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1 INTRODUCTION 

The automatic detection of temporal changes in sonar images is of high interest for monitoring 
critical areas as ports or channels used by submarines for instance. This problem is addressed here 
as incoherent change detection between two sonar passes. 
To be able to compare two surveys, sonar images have first to be registered to each other. A global 
translation between the master image and the slave image has been estimated here at a coarse-to-
fine image resolution by minimizing the Kullback-Leibler divergence between the first and the 
second sets of amplitude distributions related to homogeneous areas of the master image. This is 
detailed in section 2. 
Then two different methods for the detection of changes in terms of contacts in the common area of 
the registered images are proposed in section 3. The first method is one of the well-known 
techniques used for synthetic aperture radar imagery: the log ratio of images. The second one is 
made of two stages: firstly a goodness-of-fit test is applied to every image divided into small 
overlapped snippets in order to detect statistical deviations due to possible contacts; secondly a 
pixelwise difference is simply performed between two images whose detected snippets have been 
put in a non-zero pixel value. For both methods morphological operations and local correlations 
have been performed in order to discard false alarms. 
Advantages and drawbacks of the two proposed methods are discussed in section 4 with results on 
a set of data collected by Defence R&D Canada Atlantic with a high-frequency sidescan sonar a 
month apart in the winter of 2008 in a port area. 
 

2 RIGID-BODY REGISTRATION FOR SONAR IMAGES 

2.1 Previous work 

Sonar images registration has been widely studied in the 2000s. Proposed methods can be divided 
into two classes: symbolic methods and non symbolic or iconic methods [1]. The first ones are 
based on segmented images and/or extracted features or salient points (following a SIFT or SURF 
algorithm for instance) [2,3,4,5,6]. The second ones are only based on pixel intensities and aim to 
establish a global relationship between the pixels of the two images using their gray levels only [7]. 
We proposed here a method of the second class that uses the Kullback-Leibler divergence to 
measure the similarity between the master and the slave sets of amplitude distributions of 
homogeneous areas. 
 
2.2 Proposed method 

Here the two images to be registered are geo-referenced and the basic linear transform to be 
estimated is a translation. Moreover the registration procedure aims to provide overlapped areas 
where changes in terms of contacts have to be found. In such a context, registration cannot be 
based on the contacts themselves but rather on pixel distributions of homogeneous areas. Hence 
we were interested in developing an iconic method for estimating the global translation that provides 
the best image matching in terms of homogeneous areas. For this the similarity between the master 
and the slave sets of amplitude distributions is computed using a global Kullback-Leibler 
divergence. These sets are carried out into two steps: two 3-staged image pyramids are first built. 
The first pyramid decomposition is needed to speed up the registration procedure and only consists 
in subsampling the image by a factor of 2 along each spatial dimension. Between stages of the 
second pyramid, besides subsampling, a median filtering is performed in order to denoise the 
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images. This allows performing a segmentation of the master image at the coarser stage into six 
homogeneous areas by applying the Fisher method which consists in minimizing the variance within 
classes [8]. The resulting segmented image is used in the remaining as a mask providing the six 
homogeneous areas. Note that even at the coarser stage the image size is sufficient for allowing a 
good estimate of the six distributions of pixel level. 
At each stage of the first pyramid this mask is used to collect six pairs of pixel level distributions for 
a given translation of the slave image compared to the master image. Then a symmetric Kullback-
Leibler divergence DKL is computed for each pair of discrete distributions P and Q [9]: 
��������� 	 AB ��C�DEF ����������� �B ��C�DEF ����������� � ��  �������∈ ��	ABBC�
The global Kullback-Leibler divergence for a given translation and for a given stage is the sum of 
the six symmetric Kullback-Leibler divergences. The estimated translation is the one that gives the 
lower global Kullback-Leibler divergence. At the coarser stage, the translation interval is bounded 
by the georeferencement accuracy. The estimated translation is used at the upper stage to initialize 
the new translation estimation bounded by only two pixels this time: this indeed corresponds to the 
subsampling factor between stages in rows and in columns. The global translation used for 
registering images is obtained by combining the translations estimated at every stage. 
 

3 INCOHERENT CHANGE DETECTION 

3.1 Log-ratio image 

In the synthetic aperture radar (SAR) domain, image rationing pixel by pixel is performed for 
decades [10]. Ratio of images is preferred to difference because the ratio value only depends on 
relative change in amplitude between the two dates so that the detection of changes does not 
depend on the level of the pixels [11]. It is usually expressed in decibels (that is, by taking ten times 
the logarithm in base ten of the ratio of the intensities). This method aims to identify changes in the 
mean backscatter power of a scene. An estimate of the mean backscatter power is given by the 
pixel intensity. Moreover as the image is corrupted by speckle an averaging is required in order to 
ensure a good estimate [12]. Whereas the averaging is performed using N looks of the SAR data, 
we have to manage here with a single sonar look. Hence the two images are first processed by an 
average filtering using a sliding window. Moreover we deal with amplitude data, i.e. the square root 
of the intensity data: that induces a multiplication of the above ratio by two. Finally the log ratio of 
sonar images is given by: 

���� 	 ���� !" #$%&#$'&
(,   where ���� (resp. ����) is the averaged master (resp. slave) image. 

In order to detect any change whatever its origin we take the absolute value, i.e. D����D. In this latter, 
pixel values over a given threshold are supposed to show a change in the backscattered energy. 
Here this threshold is fixed to the 99th percentile. In order to discard remaining false alarms in the 
thresholded image �	, a binary morphological erosion is performed so that to keep objects as least 
as large than an object of size 30cm in azimuth and 50cm in range, this provides the image �	�. 
Remaining detections are then processed individually: if the detected surface is not compact 
enough (proportion of the pixels in the convex hull that are also in the region must be over 0.7), it is 
rejected; otherwise we first perform a new but finer registration by cross-correlating the snippets 
corresponding to the area surrounding the detection in the master and the slave images, and then 
the new resulted log-ratio area is thresholded as above and the result compared to the previous 
one: no common pixel leads to a rejection. 

3.2 Detection difference image 

High-frequency sonar images suffer from a well-known multiplicative noise process that is 
commonly called speckle [13, 14]. When the number of scatterers in a resolution cell is sufficiently 
high, the pixel gray levels follow a Rayleigh law. Under this hypothesis, the ratio value between the 
standard deviation and the mean of pixels, called the coefficient of variation cv, is constant and 

equal to    52.01
4 =−=
π

th
vc  

When this coefficient locally differs from the above theoretical value, it is probably due to an object 
that locally disturbs the distribution. 
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The idea is to locally estimate this coefficient in the master and slave images and to compare the 
two processed images. Practically, each sonar image is first divided into snippets that consist of 
rectangular patches corresponding to an area of 3m by 3m with an overlap of 75%. For each 
snippet, the coefficient of variation cv is computed and all the pixel levels of the corresponding 
snippet are set to the coefficient value or, for overlapped snippets, the average coefficient of 
variation. Let us call �A�� and �A�� the two processed images. 
Before differencing, we only keep pixels whose level is at least equal to ��A�BEAσ�A�B F����������where 
��A�B (resp. σ�A�B) is the average level (resp. the standard deviation) of the pixels of the entire 
processed image. Let us call �C� and �C� the two new images. The difference image �C�DEDF�C�D�D�C�F is 
computed and normalised to one. In this image, we can see the main changes but some are false 
alarms. To discard them, a grey-level morphological opening with a structural element equivalent to 
an area of 1m in azimuth and 2m in range is performed: the resulting �C�� image is normalised to 
one as well. A binary image �C��	 is then obtained by thresholding �C�� to 0.7: remaining areas are 
detections. Each detection is processed individually: we first perform a new but finer registration by 
cross-correlating the snippets corresponding to the area surrounding the detection in the master 
and the slave images, and then the new difference area is thresholded as above and the result 
compared to the previous one: no common pixel leads to a rejection. A last test is performed in 
order to discard “ring-shaped” false alarms due to scale difference between detections: this test 
consists in verifying the central position of the hole in the ring. 
 

 
Figure 1 – First pair results. Left upper part: Filtered master image at the coarser resolution; Right 
upper part: segmented (6 classes) master image = mask; lower part: histogram of the filtered 
master image and the five thresholds (red lines) given by the Fisher method. 
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4 RESULTS 
4.1 Data description 

The data set was gathered with the Canadian Interim Remote Minehunting and Disposal System 
(IRMDS) which is a semi-submersible drone towing a Klein 5500 sidescan sonar operating at a 
centre frequency of 455 kHz and a bandwidth of 20 kHz. Two surveys were undertaken roughly one 
month apart during the winter of 2008 in a port area. Images were also normalised using a simple 
technique to remove effects of beam pattern, grazing angle and propagation loss and to create an 
image which is constant (in amplitude) with range. Finally, images were georeferenced on a grid 
with a resolution of 0.11m x 0.11m. Data samples falling into the same grid cell were averaged. See 
[15] for details. Here we will use only two image pairs among the five available ones: 
- The first pair with many objects on the seafloor, some texture on the edges of the insonified area 
- The second pair acquired during the vehicle turn (inducing distortion in the images), many 

objects and debris scattered on the seafloor with characteristic shapes. 
 
4.2 Rigid-body registration 

Intermediate results concerning the segmentation step are only given for the first pair in Figure 1. 
Figure 2 and Figure 3 give the registration results for the first and the second image pair. 

 

 
Figure 2 – Registration results for the first image pair: on the left, global Kullback-Leibler divergence 
vs. xy-translation at the coarser stage (the lower divergence indicates the good translation); on the 
right, superimposed registered images. 

Figure 3 – Registration results for the second image pair: on the left, global Kullback-Leibler 
divergence vs. xy-translation at the coarser stage (the lower divergence indicates the good 
translation); on the right, superimposed registered images. 
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Figure 4 – First pair results for the log-ratio image method. Upper part: averaged images ����D���D
���� ; Middle part : left figure Idiv, right figure |Idiv| ;  Lower part: left figure shows the thresholded 
image Ib and the right figure shows the four final detections in red (the added object is indicated by 
an white arrow) superimposed to the remaining detected objects in green after morphological 
operation Ibd. 
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Figure 5 – First pair results. Upper part: sonar images (master one ��Don the left, slave one ��Don the 
right); Middle part: the processed image Icvx F����������by computing the coefficient of variation; 
Lower part: Itx after having kept pixels whose level is at least equal to ��A�BEAσ�A�B. 
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5 CONCLUSION 

In this paper, the problem of incoherent change detection between two sonar passes has been 
addressed. Two methods have been proposed and applied to a set of amplitude sonar data 
gathered in a port area. Both proposed methods have similar performances in terms of change 
detection with a low false alarm rate. However, the log-image ratio is more sensitive to small 
changes as shape distortion than the second method based on the difference of values 
corresponding to the coefficient of variation ��. Indeed whereas the first is a low level processing 
that compares (averaged) images pixel by pixel, the second compares the high level information 
returned by a �� computer. 
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