TIME-FREQUENCY ANALYSIS OF BROADBAND SOUND PULSE PROPAGATION IN 3-D OCEANIC WAVEGUIDES

Frédéric Sturm Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France.
Email: frederic.sturm@ec-lyon.fr

Julien Bonnel LabSTICC / TOMS, UMR CNRS 6285, ENSTA Bretagne (UEB), 2 rue François Verny, 29806 Brest Cedex 9, France. Email: julien.bonnel@ensta-bretagne.fr

1 INTRODUCTION

When considering low-frequency sources, the oceanic environment can act as a very dispersive waveguide, especially in shallow-water long-range sound wave propagation. One efficient tool for studying dispersion effects is based on time-frequency (TF) analysis of the received signals using a single receiver [1,2]. However, these studies only considered two-dimensional (2-D) waveguides. In the present paper, TF analysis is used to study the propagation of low-frequency broadband pulses in three-dimensional (3-D) shallow-water waveguides. In particular, the paper focuses on the 3-D ASA wedge benchmark for which the received signals present characteristic modal structures including multiple mode arrivals. Indeed, it is well known that, due to the presence of a tilted bottom, a single propagating mode can have two distinct arrivals on a single receiver located in the across-slope direction. One objective of the present study is to show that TF analysis can be a suitable tool to better understand and easily illustrate this phenomenon.

The paper is organized as follows. The 3-D ASA wedge benchmark is first recalled in Sec. 2. The simulated time signals are computed using a fully 3-D parabolic equation based code. The TF analysis is detailed in Sec. 3. The 2-D signals are first analyzed. Then comes the TF analysis for the 3-D signals. In particular, the spectrograms reveal that the second arrival of a given mode looks like the first one but is reversed in time. This observation is explained using mode-ray analogies. The paper ends with some concluding remarks.

2 TIME SERIES FOR THE WEDGE-SHAPED WAVEGUIDE

We consider the 3-D ASA wedge benchmark (three-dimensional extension of the original 2-D ASA wedge benchmark [3]). An isotropic point source is placed at a depth of 40 m in an oceanic environment which consists of a lossless homogeneous water layer (sound speed: 1500 m/s, density: 1 g/cm³) overlying a lossy half-space sediment bottom (sound speed: 1700 m/s, density: 1.5 g/cm³, and absorption: 0.5 dB/λ). No shear energy is assumed in the sediment. Using cylindrical coordinates, with z the depth (increasing downwards) below the ocean surface, θ the azimuthal (bearing) angle, and r the horizontal range from the source, the wedge-like tilted water/sediment interface is described by the surface \(z = h(r, \theta) \) where

\[
h(r, \theta) = 200 \left(1 - \frac{r \cos \theta}{4000} \right).\]

The water/sediment interface makes an angle of 2.86° with respect to the ocean surface at both \(\theta = 0° \) (upslope direction) and \(\theta = 180° \) (downslope direction) and is invariant along the \(\theta = 90° \) and \(\theta = 270° \) azimuthal directions. Note that the water depth at the source location is 200 m.

Time series at several ranges in the across-slope direction (receiver depth: 40 m) corresponding to fully-3-D computations are plotted in Fig. 1. In the same figure are plotted the 2-D solutions corresponding to the equivalent 2-D environment for comparison. The source signal is a Hanning-weighted
Proceedings of the 11th European Conference on Underwater Acoustics

Figure 1: Time series (receiver depth: 40 m) at several ranges in the across-slope direction corresponding to 2-D (left panel) and fully-3-D computations (right panel) using the 3-D PE code 3DWAPE. The simulated signals were scaled appropriately to compensate for cylindrical spreading.

The four-period sine pulse wave given by
\[S(t) = \frac{1}{2}(1 - \cos(2\pi f_c t/4)) \sin(2\pi f_c t) \] if \(0 \leq t \leq 4/f_c\) and zero elsewhere (the initial pulse length is 0.16 s), with center frequency \(f_c = 25\) Hz. Source pulse and source spectrum are displayed in Fig. 2. The numerical results were obtained using the 3-D parabolic equation based model 3DWAPE [4] coupled with a Fourier synthesis technique to handle the time dependence of the source signal. The computation domain in the across-slope direction is range-independent and is thus seen by the 2-D model like a classical Pekeris waveguide. The 200 m deep waveguide leads to the existence of three propagating modes at 25 Hz. Therefore, considering the broadband source pulse with a central frequency of 25 Hz, the 2-D propagating signal splits up in three distinct wave packets, the dispersion of each individual modal wave packet increasing as the receiver moves out in range. According to the group velocity curves displayed in Fig. 3, we observe that, for each propagating mode, the first arrivals consist of high-frequency contributions, whereas the late arrivals have a more low-frequency content (above the Airy phase) (e.g., for mode 1, the group velocity is 1493 m/s at 30 Hz and 1487 m/s at 20 Hz).

The time series corresponding to the 3-D solutions show a different modal structure, giving evidence of well-known 3-D effects for each propagating mode, e.g., multiple arrivals of each mode, being
distinguishable at some ranges, then merging together and progressively disappearing as we move out across-slope (mode shadow zone). The reader is referred to Ref. [5] for a more detailed description of the 3-D effects experienced by the propagating modes. A closer examination of the 3-D signals reveals that the frequency content of a given wave packet varies in range (see for instance mode-2 wave packet at ranges of 15 km and 17.5 km). This effect, which appears first for higher modes, is known as the range dependence of the cut-on frequency (or, equivalently, the frequency dependence of mode cut-off range) of a propagating mode. Of particular interest, we can observe, looking at the first 3-D modal arrival associated to mode 1, that high frequencies arrive before low frequencies (similar to the 2-D situation) whereas it is the contrary for the second 3-D arrival of mode 1 (low frequencies arrive before high frequencies). As clearly shown in the next section, the time-frequency analysis allows a better visualization and understanding of this effect.

Figure 3: Group velocities for the Pekeris waveguide (across-slope direction; 2-D case).

3 TIME-FREQUENCY ANALYSIS

Let $s(t)$ denote the time signal received on a single receiver after propagating in the wedge-shaped oceanic waveguide described above, computed using either 2-D calculation or fully-3-D calculation. Following Ref. [6], the time signal $s(t)$ can be brought into the TF domain using short time Fourier transform (STFT)

$$STFT\{s\}(t, f) = \int_{-\infty}^{\infty} s(\tau)h^*(\tau - t)e^{-j2\pi ft} d\tau,$$

where $h(t)$ is the window function centered around zero.
Figure 4 shows the spectrograms of the received signals at a 40 m depth (corresponding to 2-D computations) after propagation across slope for several ranges. The gray curves superimposed on the spectrograms in each panel correspond to the theoretical dispersion curves of the three propagating modes, given by

\[t_m(f) = \frac{r}{c_{g,m}(f)}, \quad 1 \leq m \leq 3, \]

where \(r \) denotes the source-receiver range and \(c_{g,m}(f) \) denotes the group velocity of mode \(m \) at frequency \(f \). Hence, \(t_m(f) \) corresponds to the arrival time of mode \(m \) at frequency \(f \). Note that, for each mode, the part of the theoretical dispersion curve corresponding to frequencies below the Airy phase is not displayed. The STFTs of Fig. 4 follow the form of the dispersion curves, spread according to the window function used. We observe that at large ranges, modes are well separated in the TF domain. For relatively smaller source-receiver ranges, the modes tend to overlap (generating interferences) and become thus more hardly distinguishable. For a given mode \(m \), the spectrograms confirm that the early arrivals of mode \(m \) consist of high-frequency contributions, whereas the late arrivals have a low-frequency content.

The spectrograms corresponding to fully-3-D computations are shown in Fig. 5 for the same source-receiver ranges considered in Fig. 4. They correspond to a receiver at a constant 40 m depth in the across-slope direction. Several observations can be made. As in Fig. 4, the spectrograms allow to separate the modal arrivals. Unlike in 2-D, one mode can now have two distinct arrivals. The second modal arrival can be well separated in time from the first modal arrival (see for instance ranges 20 km).
Figure 5: Spectrograms of the received signals at several across-slope distances (from 7.5 to 25 km) corresponding to fully-3-D PE computations. Source and receiver depths are both 40 m. Theoretical time-frequency dispersion curves are plotted (thick gray curves) for comparison.

All these effects can be explained easily using mode-ray analogies as follows. First of all, recall that at a fixed frequency, a given mode can be viewed as rays propagating along hyperbolic paths in the horizontal plane, being horizontally refracted towards regions of deeper water. A modal ray, travelling first upslope (i.e., launched obliquely towards the wedge apex), turns back downslope, thus intersecting the across-slope direction at some range, leading to a shadow zone region across-slope at a sufficiently large distance (the so-called mode cut-off range). The cut-off range of a given mode is shifted out in range with increasing frequency (see for instance in Refs. [7–11]). Considering a
Table 1: Characteristics (for several frequencies within the frequency band of the source pulse) of the modal rays associated to mode 1 launched from the source and connected with a receiver in the across-slope direction. The angle \(\phi_0 \) denotes the initial launch angle (\(\phi_0 = 90^\circ \) points up-slope and \(\phi_0 = 0^\circ \) points across-slope) of a modal eigenray. \(L_{\phi_0} \) denotes the length of a modal eigenray path and \(t_{\phi_0} \) denotes its travel time.

<table>
<thead>
<tr>
<th>Frequency [in Hz]</th>
<th>(\phi_0) [in deg]</th>
<th>(L_{\phi_0}) [in m]</th>
<th>(t_{\phi_0}) [in s]</th>
<th>Frequency [in Hz]</th>
<th>(\phi_0) [in deg]</th>
<th>(L_{\phi_0}) [in m]</th>
<th>(t_{\phi_0}) [in s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6.4</td>
<td>20 046.41</td>
<td>13.56</td>
<td>15</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>19.7</td>
<td>20 643.63</td>
<td>14.06</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>20</td>
<td>3.6</td>
<td>20 013.86</td>
<td>13.47</td>
<td>20</td>
<td>5.2</td>
<td>25 038.02</td>
<td>16.87</td>
</tr>
<tr>
<td></td>
<td>21.5</td>
<td>20 883.22</td>
<td>14.18</td>
<td></td>
<td>15.2</td>
<td>25 470.65</td>
<td>17.26</td>
</tr>
<tr>
<td>25</td>
<td>2.4</td>
<td>20 005.84</td>
<td>13.43</td>
<td>25</td>
<td>3.2</td>
<td>25 011.44</td>
<td>16.79</td>
</tr>
<tr>
<td></td>
<td>22.1</td>
<td>21 017.32</td>
<td>14.24</td>
<td></td>
<td>16.7</td>
<td>25 638.88</td>
<td>17.35</td>
</tr>
<tr>
<td>30</td>
<td>1.7</td>
<td>20 002.85</td>
<td>13.40</td>
<td>30</td>
<td>2.25</td>
<td>25 004.19</td>
<td>16.76</td>
</tr>
<tr>
<td></td>
<td>22.3</td>
<td>21 098.21</td>
<td>14.27</td>
<td></td>
<td>17.2</td>
<td>25 733.36</td>
<td>17.38</td>
</tr>
<tr>
<td>35</td>
<td>1.3</td>
<td>20 001.53</td>
<td>13.39</td>
<td>35</td>
<td>1.7</td>
<td>25 001.19</td>
<td>16.73</td>
</tr>
<tr>
<td></td>
<td>22.4</td>
<td>21 158.97</td>
<td>14.29</td>
<td></td>
<td>17.6</td>
<td>25 809.15</td>
<td>17.41</td>
</tr>
</tbody>
</table>
Proceedings of the 11th European Conference on Underwater Acoustics

Figure 6: Modal eigenray paths corresponding to mode 1 for a receiver range of (a) 20 km and (b) 25 km. On each panel, two frequencies are considered: 20 Hz (dashed curves) and 30 Hz (continuous curves).

The second arrival of a mode appears thus reversed in time in the TF domain. For instance, at a source-receiver range of 20 km, $\phi_{0.2} = 21.5^\circ$ (arrival time: 14.18 s) at 20 Hz and $\phi_{0.2} = 22.3^\circ$ (arrival time: 14.27 s) at 30 Hz for mode 1. Unlike the first arrival of mode 1, the 20 Hz eigenray for the second arrival of mode 1 arrives 0.09 s before the corresponding 30 Hz eigenray.

4 CONCLUDING REMARKS

It has been shown in this paper that the time-frequency analysis allows to fully characterize the dispersion of multiple mode arrivals in a specific synthetic 3-D oceanic waveguide, the 3-D wedge benchmark. In this case, time-frequency analysis is especially helpful when a single receiver is available. At a given range, it provides an accurate description of 3-D modal dispersion. As a perspective, we will explore sound propagation problems with other more complicated 3-D bottom profiles (e.g., canyon, seamont, trench). Another perspective of such studies is to develop new signal processing methods allowing single-receiver geoacoustic inversion in 3-D oceanic environments.

REFERENCES

