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1 INTRODUCTION

The sidescan sonar records the energy of an emitted acoustical wave backscattered by the seafloor,
orthogonally to the track followed. The statistical properties of the backscattered energy change with
the nature of the seafloor, which allows for a segmentation of the seabed into homogeneous regions.
However, the statistical description of the backscattering is not constant over the full swath of the
sonar [1], due to the propagation of acoustic wave in water and characteristics of sonar system beam
(directivity, duration of emitted signal, insonified area, etc.) [2]. Thus, the segmentation results of
algorithms applied to sidescan sonar images are non optimal.
As with most other digital remote sensing images data, the preprocessing of sidescan sonar images
includes two steps detailed in [3]: geometric corrections and radiometric corrections. Some of the
geometric problems that need to be corrected for sidescan sonar images are: the water column offset,
slant-range to ground-range projection, distortion due to the resolution ratio between the along and
across-direction and change of ship’s velocity. The second preprocessing step is radiometric correc-
tions. Typically, most algorithms used for radiometric corrections are: shading correction due to the
energy decreasing from near to far-range, correction for speckle.
In the literature, several works have studied the effect of variability of seabed backscattering response
on image segmentation results. In [1], the data are first corrected for artifacts related to the wave
propagation and characteristics of the sonar system. This approach requires strong knowledge of the
system and the conditions of acquisition. Further work, [4] use a preprocessing step in which the data
are corrected by estimating range-dependent variations. In [5], correction model for compensation
of sonar sidescan images is proposed using three multiplicative corrections factors. These factors
describe changes in the sonar altitude and angular dependencies , mainly due to the vertical beam
pattern and grazing angle.
Seafloor segmentation approaches could be categorized as either parametric or non-parametric.
The parametric ones are based on modeling the probability distribution of the backscattering en-
ergy. These models take into account the conditions of acquisition, the properties of the seabed and
the angular variations of signal backscattering. The most used models include the Rayleigh model,
Weibull and K distributions. The parametric models are more often used in Bayesian framework , [6]-
[7]. In [7], a measure of similarity between the distributions of the different types of seabed sediments
is estimated. The measure used is a weighted sum of the Kullback-Leiber divergence. The weight
is introduced in the estimation of the measure that considers the influence of incidence angle. The
nonparametric approaches do not consider the conditions of acquisition and physical properties of
the backscattering signal. These approaches consider seabed backscatter as textured image. Most
features commonly used are Haralick attributes based on the co-occurrence matrix [8], spectral anal-
ysis (Fourier transform) [9] and time scale analysis (wavelet) [10].
The statistical description of the backscattering is not constant over the full swath of the sonar. Making
the backscattering energy independent of the grazing angle is a more difficult challenge, convention-
ally solved by considering a flat seabed and by using either Lambert’s law or an empirical law esti-
mated from the sonar data. To avoid the definition of a physical law describing the change in energy
with grazing angle, the proposed algorithm divides the slant range into small stripes, where the statis-
tics can be considered unaltered by the grazing angle variations. The starting stripe at mid sonar slant
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range is segmented with an unsupervised classifier. Then, from the knowledge acquired on the seg-
mentation of this first stripe, the classifier adapts its segmentation to the neighboring stripes, allowing
slight changes of statistics from one stripe to the other. The operation is repeated until the beginning
and the end of the slant range are reached. The proposed approach for unsupervised segmentation
of a slant range stripe is an adaptation of the Kohonen algorithm SOFM (Self-Organizing Feature
Maps) [11]. This algorithm is a competitive neural network based on the biological functioning of the
cerebral cortex. SOFM algorithm is different from other artificial neural networks that it uses a neigh-
borhood function to preserve the topological properties of the input space. The algorithm is applied to
raw sonar images and does not require a priori knowledge about the data. The paper is organized as
follows. In section 2, the dependence of the backscattering to grazing angle and proposed process
of splitting of sonar images are discussed. Then, the principle of the proposed algorithm is given in
section 3. In section 4, the different texture features used to discriminate the seabed are detailed.
In section 5, a brief review of the learning process of SOFM algorithm is gived . Section 6 provides
experimental results of the proposed algorithm on real sonar images and compared its performance
with the same SOFM algorithm applied on sonar images a priori corrected then compared with re-
sults obtained with K-means algorithm. Finally, we conclude with remarks and some perspectives in
section 7.

2 RANGE DEPENDENCE

In all sonar systems at the receiving processor output, the amplitude of echo will be function of sonar-
target distance. To compensate these variations, a common solution is to correct the signal received
in domain time, using a physical or empirical law [12]. The energy loss due to propagation of acoustic
waves in the marine environment has a dual origin, the first loss is the geometric divergence and a
second loss due to absorption corresponding to a conversion of acoustic energy into heat dissipation.
Reverberation is one of the most important physical phenomena in sonar. It is characterized by a
surfacic or volumic index which is a function of the pulse duration, the directivity of the antenna the
level of the transmitted signal, the texture of the substance but also the grazing angle [12]. Several
empirical models give the values of the reverberation index as a function of grazing angle and type of
bottom, for example the Lambert’s model gived in figure 1.

RF (α) = BS0 + 20 log(sin(α)) (1)

α :Grazing angle(◦), BS0 : constant(dB).

Figure 1: Reverberation Index as func-
tion of grazing angle and type of bottoom
(Lambert’s model) Figure 2: Splitting process

2.1 SPLITTING PROCESS OF SONAR IMAGE

Making energy backscattered from seafloor independent of the grazing angle is a probelm conven-
tionally solved by considering a flat seabed and using either Lambert’s law as shown on figure 1 or
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empirical law. To avoid the definition of a physical law describing the dependence of the energy with
the range of the sonar, we propose to divide the range into small overlapping stripes. In a given stripe,
the calculated statistics can be considered unaltered by the range. At first, the central stripe represent-
ing the mid-range sonar is segmented with an unsupervised classifier. Then, from the knowledge on
the segmentation of the first stripe, classification results are propagated and adapted to its neighbors,
until both edges of the image are reached. We schematize this process in figure 2.

3 PROPOSED ALGORITHM

The algorithm used is unsupervised segmentation based on SOFM (Self-Organizing feaure maps)
Kohonen neuronal network [11]. Several methods of texture analysis are proposed in the literature,
there are methods based on first order statistics, other based on second order(co-occurrences ma-
trice) and methods based on spectral analysis [13]. In our case, the features derived from texture
analysis combine two techniques. The first technique of texutre analysis is based on the estimation
of a co-occurrences matrices and the different Haralick features derived from. The ability of these
attributes to discriminate textures seabed has been shown in several work [14], [15]. The second
technique analysis is the spectral analysis. The input data (vector attributes) of the SOFM result from
a texture analysis of the sonar image. The proposed algorithm consists of five stages:

1. Splitting the raw image into stripes,

2. Creation of vector attributes using texture analysis,

3. Reducing the dimensionality of the vector attributes using the SOFM algorithm,

4. Segmentation of the input image into disjoint classes by analyzing the topology map created by
the SOFM,

5. Coding of the neuron map using colors.

4 FEATURES EXTRACTION

4.1 TEXTURAL FEATURES

The Grey Level Co-occurrence Matrix (GLCM) is a second-order statistical tool used for texture anal-
ysis of images proposed by Haralick [16]. It has been applied successfully on satellite images [17]
and medical images [18], etc. The GLCM of an image I of size N ×M coded in Ng grayscale is a
matrix of size NgxNg. It is obtained by calculating the number of transitions for each pair of gray level
(i, j) of a given distance d and angular direction θ. Analytical expression of GLCM on an image I is
given by:

GLCM(d,θ)(i, j) =
n∑

i1=1

m∑
i1=1

{I(n,m) = i, I(n+ d cos θ,m+ d sin θ) = j} (2)

(n,m) ∈ [1, N ]X[1,M ]. The GLCM is calculated in 4 directions to describe the texture content: hor-
izontal (d = 1, 0◦), vertical (d = 1, 90◦), right- (d = 1, 45◦) and left-diagonal (d = 1, 135◦) directions.
Haralick [19] proposed a set of 14 local features. The different Haralick parameters are calculated
from the normalized GLCM .
In our work the following Haralick features are used : Entropy, Contrast, Heterogeneity, Homogeneity,
Correlation, Maximum of probability, Kurtosis and Elongation Factor.
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4.2 SPECTRAL FEATURES

Two-dimensional transforms have been used extensively in image processing to tackle problems such
as image description and enhancement. Of these, the Fourier transform is one of the most widely
used [20]. Fourier analysis can be used to study the properties of textured scenes, for example the
power spectrum reveals information on the coarseness/fineness (periodicity) and directionality of a
texture. Texture directionality is preserved in the power spectrum because it allows directional and
non-directional components of the texture to be distinguished [21]. These observations have given
rise to two powerful approaches for extracting texture primitives from the Fourier power spectrum,
namely, ring filters.
In our case, six attributes computed from the Fourier transform. Three attributes calculated directly
from the magnitude spectrum of the Fourier transform F(u,v), are: the mean, the variance and the
power of the magnitude.

The other three parameters are calculated from frequency filtering based on the Fourier Transform.
Circular filters applied in three spectral bands:low, medium and high frequencies. The operator takes
an image and a filter function in the Fourier domain. This image is then multiplied with the filter
function H(u, v)in a pixel-by-pixel. Such us, F(u,v) is the input image in the Fourier domain, H(u,v)
the filter function and G(u,v) is the filtered image. The filters used in our work are ideal filters for
lowpass, bandpass and highpass. For example, the bandpass filter HLF (u, v) leaves all frequencies
unchanged between the cut-off DLF and DHF frequencies and suppresses other frequencies.

HMF (u, v) =

{
1 ifDLF <

√
u2 + v2 <DHF

0 ifDHF <
√
u2 + v2 <DHF

DLF is the low cut-off frequency and DHF is the high cut-off frequency.

Low frequency power (LFP)
GLF (u, v) = HLF (u, v).F (u, v) (3)

LFP =
1

MN

∑M−1
x=0

∑N−1
u=0 (GLF (u, v)

2)

E
(4)

where F(u,v) is the input image in the Fourier domain, HLF (u, v) the low filter mask and GLF (u, v) is
the low filtered image normlized by the power spectrum E.

Medium frequency power (MFP)

GMF (u, v) = HMF (u, v).F (u, v) (5)

MFP =
1

MN

∑M−1
u=0

∑N−1
v=0 (GMF (u, v)

2)

E − LFP
(6)

HMF (u, v) the medium filter mask, GMF (u, v) is the medium filtered image normlized only with power
spectrum containde in the medium and high frequency(E-LFP).

High frequency power(HFP)
HFP = 1− [LFP +MFP ] (7)

An example of the filtering band on three types of texture (rock,ripples and sand) is shown on Figure 3.

4.3 FEATURES VECTOR

The sidescan sonar raw images are divided into vertical stripes of 96 pixels width. On each stripe, 39
Features are calculated : 32 features of Haralick and six(6) Fourier features. The Haralick parameters
are calculated using an analysis window of 96x32 pixels, with a step of 32 pixels along range and 8
pixels along track. To take into consideration sonar altitude variations, sonar altitude is inserted as
39th feature.
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Figure 3: Circular filtring Figure 4: Representation of filter gabarit

5 UNSUPERVISED SEGMENTATION

The purpose of unsupervised learning methods is to develop an optimal partitionning, i.e clustring,
of the data set to be analyzed. Cluster analysis is the organization of collection of patterns wich
are usually represented as vectors of measurments, into clusters based on similarities. Approaches
to unsupervised learning include clustering (K-means, mixture models, hierarchical clustering, self-
organizing feature map (SOFM), etc).

5.1 K-MEANS CLUSTERING

K-means is an unsupervised learning algorithm, its purpose is to divide observations into k partitions
or clusters in which each observation belongs to the partition with the nearest average. In this work,
principal components analysis (PCA) is used to reduce the dimensionality of feature vector space of
each stripe before application of K-means clustering. The PCA¨gives orthogonal linear combination
ordered by amount of variance they present. Typically more than 90% of the variance contained in the
first three components. So,to facilitate human interpretation and further processing, it convenient to
reduce the dimensionality of feature vector space from 39 to only 3 components. An euclidean metric
is not well suited for acoustic records after PCA because the three PCA axes represent distinctly
different amount of variance and thus should not be treated equally [15]. So, Mahalanobis metric is
used for K-means clustering. This metric obtained with normalization by variance of euclidean metric
in each PCA direction.

5.2 K-MEANS WITH CONFUSION MATRIX (KM-CM)

We performed the same process of splitting stripes of sonar image for K-means algorithm segmen-
tation. The number of clusters initialized for K-means is K = 4. The problem encountered is the
transition management and continuity of classes between the stripes of image. This problem is due
by the random initilaization of K-means clusters applied separately on each stripe. To overcome this
problem, inter-stripes management is performed by confusion matrices computed on the overlapping
pixels of consecutive stripes, calling this process K-means with confusion matrix (KM-CM).The result
of segmentation by KM-CM algorithm is shown in figure 9

5.3 SEGMENTATION SOFM ALGORITHM

In the study of brain function, biologists have found that activities such as vision, speech and hear-
ing are associated with specific areas of the cortex cerebral. These surfaces are arranged so as to
preserve the topology of sensorial sensors. For example, Hubel and Weisel (1947) [22] have shown
that two near areas in the visual cortex correspond to two near areas in the retina. This organization
inspires Kohonen to develop Self-organizing feature maps (SOFM) algorithm [11]. SOFM transforms
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Algorithm 1 :SOFM algorithm
1: For each stripe b of image do:
2: Random initialization of weights wi
3: A vector xi is chosen randomly presented to the input of the network.
4: Calculate of the Euclidean distance of each input to neurons in the input vector xi presented
5: Selection of winner neuron that minimizes the criterion distance :

‖xi − wg‖ =Min‖xi − wi‖‖ (8)

6: Update the weights wi of all the neurons of the map using the formulaa:

wbi (t+ 1) = wb−1
i (t) + α(t)Vki(t)[x(t)− wki(t)] (9)

Vki:is the neighborhood function around the winner neuron defined by Kohonen, α(t) is the learn-
ing rate.

7: Return to step 2 while t < T ( T is the number of iterations)

the input of high dimension into a one or two dimensional discrete map subject to a topological (neigh-
borhood preserving) constraint. SOFM algorithm allows reduction of dimensionality of feature vector
space. So in this case, we do not need to use PCA for reduction dimensionality and euclidean metric
is used for clustering. Our tests are performed of classification for 2x2 Kohonen map size. A Koho-
nen map represents m2 different classes, that is to say a 2x2 card presents 4 classes. The SOFM
algorithm preserves the topology, so we use a color space suitable for the topology, two neurons with
similar weights (in the feature space) are represented with similar colors.

5.3.1 Learning phase

The SOFM algorithm is a type of competitive artificial neural network generally consists of two layers
of neurons. The first layer is used only to present the observations or vectors xpi of the input space.
The second is the layer of competition , the geometry of this network is defined a priori. Each element
of the input layer is connected to all neurons of the second layer to allow the self-organization. The
link between the two layers is made by vectors denoted wpi (synaptic weights). These weights are
updated iteratively by the learning algorithm based on the neighborhood. The principle of learning of
the SOFM algorithm is to promote the winner neuron by comparing the input vector to which it owes its
victory. The learning phase is to update the weights (wi) in such a way that vectors close in distance
and topology in the input space are associated with nearby neurons on the map. In our case, we note
that the learning of a given vertical band of the image depends on the learning of the previous band,
which allows us to keep the continuity of classes from one band to another. The SOFM model chosen
in our application is a grid of mxm neurons (m = 2, 3, 5...). Each neuron ni is connected to an input
xpi ∈ Rp by a vector of weight wi = (wi1, wi2, . . . , wip) ∈ Rp. The main phases of the SOFM algorithm
are gived on Algorithm 1.

The generalization ability of the SOFM algorithm depends on two parameters: the learning rate α(t)
and neighborhood function Vki(t). These two parameters are chosen heuristically [11]. The neigh-
borhood function described in step 6 of the algorithm 1 has the form of a Gaussian function gived
by:

Vki(t) = exp[− d
2(k,i)

2σ2(t)
] (10)

σ(t) the width of the neighborhood function at iteration t.

d(k, i) = |k − i| euclidean distance between neuron k and vector i According to Kohonen [11] the
convergence of the learning process requires that the neighborhood function Vki(t)→ 0 as t→ T (T :
number of iterations of the process). To ensure convergence of process, the learning rate α(t) and
standard deviation σ(t) of the neighborhood function should be two monotone decreasing functions.
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σ(t) = σ(0)[
σ(T − 1)

σ(0)
](

t
T−1 ) (11)

σ(0): Half of the initial number of neural network.

σ(T − 1) = 1/2

α(t) = α(0)(
1− t
T

) (12)

α(0) = 0.03 and T : numbers of iterations of the process (25000)

6 EXPERIMENTAL RESULTS

The sonar images used for our study are provided by the GESMA (Group d’Etudes Sous-Marines
d’Atlantique). Data were acquired by the Klein 5000 sidescan sonar at the BP02 campaign, recorded
between May and June 2002 on the Cinque Terre region and Framura in Italy. The experiment is
conducted by NATO/NURC. The frequency of sonar is 455kHz. For low-resolution, maximum range
is 150m on each side of sonar which gives a swath of 300m. In high resolution a range is 75m so
a swath of 150m. In our study we use high resolution images (swath of 150m). The along-direction
resolution is 10cm and across-direction resolution is 3cm.
To assess the performances of our new approach, two comparisons are made. First, we compare
the segmentation results obtained by application of KM-CM algorithm on raw sonar data with per-
formances of proposed algorithm. Then a comparison between results of proposed algorithm with
segmentation results of sonar images previously corrected then segmented with SOFM algorithm
applied to the sonar images without splitting process. The corrections applied are geometric and ra-
diometric. Geometric corrections consist on the water column offset and slant range to ground range
projection. For the radiometric correction, a compensation of the variation of backscattering energy by
normalization of amplitudes is made. The result of sonar image corrected and segmented is shown
respectively in figure 5 and figure 6. The segmentation result of KM-CM clustering algorithm with
number of clusters k = 4 is given in figure 9 and segmentation result of proposed algorithm is given
in figure7. To study the quantitative performance of the proposed algorithm, a confusion matrix is
calculated on the overlap of two adjacent stripes. The calculation is done for each side of the image
port and starboard. The results of the confusion matrix of the result obtained by the KM-CM algorithm
presented in figure 9 and the proposed algorithm in figure 7 are represented on the table 10. Clearly,
we show that proposed algorithm gives better result than KM-CM clustering and manages the conti-
nuity of classes between adjacent stripes of image.
The last comparison considers an homogeneous sandy area. On such area, unsupervised classifi-
cation should give a unique class. The KM-CM class algorithm gives the worst result with 54% of the
even correctly classification. The SOFM applied on the preprocessed data (geometric and radiomet-
ric corrections) shows better results as 85% of area belongs to the major class. Proposed algorithm
applied on the divided image shows that the homogenous area as almost represented by a unique
class 99.97%.The results of segmentation by different algorithms for homogeneous sandy area are
given in figure 11 and quantitative representation of rate of pixels of each class is gived in figure 12.

7 CONCLUSION

In this paper, an unsupervised algorithm for segmentation of raw sidescan sonar images is proposed.
This algorithm is based on the adaptation of the Kohonen SOFM algorithm. Segmentation perfor-
mances of the proposed algorithm are compared with those obtained by the KM-CM algorithm using
confusion matrix. Another comparison with a sandy homogeneous area is made. The proposed ap-
proach allows a better classification rate and does not depend on the incidence angle of the sonar.
The proposed algorithm performs a segmentation independent to the grazing angle, without a priori
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information on the dependence on the incidence angle of the system acquisition (i.e. without image
preprocessing) by managing transitions and continuity of classes between the adjacent stripes.
Further work will address the use of a dynamic map (i.e. size of the SOFM adapting to the com-
plexity of the segmentation task) and the improvement of the color coding of the map for a better
representation of the physical nature of the sediment.

Figure 5: Sonar image Figure 6: Preprocessed image. Figure 7: Proposed algorithm.

Figure 8: SOFM of prepro-
cessed image. Figure 9: KM-CM algorithm.

Rate of good classification (%)
KM-CM Propo.algorithm

Port Starboard Port Starboard
6 42 86 85
46 42 78 63
79 35 74 80
53 39 71 80
56 35 76 79
70 40 60 70

Figure 10: Rate of good
classfication:KM-CM,Proposed al-
gorithm.

Figure 11: Segmentation of an homoge-
neous area: a) Raw sonar image, b)KM-
CM algorithm, c) Proposed algorithm,
d)Preprocessed image, e)SOFM of pre-
processed image.

Figure 12: Comparison of segmentation
of an homogeneous area by the three al-
gorithms: KM-CM, Proposed algorithm,
SOFM of preprocessed image.
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