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1 INTRODUCTION

When considering low-frequency sources, the oceanic environment can act as a very dispersive

waveguide, especially in shallow-water long-range sound wave propagation. One efficient tool for

studying dispersion effects is based on time-frequency (TF) analysis of the received signals using a

single receiver [1,2] . However, theses studies only considered two-dimensional (2-D) waveguides. In

the present paper, TF analysis is used to study the propagation of low-frequency broadband pulses in

three-dimensional (3-D) shallow-water waveguides. In particular, the paper focuses on the 3-D ASA

wedge benchmark for which the received signals present characteristic modal structures including

multiple mode arrivals. Indeed, it is well known that, due to the presence of a tilted bottom, a single

propagating mode can have two distinct arrivals on a single receiver located in the across-slope di-

rection. One objective of the present study is to show that TF analysis can be a suitable tool to better

understand and easily illustrate this phenomenon.

The paper is organized as follows. The 3-D ASA wedge benchmark is first recalled in Sec. 2. The

simulated time signals are computed using a fully 3-D parabolic equation based code. The TF analysis

is detailed in Sec. 3. The 2-D signals are first analyzed. Then comes the TF analysis for the 3-D

signals. In particular, the spectrograms reveal that the second arrival of a given mode looks like the

first one but is reversed in time. This observation is explained using mode-ray analogies. The paper

ends with some concluding remarks.

2 TIME SERIES FOR THE WEDGE-SHAPED WAVEGUIDE

We consider the 3-D ASA wedge benchmark (three-dimensional extension of the original 2-D ASA

wedge benchmark [3]). An isotropic point source is placed at a depth of 40 m in an oceanic envi-

ronment which consists of a lossless homogeneous water layer (sound speed: 1500 m/s, density:

1 g/cm3) overlying a lossy half-space sediment bottom (sound speed: 1700 m/s, density: 1.5 g/cm3,

and aborption: 0.5 dB/λ). No shear energy is assumed in the sediment. Using cylindrical coordinates,

with z the depth (increasing downwards) below the ocean surface, θ the azimuthal (bearing) angle,

and r the horizontal range from the source, the wedge-like tilted water/sediment interface is described

by the surface {z = h(r, θ)} where

h(r, θ) = 200

(

1−
r cos θ

4000

)

.

The water/sediment interface makes an angle of 2.86◦ with respect to the ocean surface at both θ = 0◦

(upslope direction) and and θ = 180◦ (downslope direction) and is invariant along the θ = 90◦ and

θ = 270◦ azimuthal directions. Note that the water depth at the source location is 200 m.

Time series at several ranges in the across-slope direction (receiver depth: 40 m) corresponding to

fully-3-D computations are plotted in Fig. 1. In the same figure are plotted the 2-D solutions corre-

sponding to the equivalent 2-D environment for comparison. The source signal is a Hanning-weighted
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Figure 1: Time series (receiver depth: 40 m) at several ranges in the across-slope direction corre-

sponding to 2-D (left panel) and fully-3-D computations (right panel) using the 3-D PE code 3DWAPE.

The simulated signals were scaled appropriately to compensate for cylindrical spreading.

four-period sine pulse wave given by S(t) = 1
2
(1 − cos(2πfct/4)) sin(2πfct) if 0 ≤ t ≤ 4/fc and zero

elsewhere (the initial pulse length is 0.16 s), with center frequency fc = 25 Hz. Source pulse and

source spectrum are displayed in Fig. 2. The numerical results were obtained using the 3-D parabolic

equation based model 3DWAPE [4] coupled with a Fourier synthesis technique to handle the time

dependence of the source signal. The computation domain in the across-slope direction is range-

independent and is thus seen by the 2-D model like a classical Pekeris waveguide. The 200 m deep

waveguide leads to the existence of three propagating modes at 25 Hz. Therefore, considering the

broadband source pulse with a central frequency of 25 Hz, the 2-D propagating signal splits up in

three distinct wave packets, the dispersion of each individual modal wave packet increasing as the

receiver moves out in range. According to the group velocity curves displayed in Fig. 3, we observe

that, for each propagating mode, the first arrivals consist of high-frequency contributions, whereas the

late arrivals have a more low-frequency content (above the Airy phase) (e.g., for mode 1, the group

velocity is 1493 m/s at 30 Hz and 1487 m/s at 20 Hz).

The time series corresponding to the 3-D solutions show a different modal structure, giving evidence

of well-known 3-D effects for each propagating mode, e.g. multiple arrivals of each mode, being
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Figure 2: Source pulse (left) and its spectrum (right)

distinguishable at some ranges, then merging together and progressively disapearing as we move out

across-slope (mode shadow zone). The reader is referred to Ref. [5] for a more detailed description

of the 3-D effects experienced by the propagating modes. A closer examination of the 3-D signals

reveals that the frequency content of a given wave packet varies in range (see for instance mode-2
wave packet at ranges of 15 km and 17.5 km). This effect, which appears first for higher modes, is

known as the range dependence of the cut-on frequency (or, equivalently, the frequency dependence

of mode cut-off range) of a propagating mode. Of particular interest, we can observe, looking at

the first 3-D modal arrival associated to mode 1, that high frequencies arrive before low frequencies

(similar to the 2-D situation) whereas it is the contrary for the second 3-D arrival of mode 1 (low

frequencies arrive before high frequencies). As clearly shown in the next section, the time-frequency

analysis allows a better visualization and understanding of this effect.

Figure 3: Group velocities for the Pekeris waveguide (across-slope direction; 2-D case).

3 TIME-FREQUENCY ANALYSIS

Let s(t) denote the time signal received on a single receiver after propagating in the wedge-shaped

oceanic waveguide described above, computed using either 2-D calculation or fully-3-D calculation.

Following Ref. [6], the time signal s(t) can be brought into the TF domain using short time Fourier

transform (STFT)

STFT{s}(t, f) =

∫

∞

−∞

s(τ)h∗(τ − t)e−i2πftdτ,

where h(t) is the window function centered around zero.
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Figure 4: Spectrograms of the received signals at several across-slope distances (from 7.5 to 25 km)

coresponding to 2-D PE computations. Source and receiver depths are both 40 m. Theoretical time-

frequency dispersion curves are plotted (thick gray curves) for comparison.

Figure 4 shows the spectrograms of the received signals at a 40 m depth (corresponding to 2-D com-

putations) after propagation across slope for several ranges. The gray curves superimposed on the

spectrograms in each panel correspond to the theoretical dispersion curves of the three propagating

modes, given by

tm(f) = r/cg,m(f), 1 ≤ m ≤ 3,

where r denotes the source-receiver range and cg,m(f) denotes the group velocity of mode m at

frequency f . Hence, tm(f) corresponds to the arrival time of mode m at frequency f . Note that,

for each mode, the part of the theoretical dispersion curve corresponding to frequencies below the

Airy phase is not displayed. The STFTs of Fig. 4 follow the form of the dispersion curves, spread

according to the window function used. We observe that at large ranges, modes are well separated in

the TF domain. For relatively smaller source-receiver ranges, the modes tend to overlap (generating

interferences) and become thus more hardly distinguishable. For a given mode m, the spectrograms

confirm that the early arrivals of mode m consist of high-frequency contributions, whereas the late

arrivals have a low-frequency content.

The spectrograms corresponding to fully-3-D computations are shown in Fig. 5 for the same source-

receiver ranges considered in Fig. 4. They correspond to a receiver at a constant 40 m depth in the

across-slope direction. Several observations can be made. As in Fig. 4, the spectrograms allow to

separate the modal arrivals. Unlike in 2-D, one mode can now have two distinct arrivals. The second

modal arrival can be well separated in time from the first modal arrival (see for instance ranges 20
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Figure 5: Spectrograms of the received signals at several across-slope distances (from 7.5 to 25 km)

coresponding to fully-3-D PE computations. Source and receiver depths are both 40 m. Theoretical

time-frequency dispersion curves are plotted (thick gray curves) for comparison.

to 25 km for mode 1) but can also be merged with the first modal arrival (see ranges 15 to 20 km

for mode 2). For each mode and for each source-receiver range, the shape in the TF domain of

the first modal arrival follows the shape of the corresponding 2-D predictions shown in Fig. 4, with

higher frequencies arriving first. The second modal arrival, when present, looks like the first one

but is reversed in time, low frequencies arriving now first. We note that at short distances (e.g., at

r = 7.5 km), each mode corresponds to an almost direct propagation between the source and the

receiver (nearly no 3-D effects). As a consequence, its shape in the TF domain deviates only slightly

from the 2-D theoretical dispersion curves (plotted in gray for comparison). However, as we move

out in range, we observe a now more pronounced deviation of the first arrival of the mode in the

TF domain from the 2-D dispersion curves. Note also that for a given mode, the low frequencies

disappear before the high frequencies. This phenomenon is due to horizontal refraction effects, and

is known as range dependence of the cut-on frequency (see discussion in Sec. 2).

All these effects can be explained easily using mode-ray analogies as follows. First of all, recall

that at a fixed frequency, a given mode can be viewed as rays propagating along hyperbolic paths

in the horizontal plane, being horizontally refracted towards regions of deeper water. A modal ray,

travelling first upslope (i.e., launched obliquely towards the wedge apex), turns back downslope, thus

intersecting the across-slope direction at some range, leading to a shadow zone region across-slope

at a sufficiently large distance (the so-called mode cut-off range). The cut-off range of a given mode

is shifted out in range with increasing frequency (see for instance in Refs. [7–11]). Considering a
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Receiver range: 20 km Receiver range: 25 km

Frequency [in Hz] φ0 [in deg] Lφ0
[in m] tφ0

[in s] φ0 [in deg] Lφ0
[in m] tφ0

[in s]

15 6.4 20 046.41 13.56 – – –

19.7 20 643.63 14.06 – – –

20 3.6 20 013.86 13.47 5.2 25 038.02 16.87

21.5 20 883.22 14.18 15.2 25 470.65 17.26

25 2.4 20 005.84 13.43 3.2 25 011.44 16.79

22.1 21 017.32 14.24 16.7 25 638.88 17.35

30 1.7 20 002.85 13.40 2.25 25 004.19 16.76

22.3 21 098.21 14.27 17.2 25 733.36 17.38

35 1.3 20 001.53 13.39 1.7 25 001.19 16.73

22.4 21 158.97 14.29 17.6 25 809.15 17.41

Table 1: Characteristics (for several frequencies within the frequency band of the source pulse) of

the modal rays associated to mode 1 launched from the source and connected with a receiver in the

across-slope direction. The angle φ0 denotes the initial launch angle (φ0 = 90◦ points up-slope and

φ0 = 0◦ points across-slope) of a modal eigenray, Lφ0
denotes the length of a modal eigenray path

and tφ0
denotes its travel time.

broadband source pulse, this means that the extinction of a given modal wave packet, instead of

being abrupt, takes place in an extended region along the across-slope direction. This is what the

spectrograms of Fig. 5 show for modes 2 and 3; a larger maximum computation range (≈ 45 km) would

be required to see the same effect for mode 1 (see in Ref. [12]). Assuming that, at a given frequency

f , the receiver range is less than the cut-off range of mode m, and depending on its position along the

across-slope direction, a receiver may see either one single arrival of mode m, or two distinct arrivals

of the same mode m. In the latter case, the first mode arrival corresponds to a ray launched at a low

horizontal angle φ0,1 with respect to the across-slope direction, and the second to a ray launched at a

higher horizontal angle φ0,2 > φ0,1. Note that the first and second arrivals of the same mode are often

referred to in the literature as ’direct arrival’ and ’echo’. The paths of these ’first’ and ’second’ eigenrays

depend on frequency and source-receiver ranges. For example, the characteristics of the modal rays

associated to mode 1 launched from the source and connected with a receiver in the across-slope

direction are given in Table 1 for several frequencies within the frequency band of the source pulse

and for two source-receiver ranges. Corresponding eigenray paths (for selected frequencies 20 Hz

and 30 Hz) are shown in Fig. 6. Note that there are no data at 15 Hz for a receiver range of 25 km

(which is beyond the cut-off range of mode 1 at 15 H).

Let us analyze first the frequency content of the first arrival (i.e., the ’direct arrival’) of a mode. For

a given mode m and a fixed source-receiver range, φ0,1 decreases as frequency increases. In other

words, as can be seen in Fig. 6, the higher frequency paths deviate less and less from the straight line

connecting the source and the receiver as frequency increases. Therefore, the leading edge of the

first arrival of mode m consists of high-frequency contributions and the trailing edge consists of low-

frequency contributions. This is similar to what was observed for the single arrival of each propagating

mode for the 2-D Pekeris waveguide (see the 2-D spectrograms shown in Fig. 4). For instance, at a

source-receiver range of 20 km, φ0,1 = 3.6◦ (arrival time: 13.47 s) at 20 Hz and φ0,1 = 1.7◦ (arrival

time: 13.40 s) at 30 Hz for mode 1. The 30 Hz eigenray arrives thus 0.07 s before the 30 Hz eigenray at

20 km. It is worth noting that, for each frequency, the bending of the eigenray paths, which is relatively

low at small source-receiver ranges, increases as the receiver moves out in range. This explains

why the shape of the first arrival of each mode deviates in the TF domain from the corresponding

theoretical 2-D dispersion curve.

Let us analyze now the frequency content of the second arrival (i.e., the ’echo’) of a mode. For a given

mode m and a fixed source-receiver range, φ0,2 now increases as frequency increases (e.g., see in

Fig. 6 at both receiver ranges). The corresponding eigenray path penetrates farther into the shallower

portion of the wedge-shaped waveguide as frequency increases. The low-frequency paths are thus

longer than the high-frequency paths, and low frequencies arrive now before high frequencies. The
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Figure 6: Modal eigenray paths corresponding to mode 1 for a receiver range of (a) 20 km and (b)

25 km. On each panel, two frequencies are considered: 20 Hz (dashed curves) and 30 Hz (continuous

curves).

second arrival of a mode appears thus reversed in time in the TF domain. For instance, at a source-

receiver range of 20 km, φ0,2 = 21.5◦ (arrival time: 14.18 s) at 20 Hz and φ0,2 = 22.3◦ (arrival time:

14.27 s) at 30 Hz for mode 1. Unlike the first arrival of mode 1, the 20 Hz eigenray for the second

arrival of mode 1 arrives 0.09 s before the corresponding 30 Hz eigenray.

4 CONCLUDING REMARKS

It has been shown in this paper that the time-frequency analysis allows to fully characterize the dis-

persion of multiple mode arrivals in a specific synthetic 3-D oceanic waveguide, the 3-D wedge bench-

mark. In this case, time-frequency analysis is especially helpful when a single receiver is available. At

a given range, it provides an accurate description of 3-D modal dispersion. As a perspective, we will

explore sound propagation problems with other more complicated 3-D bottom profiles (e.g., canyon,

seamont, trench). Another perspective of such studies is to develop new signal processing methods

allowing single-receiver geoacoustic inversion in 3-D oceanic environments.
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