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Abstract. In this paper, we consider the resolution of constraint satisfaction
problems in the case where the variables of the problem are subsets of Rn.
In order to use a constraint propagation approach, we introduce set intervals
(named i-sets), which are sets of subsets of Rn with a lower bound and an
upper bound with respect to the inclusion. Then, we propose basic operations
for i-sets. This makes possible to build contractors that are then used by the
propagation to solve problem involving sets as unknown variables. In order to
illustrate the principle and the efficiency of the approach, a testcase is provided.

Keywords. Constraint propagation, Constraint satisfaction, Contractors,
Interval analysis, Set intervals.

1 Introduction

Constraint satisfaction problems involving subsets of Rn (namely set-valued con-
straint satisfaction problems or SVCSP for short) can appear in several en-
gineering applications, typically, when arbitrary shapes (i.e. that cannot be
parametrized) are involved. The reconstruction of a three dimensional object
from photos [4], mapping an environment from sonar measurements ([16], [20]),
SLAM (simultaneous localization and mapping) [11] or characterizing invariant
sets of dynamic systems [2] can be represented by SVCSP. This paper introduces
in Section 2 a new type of numbers, namely set intervals (or i-sets), which make
possible to use constraint propagation methods for solving SVCSP. Some basic
operators for i-sets are also proposed. These operators are then used to build
contraction operators (or contractors) in Section 3. An illustrative application is
provided in Section 4 where a SVCSP is solved. Section 5 concludes the paper.

2 Set intervals (or i-sets)

2.1 Definition

Given two sets A− and A+ of Rn, the pair [A−,A+] which encloses all sets A
such that

A
− ⊂ A ⊂ A+

is a set interval (or i-set for short) and will be denoted by [A] (see Figure 1).
The i-set [∅, ∅] is a singleton which contains a single element: the empty set ∅.
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The i-set [∅,Rn] encloses all sets of Rn. If A− �⊂ A+, then [A−,A+] is empty. A
i-set is a way to handle and to compute with uncertain sets (see [9], [23]). The
idea that is developed in this paper follows the foundations of interval analysis
that has been built to handle uncertain real numbers [17], [14], to solve real-
valued nonlinear problems (see e.g. [7], [10]), to minimize nonconvex criteria
(see, e.g., [12], [18]) or to provide mathematical proofs (see, e.g., [21], [8], [19],
[15]).

Figure 1: The set A can be approximated by the i-set [A−,A+].

2.2 Operations

We shall now define some operations that can be used for i-sets. Two types of
operations can be considered.

• Specific i-set operations. Since i-sets are sets (their elements are sets), the
intersection, the union, the inclusion can be defined. In order to avoid any
confusion with the operations of their elements, these operations will be
denoted in a squared manner (e.g. ⊓,⊔,⊏).

• Set extension. All operations existing for elements of a i-set (which are
sets) such as ∩,∪, \,+, reciprocal image , direct image, . . . can be extended
to i-sets [13].

Let us first start with specific i-set operations.
Intersection. The i-set intersection between two i-sets is defined by

[A] ⊓ [B] = {X,X ∈ [A] and X ∈ [B]} .

Since
{
X ∈ [A]
X ∈ [B] ⇔

{
A− ⊂ X ⊂ A+
B− ⊂ X ⊂ B+

⇔ A− ∪ B− ⊂ X ⊂ A+ ∩ B+ ⇔ X ∈ [A− ∪ B−,A+ ∩ B+] ,

the i-set [A] ⊓ [B] is given by

[
A
−,A+

]
⊓
[
B
−,B+

]
=
[
A
− ∪ B−,A+ ∩ B+

]
. (1)
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Inclusion. We define the i-set inclusion as follows

[A] ⊏ [B] ⇔ [A] ⊓ [B] = [A] .

i-set envelope. Consider a collection {Ai, i ∈ I} of sets of Rn. The i-
set envelope � {Ai, i ∈ I} is the smallest i-set (with respect to ⊏) enclosing all
Ai, i ∈ I. We have

� {Ai, i ∈ I} =
[
⋂

i∈I

Ai,
⋃

i∈I

Ai

]

.

For instance,
� {[1, 4] , [3, 7] , [2, 6]} = [[3, 4], [1, 7]] .

Union. The i-set union between two i-sets [A] and [B] is the smallest i-set
which encloses both [A] and [B]. We have

[A] ⊔ [B] = � {X,X ∈ [A] or X ∈ [B]} .

It can easily be proven that

[A] ⊔ [B] =
[
A
− ∩ B−,A+ ∪ B+

]
.

Extension of operators. If ⋄ is a binary operator in Rn (such as +,−, the
multiplication ∗ when n = 1 or the vector product ∧ when n = 3) then it can
be extended to subsets of Rn (in the Minkowski sense) as follows

A ⋄ B = {a ⋄ b, a ∈ A, b ∈ B} .

There exists a second class of binary operators such as ⋄ ∈ {∪,∩,×, \, . . . },
where × is the Cartesian product, \ is the restriction (or trim) operator, for
subsets of Rn that do not correspond to any extension of operators in Rn.
Following the basic idea of Moore [17], it is possible to extend the operators
from these two classes to i-sets as follows

[A] ⋄ [B] = � {C,∃A ∈ [A] ,∃B ∈ [B] ,C = A ⋄ B} . (2)

From the monotony of the operators, we have

(i) [A−,A+] ∩ [B−,B+] = [A− ∩ B−,A+ ∩ B+]
(ii) [A−,A+] ∪ [B−,B+] = [A− ∪ B−,A+ ∪ B+]
(iii) [A−,A+]× [B−,B+] = [A− × B−,A+ × B+]
(iv) [A−,A+] \ [B−,B+] = [A− \ B+,A+ \ B−]
(v) [A−,A+] + [B−,B+] = [A− + B−,A+ + B+] .

(3)

Extension of functions. If f is a function from Rn to Rn. It can be
extended to i-sets as follows

f ([A]) = �
{
f (A) ,A ∈

[
A
−,A+

]}
=
[
f
(
A
−
)
, f
(
A
+
)]
. (4)
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For instance,

sin
([
[
π

6
,
π

4
], [0, π]

])
=

[

[
1

2
,

√
2

2
], [0, 1]

]

.

Wrappingless operators or functions
A binary operator ⋄ ∈ {+,−, ∗,∧,∩,∪, \, . . . } is wrappingless, if

[A] ⋄ [B] = {C,∃A ∈ [A] ,∃B ∈ [B] ,C = A ⋄ B} , (5)

i.e., if the operator � is not needed in (2). A function f is wrappingless if

f ([A]) =
{
f (A) ,A ∈

[
A
−,A+

]}
. (6)

Lemma 1. The operators ∪,∩, \ are wrappingless.
Proof. If C ∈ [A] ⋄ [B], with ⋄ ∈ {∩,∪, \}, we only need to find one A ∈ [A]

and one B ∈ [B] ,C = A ⋄ B. (i) For the intersection, take A = A− ∪ C and
B = B− ∪C. We first check that A ∈ [A] and B ∈ [B]. Moreover

A ∩ B =
(
A
− ∪C

)
∩
(
B
− ∪C

)

=
(
A
−∩B−

)
∪
(
C ∩ B−

)
∪
(
A
− ∩C

)
∪C

=
(
A
−∩B−

)
∪C = C (since C ∈ [A]∩ [B] ).

(ii) For the union, we apply the same reasoning by taking A = A+ ∩ C and
B = B+ ∩ C. (iii) For the restriction, we take A = A− ∪ C and B = B− ∪
(A− \C). �

Lemma 2. If f : Rn → Rn is bijective, then its extension to i-sets is
wrappingless.

Proof. If C ∈ f ([A]) , we only need to find one A ∈ [A] ,C = f (A) . Since
f is bijective, we can take A = f−1 (C). We easily check that A ∈ [A] and that
C = f (A). �

2.3 Natural i-set extension

Consider a set-valued expression f (X1,X2, . . . ,Xp) made as a finite composition
of wrappingless operators (such as ∩,∪, \) and wrappingless functions. We
define the natural i-set extension [f ] of f as the i-set function whose expressions
is obtained by taking that of f and by replacing all sets Xi by i-sets [Xi] and
all operators and elementary functions involved in f by their i-set counterparts.
For instance, the natural i-set extension associated with the set expression

f (X1,X2,X3) = X1 ∪ (X2 ∩ g (X3))

is
[f ] ([X1] , [X2] , [X3]) = [X1] ∪ ([X2] ∩ g ([X3])) .

Theorem 1. Consider an expression f (X1, . . . ,Xp) composed of wrapping-
less operators or functions. If X1 ∈ [X1] , . . . ,Xp ∈ [Xp] then

f (X1, . . . ,Xp) ∈ [f ] ([X1] , [X2] , . . . , [Xp]) .

4



Moreover, if in the expression of f , each Xi occurs only once, the i-set evaluation
is minimal with respect to the inclusion, i.e.,

[f ] ([X1] , . . . , [Xn]) = f ([X1] , . . . , [Xn])

=
{
Y, (∃Xi ∈ [Xi])i≤p ,Y = f (X1, . . . ,Xp)

}
.

(7)

Proof. We shall prove by induction that the theorem is true for f but also
for all subexpressions of f , in the case when each Xi occurs only once in the
expression of f . (i) First, it is trivial to check that the theorem is true for
all atomic subexpressions. (ii) Assume now that the theorem is true for two
subexpressions a

(
Xi1 , . . . ,Xip

)
and b

(
Xip+1 , . . . ,Xiq

)
of f and let us show that

it is also true for a subexpression of the form

c
(
Xi1 , . . . ,Xiq

)
= a

(
Xi1 , . . . ,Xip

)
⋄ b
(
Xip+1 , . . . ,Xiq

)
. (8)

We have

[a]
(
[Xi1 ] , . . . ,

[
Xip

])
⋄ [b]

([
Xip+1

]
, . . . ,

[
Xiq

])

(5)
=

{
C,∃A ∈ [a]

(
[Xi1 ] , . . . ,

[
Xip

])
,∃B ∈ [b]

([
Xip+1

]
, . . . ,

[
Xiq

])
,C = A ⋄ B

}

(7)
= {C, (∃Xik ∈ [Xik ])1≤k≤q , A = a

(
Xi1 , . . . ,Xip

)
,

B = b
(
Xip+1 , . . . ,Xiq

)
,C = A ⋄ B }

=
{
C, (∃Xik ∈ [Xik ])1≤k≤q ,C = a

(
Xi1 , . . . ,Xip

)
⋄ b
(
Xip+1 , . . . ,Xiq

)}

(8)
=

{
C, (∃Xik ∈ [Xik ])1≤k≤q ,C = c

(
Xi1 , . . . ,Xiq

)}
,

where the number above the equal sign refers to an equation number. Note that
the last equality becomes an inclusion ⊃ in the multi-occurence case. (iii) Let
us show that the theorem is true for a subexpression of f of the form

c
(
Xi1 , . . . ,Xip

)
= ψ ◦ a

(
Xi1 , . . . ,Xip

)
. (9)

From (4), we have

ψ
(
[a]
(
[Xi1 ] , . . . ,

[
Xip

]))

(6)
=

{
C,∃A ∈ [a]

(
[Xi1 ] , . . . ,

[
Xip

])
,C = ψ (A)

}

(7)
=

{
C, (∃Xik ∈ [Xik ])k≤p ,A = a

(
Xi1 , . . . ,Xip

)
,C = ψ (A)

}

=
{
C, (∃Xik ∈ [Xik ])k≤p ,C = ψ ◦ a

(
Xi1 , . . . ,Xip

)}

(9)
=

{
C, (∃Xik ∈ [Xik ])k≤p ,C = c

(
Xi1 , . . . ,Xip

)}
.

Again, the last equality becomes an inclusion ⊃ in the multi-occurence case.�
Example 3. Using Theorem 1, if A ∈ [A] ,B ∈ [B] , then

(A ∪ B) \ (A ∩ B) ∈ ([A] ∪ [B]) \ ([A] ∩ [B]) .
Take for instance

[
A
−,A+

]
= [[1, 3] , [0, 4]]

[
B
−,B+

]
= [[2, 5] , [1, 6]] .
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Since

([A] ∪ [B]) \ ([A] ∩ [B]) =
[
A
− ∪ B−,A+ ∪ B+

]
\
[
A
− ∩ B−,A+ ∩ B+

]

=
[(
A
− ∪ B−

)
\
(
A
+ ∩ B+

)
,
(
A
+ ∪ B+

)
\
(
A
− ∩ B−

)]
,

we have

[(
A
− ∪ B−

)
\
(
A
+ ∩ B+

)
,
(
A
+ ∪ B+

)
\
(
A
− ∩ B−

)]

= [([1, 3] ∪ [2, 5]) \ ([0, 4] ∩ [1, 6]) , ([0, 4] ∪ [1, 6]) \ ([1, 3] ∩ [2, 5])]
= [[1, 5] \ [1, 4] , [0, 6] \ [2, 3]]
= []4, 5] , [0, 2[∪]3, 6] .�

Dependency problem. As it is the case for interval arithmetic, the de-
pendency problem also exists for i-sets. For instance,

[
A
−,A+

]
\
[
A
−,A+

]
=
[
A
− \A+,A+ \A−

]
=
[
∅,A+ \A−

]
.

Of course, we have the inclusion property

{
A \A,A ∈

[
A
−,A+

]}
= [∅, ∅] ⊏

[
∅,A+ \A−

]
,

but the resulting i-set is not minimal.

3 Contractors

Contractors are powerful tools to solve efficiently CSP [3], [5], [6], [1]. They will
now be considered in the context of constraints on sets.

3.1 Definitions

Consider a constraint on sets of the form R (X1, . . . ,Xp). A contractor associ-
ated with the constraint R is an operator

([X1] , . . . , [Xp])
CR�→ ([Y1] , . . . , [Yp])

where [X1] , [Y1] , . . . , [Xp] , [Yp] are i-sets, such that

∀i ∈ {1, . . . , p} , [Yi] ⊏ [Xi] (contractance)
R (X1, . . . ,Xp)
∀i,Xi ∈ [Xi]

}
⇒ ∀i,Xi ∈ [Yi] . (completeness)

Given two contractors Ca and Cb operating on p i-sets [X1] , . . . , [Xp], we define
the inclusion as follows

Ca ⊏ Cb ⇔
(
([A1] , . . . , [Ap]) = Ca ([X1] , . . . , [Xp])
([B1] , . . . , [Bp]) = Cb ([X1] , . . . , [Xp])

}
⇒ ∀i, [Ai] ⊏ [Bi]

)
,
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and the intersection by

Cc = Ca⊓Cb ⇔




([A1] , . . . , [Ap]) = Ca ([X1] , . . . , [Xp])
([B1] , . . . , [Bp]) = Cb ([X1] , . . . , [Xp])
([C1] , . . . , [Cp]) = Cc ([X1] , . . . , [Xp])





⇒ ∀i, [Ci] = [Ai] ⊓ [Bi]



 .

If Ca and Cb are two contractors associated with the constraint R, then Ca⊓Cb is
also a contractor for R. As a consequence, there exists a smallest (with respect
to ⊏) contractor C∗ for R. It corresponds to the intersection of all contractors
for R. The contractor C∗ is the minimal contractor for R and returns the
smallest i-sets ([A1] , . . . , [Ap]) that are consistent with the constraint R and all
[Xi]’s, i.e., for all i ∈ {1, . . . , p} we should have

[Ai] = �
{
Xi ∈ [Xi] , (∃Xj ∈ [Xj ])j �=i ,R (X1, . . . ,Xp)

}
.

The following theorem will be used to build minimal contractors.
Theorem 2. Consider a function f (X1,X2, . . . ,Xp) composed of wrappin-

gless operators or functions which returns a subset of Rn from p subsets of Rn.
Assume that in the expression of f , each Xi occurs only once. We have

{
Y ∈ [Y] , (∃Xi ∈ [Xi])i≤p ,Y = f (X1, . . . ,Xp)

}
= [Y] ⊓ [f ] ([X1] , . . . , [Xp]) .

Proof. In the mono-occurence case, from Theorem 1, [f ] ([X1] , . . . , [Xp]) =
f ([X1] , . . . , [Xp]). Thus

[Y] ⊓ [f ] ([X1] , . . . , [Xp]) = [Y] ⊓ f ([X1] , . . . , [Xp])
=

{
Y ∈ [Y] , (∃Xi ∈ [Xi])i≤p ,Y = f (X1, . . . ,Xp)

}
.�

3.2 Some minimal contractors

This section presents some minimal contractors associated with specific prim-
itive set-valued constraints. The methodology that will be used to build con-
tractors for a set constraint R (X1, . . . ,Xp) is very similar that what is done to
build contractors for constraints involving real numbers [22]. Recall for instance
that the constraint R (x, y, z) : z = x+ y yields the contractor

C+




[x]
[y]
[z]



 =




([z]− [y]) ∩ [x]
([z]− [x]) ∩ [y]
([x] + [y]) ∩ [z]





To get the expression for C+, we first had to rewrite the constraint into three
equivalent forms: x = f1 (y, z) = z − y ⇔ y = f2 (x, z) = z − x ⇔ z =
f3 (x, y) = x + y. Then, we performed an interval evaluation of the fi and an
intersection with the initial interval. The principle of the methodology to build
i-set contractors is similar: the constraint R (X1, . . . ,Xp) is first rewritten as p
equivalent forms: X1 = f1 (X2, . . . ,Xp) ⇔ X2 = f2 (X1,X3, . . . ,Xp) ⇔ . . . (in
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a similar way to what is done for constraints involving real numbers). The i-set
arithmetic is then used to automatically generate the contractors.

Proposition 1. The minimal contractor associated with the constraint
A ⊂ B is

C⊂
(
[A]
[B]

)
=

(
[A] ⊓ ([B] \ [∅,Rn])
[B] ⊓ ([A] ∪ [∅,Rn])

)
(10)

or equivalently

C⊂
(
[A]
[B]

)
=

(
[A−,A+ ∩ B+]
[B− ∪A−,B+]

)
.

Proof. By definition, the minimal contractor for the constraint A ⊂ B is
given by

C⊂
(
[A]
[B]

)
=

(
� {A ∈ [A] ,∃B ∈ [B] ,A ⊂ B}
� {B ∈ [B] ,∃A ∈ [A] ,A ⊂ B}

)
.

Now, since

A ⊂ B⇔ ∃Z ∈ [∅,Rn] ,A = B \ Z⇔ ∃Z ∈ [∅,Rn] ,B = A ∪ Z,

we have

C⊂
(
[A]
[B]

)
=

(
� {A ∈ [A] ,∃B ∈ [B] ,∃Z ∈ [∅,Rn] ,A = B \ Z}
� {B ∈ [B] ,∃A ∈ [A] ,∃Z ∈ [∅,Rn] ,B = A ∪ Z}

)
.

From Theorem 2, we get (10). Moreover, using i-set arithmetic, we have

[A] ⊓ ([B] \ [∅,Rn]) (3,iv)
= [A−,A+] ⊓ [B− \Rn,B+ \ ∅]
(1)
= [A− ∪ ∅,A+ ∩ B+]
= [A−,A+ ∩ B+] ,

and

[B] ⊓ ([A] ∪ [∅,Rn]) (3,ii)
= [B−,B+] ⊓ [A− ∪ ∅,A+ ∪Rn]
(1)
= [B− ∪A−,B+ ∩Rn]
= [A− ∪ B−,B+] .�

Proposition 2. The minimal contractor associated with the constraint
A ∩ B = ∅ is

C�=
(
[A]
[B]

)
=

(
[A] ⊓ ([∅,Rn] \ [B])
[B] ⊓ ([∅,Rn] \ [A])

)
(11)

or equivalently

C�=
(
[A]
[B]

)
=

(
[A−,A+ \ B−]
[B−,B+ \A−]

)
.

Proof. By definition, the minimal contractor is given by

C�=
(
[A]
[B]

)
=

(
� {A ∈ [A] ,∃B ∈ [B] ,A ∩ B = ∅}
� {B ∈ [B] ,∃A ∈ [A] ,A ∩ B = ∅}

)
.
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Now, since

A ∩ B = ∅ ⇔ ∃Z ∈ [∅,Rn] ,A = Z \ B⇔ ∃Z ∈ [∅,Rn] ,B = Z \A

we have

C�=
(
[A]
[B]

)
=

(
� {A ∈ [A] ,∃B ∈ [B] ,∃Z ∈ [∅,Rn] ,A = Z \ B}
� {B ∈ [B] ,∃A ∈ [A] ,∃Z ∈ [∅,Rn] ,B = Z \A}

)
.

Using Theorem 2, we get (11). Using the i-set arithmetic, we get

[A] ⊓ ([∅,Rn] \ [B]) = [A−,A+] ⊓ ([∅,Rn] \ [B−,B+])
(3,iv)
= [A−,A+] ⊓ ([∅ \ B+,Rn \ B−])
(1)
= [A−,A+ ∩ (Rn \ B−)]
= [A−,A+ \ B−] .�

Proposition 3. The minimal contractor associated with the constraint
A ∩ B = C is

C∩




[A]
[B]
[C]



 =




[A] ⊓ (([∅,Rn] \ [B]) ∪ [C])
[B] ⊓ (([∅,Rn] \ [A]) ∪ [C])

[C] ⊓ ([A] ∩ [B])



 (12)

or equivalently

C∩




[A]
[B]
[C]



 =




[A− ∪C−,A+ \ (B− \C+)]
[B− ∪C−,B+ \ (A− \C+)] .

[C− ∪ (A− ∩ B−) ,C+ ∩A+ ∩ B+]



 . (13)

An illustration is represented on Figure 2. Subfigure (a) represents the initial
i-sets [A] , [B] , [C], before contraction. These i-sets can be contracted without
removing any set which is consistent with the constraint and the domains for
other sets. The principle of the contractions is illustrated by the Figure 2
(b),(c),(d).

Proof. By definition, the minimal contractor is given by

C∩




[A]
[B]
[C]



 =




� {A ∈ [A] ,∃B ∈ [B] ,∃C ∈ [C] ,A ∩ B = C}
� {B ∈ [B] ,∃A ∈ [A] ,∃C ∈ [C] ,A ∩ B = C}
� {C ∈ [C] ,∃A ∈ [A] ,∃B ∈ [B] ,A ∩ B = C}





Now, since

A ∩ B = C⇔ ∃Z ∈ [∅,Rn] , A = (Z \ B) ∪C⇔ ∃Z ∈ [∅,Rn] , B =(Z \A) ∪C,

we have

C∩




[A]
[B]
[C]



 =




� {A ∈ [A] ,∃B ∈ [B] ,∃C ∈ [C] ,∃Z ∈ [∅,Rn] ,A = (Z \ B) ∪C}
� {B ∈ [B] ,∃A ∈ [A] ,∃C ∈ [C] ,∃Z ∈ [∅,Rn] ,B = (Z \A) ∪C}
� {C ∈ [C] ,∃A ∈ [A] ,∃B ∈ [B] ,C = A ∩ B}



 .
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Figure 2: Minimal contractor associated with the constraint A ∩ B = C.

Using Theorem 2, we get (12). Using i-set arithmetic, as for the previous proofs,
we get (13). �

Proposition 4. The minimal contractor associated with the constraint
f(A) = B where f is bijective is

Cf
(
[A]
[B]

)
=

(
[A] ⊓ f−1 ([B])
[B] ⊓ f ([A])

)
(14)

or equivalently

Cf
(
[A]
[B]

)
=

( [
A− ∪ f−1 (B−) ,A+ ∩ f−1 (B+)

]

[B− ∪ f (A−) ,B+ ∩ f (A+)]

)
. (15)

Proof. By definition, the minimal contractor for the constraint f(A) = B is
given by

Cf
(
[A]
[B]

)
=

(
� {A ∈ [A] ,∃B ∈ [B] ,B = f(A)}
�
{
B ∈ [B] ,∃A ∈ [A] ,A = f−1 (B)

}
)
.

Using Theorem 2, we get (14) and using the i-set arithmetic, we get (15). �

3.3 Propagation

Contractors can be used to solve SVCSP. The first step is to decompose all
constraints of the SVCSP into constraints for which minimal contractors are

10



available. Such constraints are called primitive constraints. For instance, a
constraint of the form

A+ B ⊂ f (A) ∩C
can be decomposed into 





A+ B = Z1
Z2 = f (A)
Z2 ∩C = Z3
Z1 ⊂ Z3

The sets Zi are slack sets that have been introduced for the decomposition.
Their domains should be initialized to [∅,Rn]. We assumed here that a minimal
contractor for the constraint A+ B = Z1 was available, even if it has not been
given in this paper. In the second step, we take all minimal contractors associ-
ated with each primitive constraint and we put them into a list of contractors
named the store. The last step, called the propagation, calls all contractors of
the store several times until no more contractor is able to contract any i-set
associated to each unknown set. The result of the propagation is a list of i-sets
which enclose all unknown sets that satisfy all constraints of the initial SVCSP.
The process will be illustrated on the following section.

4 Test-case

Consider the following SVCSP





(i) X ⊂ A
(ii) B ⊂ X
(iii) X ∩C = ∅
(iv) f (X) = X,

where X is an unknown subset of R2, f is a rotation of R2 around 0 with an
angle −π

6
, and





A =
{
(x1, x2) , x

2
1 + x

2
2 ≤ 3

}

B =
{
(x1, x2) , (x1 − 0.5)2 + x22 ≤ 0.3

}

C =
{
(x1, x2) , (x1 − 1)2 + (x2 − 1)2 ≤ 0.15

}
.

In our context, a constraint propagation approach consists in contracting all
i-sets with respect to all constraints several times until no more significant con-
traction can be observed. Figure 3 illustrates the propagation process1 . Subfig-
ures (a), (b), (c) represent A,B,C. Subfigure (d) represents the i-set [X] after
contracting with respect to constraint (i). If we now contract with respect to
constraint (ii), we get Subfigure (e) for [X]. Constraint (iii) yields Subfigure (f).
Another contraction with respect to all four constraints produces Subfigure (g).
Finally, Subfigure (h) represents the fixed point that is obtained for [X].

1Color code. For the graphical representation of an i-set [X] =
[
X
−,X+

]
, the black boxes

are inside X−, the grey boxes are outside X+ and the white boxes are inside X+ and outside
X
−.
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Figure 3: Illustration of the propagation process for set-valued CSP; the frame
boxes correspond to [−3, 3]2.
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.

5 Conclusion

Constraint propagation methods are well known methods to solve efficiently
nonlinear and non convex problems where the unknown variables belong to dis-
crete sets or when these variables are vectors of Rn. However, to my knowledge,
propagation methods have never be used to solve problems where the unknown
variables are subsets of Rn. This paper proposes to extend the class of problems
that can be solved using constraint propagation to set-valued constraint satis-
faction problems (SVCSP). The variables of such CSP are subsets X of Rn that
can be bracketed by pairs of sets, denoted by [X−,X+]. These pairs, named i-
sets, form the domains on which the set variables should belong. Operators are
provided for i-sets which make possible to build minimal contractors and con-
sequently to allow a resolution based on constraint propagation. An illustrative
example has been provided to illustrate the principle of the approach.
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