place. This delay is the time



Fig. 1. A timed event graph

that a token must stay in the place before contributing
the enabling of the downstream transition. On these topic
the reader is referred to Baccelli et al. (1992). Timed
event graphs are particularly suitable to model processes
which require synchronizations and delays. For example,
the timed event graph of Figure 1 represents a production
line. The delay of place P1 represents the basic production
time and the delay of place P2 (one unit) is the time
necessary to initialize the production line.

Two formalisms are commonly used to represent the be-
haviour of a TEG. On the one hand, for each transition xi,
we define the function xi(k) called dater, which represents
the date at which the transition xi has been fired for the
kth time. On the other hand, one is interested in the
number of times transitions xi has been fired at time t
; this function xi(t) associated to transition xi is called
counter. Daters and counters respectively lead to system in
the min-plus algebra (or Zmax) and in the min-plus algebra
(or Zmin).

In the example of Figure 1, the vector x(k) = (x1(k), x2(k))′

is the state of the system. The daters of the transitions
without upstream place form the vector u(k) which is the
input of the system, and the output vector y(k) is formed
by the daters of the transitions without downstream tran-
sition. Then the above graph is described by the following
system {

x1(k) = max(u(k), x2(k − 1) + 1)
x2(k) = x1(k) + 1
y(k) = x2(k)

(4)

That can be also written as a linear system in the max-plus
algebra, that is

(
x1(k)
x2(k)

)
=

(
−∞ 1
−∞ 2

)(
x1(k)
x2(k)

)
∨
(

0
1

)
u(k)

y(k) = (−∞ e)

(
x1(k)
x2(k)

)
In the sequel, we will first address the following control
problem for max-plus linear systems.

Problem 1 : Let q be a finite integer. Given system (4)
and a desired output transition firing date z = {z(k)}(k∈q),
we search for the latest input transition firing dates u =
{u(k)}(k∈q) such that output transition firing dates y =

{y(k)}(k∈q) of (4) satisfies y(k) � z(k), for all k in q ?

This tracking problem formally consists in finding the
greatest solution to inequality H(u) � z where H is a
max-plus linear operator and H(u) = {[H(u)]}(k∈q) is the

output associated with input u. In a production context,
such a control minimizes the work in process (find the
greatest control) while satisfying the customer demand
(the output is less than or equal to the reference output).

This problem is widely known and an optimal control
exists when the model is exact (Baccelli et al. (1992)),
its synthesis is based on an open-loop control structure
and principally uses the residuation theory (Blyth and
Janowitz (1972)).

Remark : For our simulation the desired output transition
firing date z(k) is given by

k 0 1 2 3 4

z(k) [−∞, 3] [−∞, 4] [−∞, 7] [−∞, 8] [−∞, 15]

We suppose that the components of x1(0), x1(1), x1(2),
x1(3), x1(4), x2(0), x2(1), x2(2), x2(3), x2(4), u(0), u(1),
u(2), u(3), u(4) are not measured, and thus associated
prior intervals are [−∞,∞].

Interval propagation is a set of numerical methods that
make possible to contract the interval domains for the
variables, without losing any feasible value. After a brief
presentation of interval propagation, we will illustrate the
efficiency of the approach on our simple control problem.

4. INTERVAL PROPAGATION

4.1 Interval arithmetic

An interval is a closed and connected subset of R defined
as [a, b] = {x|a ≤ x ≤ b}. Endpoints of an interval [x] are
denoted by x− and x+. Thus, [x] = [x−, x+]. The interval
[x, x] is a degenerate interval which we do not distinguish
from the number x. Consider two intervals [x] and [y] and
an operator � ∈ {+,−,×, /}, we define [x] � [y] as the
smallest interval which contains all feasible values for x�y,
if x ∈ [x] and y ∈ [y] (see Moore (1979)). For instance

[−1, 3] + [2, 5] = [1, 8]
[−1, 3]× [2, 5] = [−5, 15]

[−1, 3] / [2, 5] =

[
−1

2
,

3

2

]
If f is an elementary function such as sin, cos,min,max, . . .
we define f ([x]) as the smallest interval which contains all
feasible values for f(x).

Example 1. The max of two intervals (the definition can
be generalized for n intervals) is defined as max(x, y) =
[max(x−, y−),max(x+, y+)] and the min as min(x, y) =
[min(x−, y−),min(x+, y+)].

An interval vector [x] is a vector whose components are
intervals

[x] =
[
x−1 , x

+
1

]
× . . .×

[
x−n , x

+
n

]
= [x1]× [xn] .

4.2 Contraction and propagation

Consider a constraint C (i.e., an equation or an inequality),
some variables x1, x2, . . . involved in C and prior interval
domains [xi] that contain all feasible values for the xi’s.
Interval arithmetic makes possible to contract the domains
[xi] without removing any feasible values for the xi’s.

Example 2. Consider the equation

(C1) : x3 = x1 + x2

where the domains for x1, x2 and x3 are given by [x1] =
[−∞, 5], [x2] = [−∞, 4] and [x3] = [6,∞]. These domains
can be contracted with interval propagation :



x3 = x1 + x2 ⇒ [6,∞] ∩ ([−∞, 5] + [∞, 4])
= [6,∞] ∩ [−∞, 9] = [6, 9].

x1 = x3 − x2 ⇒ [−∞, 5] ∩ ([6,∞]− [−∞, 4])
= [−∞, 5] ∩ [2,∞] = [2, 5].

x2 = x3 − x1 ⇒ [−∞, 4] ∩ ([6,∞]− [−∞, 5])
= [−∞, 4] ∩ [1,∞] = [1, 4].

Then, we have the following contracted domains : [x′1] =
[2, 5], [x′2] = [1, 4] and [x′3] = [6, 9].

This contraction procedure can be performed with much
more complex constraints. A contraction operator is called
a contractor (see Chabert and Jaulin (2009)). The contrac-
tion illustrated above can be described by the following
procedure, where CPLUS stands for Contractor of the
constraint PLUS.

Algorithm CPLUS (inout : [z], [x], [y])

1 [z] = [z] ∩ ([x] + [y])
2 [x] = [x] ∩ ([z]− [y])
3 [y] = [y] ∩ ([z]− [x])

When more than one constraint are involved (see Example
3), the contractions are performed sequentially several
times, until no more significant contractions can be ob-
served. It can be shown that the interval vector to which
the method converges does not depend on the order to
which the contractors are applied (Montanari (1974)), but
the computing time is highly sensitive to this order. There
is no optimal order in general, but in practice, one of the
most efficient is called forward-backward propagation. It
consists in writing the whole set of equations under the
form f(x) = y where x and y correspond to quantities can
be measured (i.e., some prior interval domains are given
for them). Then, using interval arithmetic, the intervals
are propagated from x to y in a first step (forward propa-
gation) and, in a second step, the intervals are propagated
from y to x (backward propagation).

Example 3. To illustrate the propagation process with
several constraints, consider the three following equations (C1) : y = x2

(C2) : xy = 1
(C3) : y = −2x+ 1.

.

Thanks to interval analysis, we want to prove that this
system has no solution. To each of the variables, we
assign the domain [−∞,∞]. Then we contract the domains
with respect to the constraints in the following order :
C1, C2, C3, C1, C2 and we get empty intervals for x and y.
A geometric interpretation of the propagation is given on
Figure 2. The resulting interval computation is as follows.

(C1) ⇒ y ∈ [−∞,∞]2 = [0,∞]
(C2) ⇒ x ∈ 1/[0,∞] = [0,∞]
(C3) ⇒ y ∈ [0,∞] ∩ ((−2)× [0,∞] + 1) = [0, 1]

x ∈ [0,∞] ∩ (−[0, 1]/2 + 1/2) = [0, 1/2]
(C1) ⇒ y ∈ [0, 1] ∩ [0, 1/2]2 = [0, 1/4]
(C2) ⇒ x ∈ [0, 1/2] ∩ 1/[0, 1/4] = ∅

The interval propagation method converges to an interval
vector which encloses all solutions (if there exists any), but
the interval vector is not necessarily the smallest one. The
interval vector is said to be locally consistent because it
is consistent with all constraints taken independently. The
smallest interval vector which encloses all solutions is said
to be globally consistent. The problem of computing this

Fig. 2. Illustration of the propagation procedure

smallest box is NP-hard and can be solved using bisection
methods only for problems involving few variables. In this
paper, since we want to solve large dimensional problems,
local consistency methods will be used.

4.3 Forward-Backward propagation for max-plus systems

To illustrate the principle, consider the equations (4). If
x = (x(0),u(0),u(1),u(2),u(3),u(4)) and y = (y(0),y(1),y(2),
y(3),y(4),x(1),x(2),x(3),x(4)), then (4) can be rewritten
under the form f(x) = y. The forward contraction can be
described by the following algorithm

FORWARD CONTRACTION

1 for k=0 to 4
2 [w](k) = [x2](k − 1) + 1
3 [x1](k) = max([u](k), [w](k))
4 [x2](k) = [x1](k) + 1
5 [y](k) = [x2](k)
6 end

where for k = 0, [x2](k − 1) = [−∞,+∞]. The backward
propagation is described by

BACKWARD CONTRACTION

1 for k=4 to 0
2 [y](k) = [y](k) ∩ ([z](k)− [e](k))
3 [z](k) = [z](k) ∩ ([y](k) + [e](k))
4 [x2](k) = [x2](k) ∩ [y](k)
5 [x1](k) = [x1](k) ∩ ([x2](k)− 1)
6 CMAX([x1](k), [u](k), [w](k))
7 [x2](k − 1) = [x2](k − 1) ∩ ([w](k)− 1)
8 end

where the inequality constraint y(k) � z(k) is transformed
in equality by using a slake variable [e](k) = [0,∞],∀k, i.e.,
[y](k) + [e](k) = [z](k). The contractor for the constraint
[z] = max([x], [y]) is evaluated by the following algorithm.

Algorithm CMAX (inout : [z], [x], [y])

1 if ([z] ∩ [x] = ∅) then [y] = [y] ∩ [z]
2 else if ([z] ∩ [y] = ∅) then [x] = [x] ∩ [z]
3 [x] = [x] ∩ [−∞, z+]
4 [y] = [y] ∩ [−∞, z+]

4.4 Results for the just-in-time control of TEG

Consider again the simple control problem (Problem 1)
example of Section 3. If we apply an elementary interval
propagation, we get the contracted intervals given in the
following table.



k 0 1 2 3 4

Before propagation

[z](k) [−∞, 3] [−∞, 4] [−∞, 7] [−∞, 8] [−∞, 15]
[y](k) [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞]

[x1](k) [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞]

[x2](k) [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞]

[u](k) [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞]

After propagation

[z](k) [−∞, 2] [−∞, 4] [−∞, 6] [−∞, 8] [−∞, 15]
[y](k) [−∞, 2] [−∞, 4] [−∞, 6] [−∞, 8] [−∞, 15]
[x1](k) [−∞, 1] [−∞, 3] [−∞, 5] [−∞, 7] [−∞, 14]
[x2](k) [−∞, 2] [−∞, 4] [−∞, 6] [−∞, 8] [−∞, 15]
[u](k) [−∞, 1] [−∞, 3] [−∞, 5] [−∞, 7] [−∞, 14]

The computing time to get the contracted intervals is
always less than 0.1 sec on a standard laptop. Finally, we
can choose any control u0 ∈ [u](0), since any instantiation
of u0 does not change the domain for u1 ∈ [u](1). Note
that, it is possible to choose control sequences that are
not monotonic. Of course, such decreasing sequences have
no physical meaning for a TEG and should not be chosen.
Then, for our example (Problem 1), the optimal input is
given by

(u(0) . . . u(4)) = (1, 3, 5, 7, 14) .

In a production context, such a control minimizes the work
in process while satisfying the customer demand, that is
the output is less than or equal to the reference output
y(k) � z(k) for all k.

Remark 1. It is not difficult to show that, the step of
Backward propagation gives the same results that we
obtain in max-plus algebra with the residuation theory
(Baccelli et al. (1992)). This is due to the fact that the
inverse image of a cone of Rn of the form [x] = [−∞, x+1 ]×
. . . × [−∞, x+n ] by a max-plus or min-plus function is
still a cone. In other words, the max-plus or min-plus
function are cone conservative (Jaulin et al. (2004)). Then,
if all domains are cones, the consistency domains can be
computed exactly provided that only corner-conservative
functions are involved in the set propagation. Moreover,
in this case the interval propagation method converges in
one step.

In this section, we have shown that constraints propaga-
tion and interval computation, with an another point of
view, can solve control problems for TEG with guaranteed
solutions.

5. CONSTRAINT PROPAGATION AND
MIN-MAX-PLUS SYSTEM CONTROL

The aim of this section is to introduce the application of
constraints propagation techniques presented in Section 4
to solve a just-in-time control problem in the context of
min-max-plus systems.

Problem 2: Consider a manufacturing system which
consists of two machines, denoted by M1 and M2, one
input, denoted by u1 by which users can exert control
on the system, and two outputs, denoted by y1 and y2,
from which users can examine the outcome of the system.
The two machines work recursively over the time : (1) the
instruction u1(k) arrives; (2) A product carrier from M1

or from M2 finished its (k− 1)th processing and arrives at
M1. M2 starts a processing when a product carrier from
M1 finished its (k− 1)th processing and arrives at M2. y1

is obtained when a product carrier from M2 finished its
kth round processing and arrives at y1.

Fig. 3. A production line

The above system can be modelled as the min-max-plus
system : {

x(k + 1) = F (x(k)) ∨G(u(k))
y(k) = C(x(k)), k = 0, 1, . . .
x(0) = ξ ∈ Rn

, (5)

where F (x), G(u) and C(x) are given by

F1(x) = τ1,1 + x1 ∧ τ1,2 + x2,
F2(x) = τ2,1 + x1,

G1(u) = α1,1 + u1,

and

C1(x) = δ1,1 + x1,
C2(x) = δ2,2 + x2,

respectively, where xi denotes the processing finish time
of the machine Mi in the kth round, τi,j denote the fixed
time it takes by a product carrier which transfers from the
Mj in the (k − 1)th round and to Mi in the kth round,
αi,j denote the fixed time it takes by an input instruction
which transfers from the uj in the kth round and to Mi in
the kth round, and δi,j denote the fixed time it takes by
a product carrier which transfers from the Mj in the kth
round and to yi in the kth round.

Suppose τ1,1 = 3, τ1,2 = 2, τ2,1 = 2, α1,1 = 2, δ1,1 =
2, δ2,2 = 3, we take the desired outputs trajectories given
below.

k 0 1 2 3 4

z1(k) [−∞,−∞] [−∞, 4] [−∞, 9] [−∞, 11] [−∞, 13]
z2(k) [−∞,−∞] [−∞,−∞] [−∞, 7] [−∞, 12] [−∞, 14]

All other domains are taken as [−∞,∞], application
of Algorithm JITCMMPS (for Just-In-Time Control for
Min-Max-Plus System, Table A.1) yields the following
contractions for the control input u(k).

k 0 1 2 3 4

u(k) [−∞, 0] [−∞, 5] [−∞, 7] [−∞, 9] [−∞,+∞]

Like the Problem 1, we can choose any control u0 ∈
[u](0), . . . , uk ∈ [u](k). Then, the greatest input control
such that (y1(k) � z1(k) and (y2(k) � z2(k) for all
k = [0, k] is given by

(u0, . . . , u4) = (0, 5, 7, 9,∞).

In Algorithm JITCMMPS (see Table A.1 in Appendix A),
we need a contractor for constraint [z] = min([x], [y]). This
contractor is given by Table A.2 in Appendix A.

The experiments were carried out with Matlab 7.12.0
(R2011a) with the support of the packages INTLAB 6 (see



Rump (1995)). INTLAB 6 provides interval arithmetic and
useful interval functions. Thus, all of our computations
were reliable and the results are verified.

6. CONCLUSION

This paper proposes a new and general algorithm to
compute a control sequence, in a just-in-time context, of a
min-max-plus system. The approach is based on constraint
propagation and interval arithmetic. The methodology has
been illustrated by two examples. The problem 1 can be
solved by using the residuation theory, but residuation
only applies to Timed Event Graphs, which represent a
tiny class of DES. In contrast, to our knowledge, Problem
2, could not to be solved rigorously by other existing
methods.

Appendix A. ALGORITHM JITCMMPS

Algorithm JITCMMPS

(in : [z1](0), . . . [z1](k)], [z2](0), . . . [z2](k)];out : [u1](0), . . . , [u1](k))

1 do

2 for k=0 to k
3 [w1](k) = [x1](k) + τ1,1
4 [w2](k) = [x2](k) + τ1,2
5 [w3](k) = min([w1](k), [w2](k))
6 [w4](k) = [u1](k) + α1,1

7 [x1](k + 1) = max([w3](k), [w4](k))
8 [x2](k + 1) = [x1](k) + τ2,1
9 [y1](k) = [x1](k) + δ1,1
10 [y2](k) = [x2](k) + δ2,2
11 end

12 for k=k downto 0
13 [z1](k) = [z1](k) ∩ ([y1](k) + [e1](k))
14 [z2](k) = [z2](k) ∩ ([y2](k) + [e2](k))
15 [y1](k) = [y1](k) ∩ ([z1](k)− [e1](k))
16 [y2](k) = [y2](k) ∩ ([z2](k)− [e2](k))
17 [x2](k) = [x2](k) ∩ ([y2](k)− δ2,2)
18 [x1](k) = [x1](k) ∩ ([y1](k)− δ1,1)
19 [x1](k) = [x1](k) ∩ ([x2](k + 1)− τ2,1)
20 CMAX([x1](k + 1), [w3](k), [w4](k))
21 [u1](k) = [u1](k) ∩ ([w4](k)− α1,1)
22 CMIN([w3](k), [w1](k), [w2](k))
23 [x2](k) = [x2](k) ∩ ([w2](k)− τ1,2)
24 [x1](k) = [x1](k) ∩ ([w1](k)− τ1,1)
25 end
26 while contraction is significant

Table A.1. Forward-Backward Propagation for
Problem 2

Algorithm CMIN (inout : [z], [x], [y])

1 if ([z] ∩ [x] = ∅) then [y] = [y] ∩ [z]
2 else if ([z] ∩ [y] = ∅) then [x] = [x] ∩ [z]
3 [x] = [x] ∩ [z−,∞]
4 [y] = [y] ∩ [z−,∞]

Table A.2. Contractor for [z] = min([x], [y])
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