
HAL Id: hal-00636286
https://ensta-bretagne.hal.science/hal-00636286

Submitted on 27 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Eigenvalue Symmetric Matrix Contractor
Milan Hladik, Luc Jaulin

To cite this version:
Milan Hladik, Luc Jaulin. An Eigenvalue Symmetric Matrix Contractor. Reliable Computing, 2011,
pp.27-37. �hal-00636286�

https://ensta-bretagne.hal.science/hal-00636286
https://hal.archives-ouvertes.fr

An Eigenvalue Symmetric Matrix Contractor∗

Milan Hlad́ık
Charles University, Faculty of Mathematics and Phy-
sics, Dept. of Applied Mathematics, Malostranské
nám. 25, 11800, Prague, Czech Republic

milan.hladik@matfyz.cz

Luc Jaulin

DTN (Développement des Technologies Nouvelles),
ENSIETA, 2 rue Franccois Verny, 29806 Brest,
Cedex 9, France

luc.jaulin@ensta-bretagne.fr

Abstract

We propose an eigenvalue contractor for symmetric matrices. Given a
symmetric interval matrix A

S and an interval approximation of its eigen-
value sets λ1, . . . , λn the contractor reduces the entries of A

S such that
no matrix with eigenvalues in λ1, . . . , λn is omitted. Our contractor is
based on sequentially reducing the entries of A

S. We discuss properties
of the method and demonstrate its performance on examples.

Keywords: interval matrix, interval analysis, symmetric matrix, eigenvalue
AMS subject classifications: 65G40, 15A18

1 Introduction

Many engineering problems can be represented by a constraint satisfaction problem
(CSP). A CSP consists of

• a set of variables x1, . . . , xn which can be Boolean, integers, reals, vectors, ma-
trices, . . . ,

• a set of constraints c1, . . . , cm that should be satisfied by the xi’s, and

• a set of domains x1, . . . , xn which enclose the xi’s.

Most of the time, the domains are intervals [14] but other sets such as ellipsoids,
polytopes, etc. could be considered as well [4, 6]. Constraint propagation is an efficient
method which is able to contract the domains for the variables in polynomial time
without losing any solution [2, 23, 24]. The main idea is to associate each constraint

∗Submitted: November 4, 2010; Revised: March 22, 2011; Second revision: June 30, 2011;

Third revision: October 4, 2011; Accepted: October 17, 2011.

27

28 M. Hlad́ık and L. Jaulin, An Eigenvalue Symmetric Matrix Contractor

cj with an operator Cj called a contractor. Cj is able to contract the domains of the
variables by eliminating values that are not consistent with the constraint cj [11, 21].
Libraries enclosing contractors for all primitive constraints (i.e. constraints that cannot
be decomposed such as y = sin(x) or z = x + y, . . .) are available. For a given
non-primitive constraint when no contractor is available, the constraint should be
decomposed into primitive constraints by introducing new variables. For instance, the
constraint z = x−sin y can be decomposed into the two primitive constraints z = x−a

and a = sin y. Such a decomposition introduces pessimism (it is the local consistency
problem) and should avoided when possible.

A global constraint is a non-primitive constraint for which a specific contractor
(called a global contractor) has been built. A huge catalogue of more than 350 global
contractors exists [1]. Most of them are devoted to constraints involving variables that
Boolean, integer or real. But only few global contractors exist for constraints involving
matrices. Let us quote several contractors related to linear constraints [3] or to the
constraint “A is positive semi-definite” [10].

This paper proposes to build a contractor associated with a constraint relating a
symmetric matrix with its real eigenvalues. This constraint is of importance for several
problems of robot modeling (when an inertia matrix is involved [5]), linear control
(see e.g., for linear quadratic control or stability analysis [17, 22]) and parameter
identification (via covariance matrices [17]).

The problem considered can be formulated as follows:

(

(i) A ∈ A, λ1 ∈ λ1, . . . , λn ∈ λn

(ii) A is symmetric and σ(A) = {λ1, . . . , λn}

)

In line (i), A, λ1, . . . , λn correspond to the interval domains, and the constraint to
be treated in the paper is at line (ii); σ(A) denotes the spectrum of A. A contractor
associated with the constraint (ii) is an operator

C (A, λ1, . . . , λn) =
(

A
′
, λ

′

1, . . . , λ
′

n

)

such that

(a) (A′, λ
′

1, . . . , λ
′

n) ⊂ (A, λ1, . . . , λn)

(b)

{

A is symmetric and σ(A) = {λ1, . . . , λn}
A ∈ A, λ1 ∈ λ1, . . . , λn ∈ λn

⇒ (A ∈ A′, λ1 ∈ λ
′

1, . . . , λn ∈ λ
′

n)

(a) is the contractance property and (b) is the correctness property.

2 Preliminaries

For a real symmetric matrix A ∈ R
n×n we denote its eigenvalues by λ1(A) ≥ · · · ≥

λn(A), and the spectral radius by ρ(A). Let

A := [A, A] = {A ∈ R
m×n; A ≤ A ≤ A}

be an interval matrix, where A, A ∈ R
m×n, A ≤ A, are given. We denote the midpoint

and radius of A by

Ac :=
1

2
(A + A), A∆ :=

1

2
(A − A),

Reliable Computing 16, 2011 29

respectively. A symmetric interval matrix is defined as

A
S := {A ∈ A | A = A

T },

and its eigenvalue sets as

λi(A
S) :=

{

λi(A) | A ∈ A
S
}

,

where i = 1, . . . , n.
The problem of finding a tight enclosure to λ1(A

S), . . . , λn(AS) was studied by
many authors, see e.g. [8, 18]. Herein, we consider the inverse problem. Let λ1, . . . ,
λn be given intervals. Our aim is to reduce A

S to a more narrow symmetric interval
matrix B

S ⊆ A
S such that we do not lose any matrix with eigenvalues in prescribed

intervals. That is, for any A ∈ A
S \ B

S there is i ∈ {1, . . . , n} for which λi(A) 6∈ λi.
The problem considered is NP-hard. Moreover, checking whether or not A

S can
be reduced to the empty set is also NP-hard; we call it the existence problem.

Theorem 1. The existence problem is NP-hard.

Proof. Let M be an interval matrix. It is called regular if it contains no singular
matrix. Testing regularity of interval matrices is NP-hard problem [15, 18]. So, it is
NP-hard to check regularity of the symmetric interval matrix

A
S :=

(

0 M

M
T 0

)S

,

or, equivalently, whether no eigenvalue set of A
S contains zero. Put λp = 0 and

λi = [−K, K], i 6= p and K > 0 is large enough. The interval matrix M is regular if
and only if A

S can be reduced to the empty set for every p ∈ {1, . . . , n}. Hence, if we
can solve efficiently a sequence of existence problems for p = 1, . . . , n, we can decide
on regularity of an interval matrix in polynomial time as well.

The following theorem recalls the well-known Weyl formulae for the eigenvalues of
a matrix sum [9, 25].

Theorem 2 (Weyl, 1912). Let A, B ∈ R
n×n be symmetric matrices. Then

λr+s−1(A + B) ≤ λr(A) + λs(B) ∀r, s ∈ {1, . . . , n}, r + s ≤ n + 1,

λr+s−n(A + B) ≥ λr(A) + λs(B) ∀r, s ∈ {1, . . . , n}, r + s ≥ n + 1.

We will also utilize the Rohn theorem [8, 18], which gives simple enclosures for the
eigenvalue sets of A

S.

Theorem 3. We have

λi(A
S) ⊆ [λi(A

c) − ρ(A∆), λi(A
c) + ρ(A∆)], i = 1, . . . , n.

3 Method

Without loss of generality, we restrict our consideration to λp, where p is fixed. We
try to reduce the upper bound for the (k, l)-th and (l, k)-th element of A

S . Again, k

and l remain fixed throughout this section.

30 M. Hlad́ık and L. Jaulin, An Eigenvalue Symmetric Matrix Contractor

For a matrix M ∈ R
n×n and a real r denote by M(r) the matrix with elements

M(r)ij =

{

r if i = k, j = l or i = l, j = k,

mij otherwise.

Similar notation is used for interval matrices and values.

Our problem is now stated as follows: Find a maximal δ > 0 such that no matrix
in A

S([akl − δ, akl]) has its p-th eigenvalue in λp. Then, we can contract A
S to

A
S([akl, akl − δ]).

Theorem 4. Denote

δ1 := λp − λp(A
c(akl)) − ρ(A∆(0)), n ∈ N, p = 1, . . . , n,

δ2 := 2
(

λp − λp−1(A
c(akl)) − ρ(A∆(0))

)

, n ≥ 3, p = 2, . . . , n,

δ3 := λp(A
c(akl)) − ρ(A∆(0)) − λp, n ∈ N, p = 1, . . . , n,

δ4 := 2
(

λp+1(A
c(akl)) − ρ(A∆(0)) − λp

)

, n ≥ 3, p = 1, . . . , n − 1,

δ5 := 2
(

λp − λp(A
c(akl)) − ρ(A∆(0))

)

, n ≥ 2, p = 1, . . . , n.

For non-diagonal entries (k 6= l) the values δ1, δ2, δ3 and δ4 can be used for contracting,
particularly their maximum

δ
∗

1 := max(δ1, δ2, δ3, δ4).

For diagonal entries (k = l), we can use

δ
∗

2 := max(δ3, δ4, δ5).

Proof. First consider the case k 6= l. Using Theorem 3, we get

λp(A
S([akl − δ, akl])) ≤ λp(A

c(akl −
δ
2
)) + ρ(A∆(δ

2
))

≤ λp(A
c(akl −

δ
2
)) + ρ(A∆(0)) + ρ(0(δ

2
))

≤ λp(A
c(akl −

δ
2
)) + ρ(A∆(0)) + δ

2

Using the Weyl theorem, we can obtain two upper bounds for the first term in the
right-hand side. First,

λp(A
c(akl −

δ
2
)) ≤ λp(A

c(akl)) + λ1(0(−
δ
2
))

≤ λp(A
c(akl)) + δ

2

Combining together,

λp(A
S([akl − δ, akl])) ≤ λp(A

c(akl)) + δ
2

+ ρ(A∆(0)) + δ
2

≤ λp(A
c(akl)) + ρ(A∆(0)) + δ.

Since we want not to exceed the bound λp, we have

λp(A
c(akl)) + ρ(A∆(0)) + δ ≤ λp,

Reliable Computing 16, 2011 31

whence

δ ≤ λp − λp(A
c(akl)) − ρ(A∆(0)) = δ1.

Now we use another inequality of the Weyl theorem. For p ≥ 2 and n ≥ 3 we have

λp(A
c(akl −

δ
2
)) ≤ λp−1(A

c(akl)) + λ2(0(−
δ
2
))

≤ λp−1(A
c(akl)) + 0.

Hence,

λp(A
S([akl − δ, akl])) ≤ λp−1(A

c(akl)) + ρ(A∆(0)) + δ
2
≤ λp,

and thus

δ ≤ 2
(

λp − λp−1(A
c(akl)) − ρ(A∆(0))

)

= δ2.

Similarly, in order not to exceed the upper bound λp we obtain δ3 and δ4. By
Theorem 3,

λp(A
S([akl − δ, akl])) ≥ λp(A

c(akl −
δ
2
)) − ρ(A∆(0)) − δ

2
.

Using the Weyl theorem,

λp(A
c(akl −

δ
2
)) ≥ λp(A

c(akl)) + λn(0(− δ
2
))

≥ λp(A
c(akl)) −

δ
2
,

whence

λp(A
S([akl − δ, akl])) ≥ λp(A

c(akl)) − ρ(A∆(0)) − δ.

To have

λp(A
c(akl)) − ρ(A∆(0)) − δ ≥ λp,

we must have

δ ≤ λp(A
c(akl)) − ρ(A∆(0)) − λp = δ3.

Using another Weyl inequality, we have

λp(A
c(akl −

δ
2
)) ≥ λp+1(A

c(akl)) + λn−1(0(−
δ
2
))

≥ λp+1(A
c(akl)) + 0.

Therefore,

λp(A
S([akl − δ, akl])) ≥ λp+1(A

c(akl)) − ρ(A∆(0)) − δ
2
≥ λp,

whence

δ ≤ 2
(

λp+1(A
c(akl)) − ρ(A∆(0)) − λp

)

= δ4

for the second one.

32 M. Hlad́ık and L. Jaulin, An Eigenvalue Symmetric Matrix Contractor

The above considerations hold true for the case k = l, too, but better results can
be obtained. Since λ1(0(−

δ
2
)) = 0, in the derivation of δ1 we obtain

λp(A
c(akl)) + ρ(A∆(0)) + δ

2
≤ λp.

So

δ ≤ 2
(

λp − λp(A
c(akl)) − ρ(A∆(0))

)

= δ5.

The value δ2 is out of consideration because δ2 ≤ δ5 always holds. The remaining δ3

and δ4 can be utilized as they are.

In the proof we utilized only two inequalities of the Weyl theorem. Note that the
remaining ones cannot improve the results (with exception of the last one, which is
improbable).

Note also that some of the values δ1, δ2, δ3, δ4 and δ5 may be negative. Typically,
one of the pair δ1 and δ3, and one of the pair δ2 and δ4 is negative.

The method based on Theorem 4 is straightforward and is described in Algorithm 1.
For contracting entries of A

S from below we can develop similar formulae or realize
that eigenvalues of −A are negatives of eigenvalues of A. That is, instead of contracting
A

S from below we contract −A
S from above. Note that a result of this inversion is,

in step 6 of the algorithm, the index of the interval −λp is n + 1 − p.

Algorithm 1 (Eigenvalue symmetric matrix contractor)

1: while improvement is significant do

2: for k = 1, . . . , n do

3: for l = k + 1, . . . , n do

4: compute δ∗
1

according to Theorem 4 for p = 1, . . . , n;
5: A

S := A
S([akl, akl − δ∗

1
]);

6: compute δ∗ according to Theorem 4 for the matrix −A
S and interval

−λp p = 1, . . . , n;

7: A
S := A

S([akl + δ∗
1
, akl]);

8: end for

9: compute δ∗
2

according to Theorem 4 for p = 1, . . . , n;
10: A

S := A
S([akk, akk − δ∗

2
]);

11: compute δ∗
2

according to Theorem 4 for the matrix −A
S and interval

−λp, p = 1, . . . , n;

12: A
S := A

S([akk + δ∗
2
, akk]);

13: end for

14: end while

15: return A
S ;

4 Properties of the contractor

Provided we limit the number of loops of Algorithm 1 by a polynomially large con-
stant, the whole algorithm runs in polynomial time. Specifically, the algorithm has
complexity O(In5), where I is the number of iterations. The factor O(n2) corresponds

Reliable Computing 16, 2011 33

to the number of elements in A
S to be processed. For each element of A

S, we have to
calculate all eigenvalues and the spectral radius of a point matrix, which costs O(n3).
Since we use the same point matrix for each p = 1, . . . , n, the total cost for one element
of A

S is O(n3).

The contractor does not converge to optimal bounds in general. This is because
the estimations used in the proof of Theorem 4 needn’t be very sharp, and also we
cannot expect our algorithm to efficiently solve a problem that is NP-hard.

Nevertheless, our contractor is so called thin [11] (cf. notion of thin inclusion
function [7, 14]). This means, in the case there is no solution to the problem (AS is
reducible to the empty set), we can conclude that there is no solution, provided that
the interval matrix is narrow enough.

Let ‖A∆‖2 ≤ ε, where ε > 0 and ‖ · ‖2 denotes the matrix 2-norm. Suppose that
for some p ∈ {1, . . . , n} one has λp(A

S) < λp, that is, the problem has no solution.

Denoting c := λp − λp(A
S), one reads

δ1 = λp − λp(A
c(akl)) − ρ(A∆(0))

≥ λp − λp(A
S) − ρ(A∆(0))

≥ c − ε.

We used the fact that ρ(A∆(0)) = ‖A∆(0)‖2 ≤ ‖A∆‖2, which is true due to symmetry
and non-negativity of those matrices [9, 13].

As long as c > ε we can conclude that there is no solution in at most ⌈ ε
c−ε⌉ itera-

tions of the contractor. Thus, if λp and λp(A
S) are disjoint for some p ∈ {1, . . . , n},

and the entries of A
S are narrow enough, we can verify non-existence in a finite number

of steps.

5 Numerical experiments

Example 1. Consider a symmetric interval matrix [8, 16, 26]

A
S =









[2975, 3025] [−2015,−1985] 0 0
[−2015,−1985] [4965, 5035] [−3020,−2980] 0

0 [−3020,−2980] [6955, 7045] [−4025,−3975]
0 0 [−4025,−3975] [8945, 9055]









S

.

It is known [8] that the optimal eigenvalue sets are

λ1(A
S) = [12560.8377, 12720.2273], λ2(A

S) = [7002.2828, 7126.8283],

λ3(A
S) = [3337.0785, 3443.3127], λ4(A

S) = [842.9251, 967.1082].

Let intervals

λ1 = [12710, 12730] λ2 = [7000, 7130],

λ3 = [3300, 3450], λ4 = [800, 850].

34 M. Hlad́ık and L. Jaulin, An Eigenvalue Symmetric Matrix Contractor

be given. We will contract entries of A
S according to these intervals. The first iteration

of Algorithm 1 reduces the matrix to









[2975, 3025] [−2015,−1985] 0 0
[−2015,−1985] [4965, 5035] [−3020,−2980.9] 0

0 [−3020,−2980.9] [6971.4, 7041.9] [−4025,−4004.6]
0 0 [−4025,−4004.6] [8966.5, 9055]









S

.

The next iterations yields









[2975, 3024.2] [−2015,−1991.3] 0 0
[−2015,−1991.3] [4965, 5026.2] [−3020,−2995.6] 0

0 [−3020,−2995.6] [6982.4, 7035.8] [−4025,−4011]
0 0 [−4025,−4011] [8984.4, 9055]









S

,

and the third one results in









[2975, 3017.9] [−2015,−2002.2] 0 0
−2015,−2002.2] [4965, 5016.1] [−3020,−3005.4] 0

0 [−3020,−3005.4] [6990.8, 7030.9] [−4025,−4019.2]
0 0 [−4025,−4019.2] [9000.4, 9053]









S

.

Finally, in the fourth iteration it turns out that the interval matrix is reduced to the
empty set. The (3, 4)-th element of A

S is contracted from above to [−4025,−4021.5]
and from below to the empty set, since the corresponding contracting subtrahends are
δ∗1 = 2.7117 for p = 1, zero for p = 2 and p = 3, and δ∗1 = 0.7992 for p = 4. We
conclude that there is no symmetric matrix A ∈ A

S whose eigenvalues lie inside λ1,
λ2, λ3 and λ4, respectively.

This example shows the strength of Algorithm 1, because we were able to conclude
non-existence even though the intervals λi and λi(A

S) are non-disjoint for every
i = 1, . . . , 4.

Example 2. Now, we compare our approach with a simple bisection method intro-
duced in [12] as a 3-B (or shaving) method. The bisection method sequentially goes
through the interval matrix entries, and each of them splits into two intervals. Thus,
for each k, l = 1, . . . , n we determine A

S([akl, a
c
kl]) and A

S([ac
kl, akl]). We calculate

the eigenvalue set enclosures λ
′

1, . . . , λ
′

n by Theorem 3 for each of these two matrices.
If λi ∩ λ

′

i for some i, we can reduce the interval akl to [ac
kl, akl] or [akl, a

c
kl], respec-

tively. Since the splitting is sequential, it needs just 1

2
n(n−1) splittings, which makes

the method tractable.

For the comparisons, we considered randomly generated matrices of dimensions
n ∈ {5, 10, 15, 20, 25, 50}. The matrices A

S were generated as follows. The entries of
Ac were chosen randomly from [−10, 10] and the entries of A∆ from [0, 1] with uniform
distribution. We calculated eigenvalue enclosures λi, i = 1, . . . , n by Theorem 3. Then,
we put λi(r) = [λi, λi + 2rλ∆], i = 1, . . . , n with parameter r. We determined the
maximal r such that the corresponding method is able to conclude that there is no
solution. We denote the maximal values by r1 and r2 for the bisection method and
our approach, respectively.

The experiments were carried out with Matlab 7.11.0 (R2010b) with the support
of the packages INTLAB 6 (see [20]) and VERSOFT 10 (see [19]). INTLAB 6 provides
interval arithmetic and useful interval functions, and VERSOFT 10 collects verification

Reliable Computing 16, 2011 35

functions. (We used it for verified eigenvalue computations.) Thus, all of our com-
putations were reliable and the results are verified. Tables 1 and 2 show the results.
In Table 1, we display ratios r1

r2

for various dimensions; the ratios are the means of
several runs. It shows that our approach is able to verify non-existence for about 40%
to 60% wider intervals then the simple bisection.

n 5 10 15 20 25 50

r1

r2

0.6542 0.5820 0.6311 0.7444 0.7677 0.7516

Table 1: Efficiency comparison of our approach and the bisection method.

Table 2 presents running times in seconds for three cases. Case I stands for the
situation when both methods fail to prove non-existence, i.e. r is too large, whereas
case II denotes the situation when both methods succeed at verifying non-existence.
Case III covers the remaining situation when our method succeed and bisection fails.
The table shows that our method is slightly slower in case I, but it is faster in case II up
to dimension 20. In case III our method is several times slower for small dimensions,
however, contrary to the bisection method it proves non-existence.

n case I case II case III
our method bisection our method bisection our method bisection

5 4.7235 3.5637 1.2699 1.7595 40.105 3.5648
10 43.627 40.176 6.6407 9.2194 156.03 40.285
15 187.18 176.55 25.384 30.580 530.30 176.85
20 546.63 520.46 40.202 101.63 1511.7 520.58
25 1255.3 1209.5 90.962 70.701 1647.9 1211.7
50 18359 17994 273.83 98.809 17959 18128

Table 2: Time comparison of our approach and the bisection method.

6 Conclusion

We have proposed a method for contracting entries of interval matrices and thus re-
moving the redundant subsets that have no eigenvalue in a priori given eigenvalue
estimates. We have carried out numerical experiments and comparisons with a simple
bisection method. Provided the eigenvalue estimates are very tiny or very wide, the bi-
section method is often slightly faster than ours. On the other hand, our approach can
solve the difficult cases and prove non-existence for wider intervals than the bisection
method.

In future work, further analysis of the structure of the problem will yield improve-
ments.

36 M. Hlad́ık and L. Jaulin, An Eigenvalue Symmetric Matrix Contractor

References

[1] Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global Constraint
Catalog. University of Nantes, 2009. Available at http://www.emn.fr/x-info/

sdemasse/gccat/.

[2] Christian Bliek, Peter Spellucci, Lúıs N. Vincente, Arnold Neumaier, Lau-
rent Granvilliers, Etienne Huens, Pascal Van Hentenryck, Djamila Sam-Haroud,
and Boi Faltings. Algorithms for Solving Nonlinear Constrained and Opti-
misation Problems: State of the Art. A 222 page progress report of the
COCONUT project, available at http://www.mat.univie.ac.at/~neum/glopt/

coconut/cocbib.html, 2001.

[3] Gilles Chabert and Luc Jaulin. QUIMPER, a language for quick interval mod-
elling and programming in a bounded-error context. Artif. Intell., 173:1079–1100,
2009.

[4] C. Combastel. A state bounding observer for uncertain non-linear continuous-
time systems based on zonotopes. In 44th IEEE Conference on Decision and
Control & European Control Conference CDC-ECC’05, pages 7228–7234, 2005.

[5] Etienne Dombre and Wisama Khalil. Robot manipulators: modeling, performance
analysis and control. Wiley-ISTE, London, 2007.

[6] C. Durieu, B. Polyak, and E. Walter. Ellipsoidal state outer-bounding for MIMO
systems via analytical techniques. In Proceedings of the IMACS—IEEE–SMC
CESA’96 Symposium on Modelling and Simulation, volume 2, pages 843–848,
1996.

[7] E. R. Hansen. Bounding the solution of interval linear equations. SIAM J. Numer.
Anal., 29(5):1493–1503, 1992.

[8] Milan Hlad́ık, David Daney, and Elias Tsigaridas. Bounds on real eigenvalues and
singular values of interval matrices. SIAM J. Matrix Anal. Appl., 31(4):2116–2129,
2010.

[9] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University
Press, Cambridge, 1985.

[10] Luc Jaulin and Didier Henrion. Contracting optimally an interval matrix without
loosing any positive semi-definite matrix is a tractable problem. Reliab. Comput.,
11(1):1–17, 2005.

[11] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Applied interval
analysis. With examples in parameter and state estimation, robust control and
robotics. Springer, London, 2001.

[12] Olivier Lhomme. Consistency techniques for numeric CSPs. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 232–238,
Chambéry, France, 1993.

[13] Carl D. Meyer. Matrix analysis and applied linear algebra. SIAM, Philadelphia,
2000.

[14] Ramon E. Moore. Methods and applications of interval analysis. SIAM, Philadel-
phia, PA, 1979.

[15] Svatopluk Poljak and Jǐŕı Rohn. Checking robust nonsingularity is NP-hard.
Math. Control Signals Syst., 6(1):1–9, 1993.

Reliable Computing 16, 2011 37

[16] Zhiping Qiu, Suhuan Chen, and Isaac Elishakoff. Bounds of eigenvalues for
structures with an interval description of uncertain-but-non-random parameters.
Chaos Solitons Fractals, 7(3):425–434, 1996.

[17] Jǐŕı Rohn. An algorithm for checking stability of symmetric interval matrices.
IEEE Trans. Autom. Control, 41(1):133–136, 1996.

[18] Jǐŕı Rohn. A handbook of results on interval linear problems. available at http:
//www.cs.cas.cz/rohn/handbook, 2005.

[19] Jǐŕı Rohn. VERSOFT: Verification software in MATLAB / INTLAB, version 10,
2009. http://uivtx.cs.cas.cz/~rohn/matlab/.

[20] Siegfried M. Rump. INTLAB – INTerval LABoratory. In Tibor Csendes, editor,
Developments in Reliable Computing, pages 77–104. Kluwer Academic Publishers,
Dordrecht, 1999. http://www.ti3.tu-harburg.de/rump/.

[21] Djamila Sam-Haroud. Constraint consistency techniques for continuous domains.
PhD thesis, Swiss Federal Institute of Technology in Lausanne, Switzerland, 1995.
PhD dissertation No. 1423.

[22] C. Scherer and S. Weiland. Course on LMIs in Control. Lecture Notes at Delft
University of Technology and Eindhoven University of Technology, 2002.

[23] M. H. van Emden. Algorithmic power from declarative use of redundant con-
straints. Constraints, 4(4):363–381, 1999.

[24] Pascal van Hentenryck, Laurent Michel, and Yves Deville. Numerica – A Mod-
elling Language for Global Optimization. MIT Press, Cambridge, Massachusetts,
1997.

[25] James Hardy Wilkinson. The algebraic eigenvalue problem. 1. paperback ed.
Clarendon Press, Oxford, 1988.

[26] Quan Yuan, Zhiqing He, and Huinan Leng. An evolution strategy method for com-
puting eigenvalue bounds of interval matrices. Appl. Math. Comput., 196(1):257–
265, 2008.

