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Abstract. In this paper, we deal with the problem of sensor perfor-
mance estimation. As we assume that the sensor is described with only
few data, we decide to use the theory of belief functions to represent the
inherent uncertainty of our information. Hence, we introduce the belief
functions framework, especially in the continuous approach. We describe
the model of sensor adopted in our study. Knowing the experimental
setting, we suggest an approach to model the sources of information de-
scribing our sensor. Finally, we combine these sources in order to estimate
sensor performances.

Keywords: Sensor performances, Continuous belief function, Parame-
tric model, Inference, Fusion

1 Introduction

The theory of belief functions has been introduced by the famous works of
A. Dempster about upper and lower probabilities [3,4] and those of G. Shafer [13]
on the theory of evidence. The work of Ph. Smets [14] contributed to spread it in
the scientific community. Recently, thanks to new breakthroughs [18,12,15,16,2],
the application of belief functions on continuous framework has gained some
interest. Hence, we apply these results to describe sensor performances.
Wireless sensors networks are more and more used in monitoring applications
[11,9]. One crucial issue in this domain is the sensors placement. Indeed, the aim
is to place the sensors in order to maximize the chance to detect an intrusion.
To fulfil this objective, we have to characterize the performances of a sensor
as a detector. To estimate the performance of a sensor, we adopt a parametric
approach. As we only have a small amount of measures to define it, we decide to
use the belief function framework to take into account the lack of information.
In a first part (section 2), we present the theory of belief function within
a continuous frame of discernement. Then, we introduce a parametric model
describing sensor performances (section 3). As we have few data, we present
some results obtained by A. Dempster and we suggest an approach funded on
the maximum necessity and likelihood principles to the estimate the parame-
ters describing the sensor performances (section 4). Hence, considering that the



2 Pierre-Emmanuel Doré, Christophe Osswald, Arnaud Martin

experimental settings provide us three cognitive independant sources of infor-
mations (we take measures in three different places), we merge their respective
beliefs about the value of the sensor parameters (section 5). Finally, we analyse
our results in section 6. Thanks to these operations, we are able to characterize
more accurately the sensor performances.

2 Belief function framework

The theory of belief functions is a tool used to represent the imperfection of a
source of information. There are many kinds of imperfection a belief function
can describe such as ignorant, vagueness, uncertainty, ... The purpose of this
section is to recall some useful parts of this theory.

2.1 Belief on real numbers

In [15], Ph. Smets describes an approach of belief functions on real number. He
suggests to assign mass on the intervals of R = R U {—00, o0}. There is a lot of
advantage to procede in this way. Indeed, we can easily associate a basic belief
density on R to a probability density function on R However, this framework is
quite restrictive and we cannot use it to describe belief function with basic belief
assignement on unconnected sets. In a previous work [6], we suggest to scan the
set of focal elements (the subset of R whose the basic belief assignement is not
null), 7, using an index function f and a specific index space I.

fl:1—F
y— f1(y) @

With this index function, we consider a positive measure ;2 * such as ,[ du®(y) <
I
Hence, to define a belief function, we have to consider the brace (f!, ). In or-

der to compute belief functions, we need to define for all A in P (£2) (a family
of subset of (2):

Fea={yellf'(y) c 4} (2)
Foa={yelI|l(f'(y) n A) # &} (3)
Foa={yellAc f(y)} (4)

Once these subsets are defined, we can compute the following belief functions:

— The belief function:
ei?(4) = | auw) (5)
Fc

! For the sake of simplicity, it happens we considers thatdu®(y) = m®(ff(y)).
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— The plausibility function:
W = [ ) (©
Fra
— The communality function:
W= [ ) @
Fou

In this framework, we define some basic tools. One of them is the conjunctive rule
of combination which allow us to merge sources of information. Let (f{, u{?) and
(f3,18) two belief functions. The conjunctive rule of combination [17] brings

the belief function (f{@ 95 u{z® 2) [6] such that:

01’ 2(4) = 4’ (4) - 45°(4) (8)

Within this framework, we will study a particular type of belief functions, the
consonant ones.

A consonant belief function is a belief function whose the focal sets are
nested. This allows us to create a total ordering on F linked to the < re-
lation. Hence, we can define an index function f from R*' , to F such as
(y=z) = (f(y) € f(x)) [15]. To generate consonant sets, we can use g, a
continuous function from R" to I = [0, Qmaz] € RT. The a-cuts of g are the set
such as:

fL(a) = {z e R"|g (2) > a} 9)

We have the property that F€% is an element of Borel algebra. Indeed:

4 # @ = Joms = inf {a e I|fL(0) n A # &}

= Féiq = |ainfa amax] (10)

Using a similar argument, we can prove that F<°; and F5% are elements of Borel
algebra. Hence, we can define the index function:

CIS I = [Oaamax] g {fCIS(Oé) |a € I}
I

a — fes(a)

(11)

If we consider a probability measure & on Z, the brace ( fL, u]Rn) refers to a
belief function.

2.2 Maximum of necessity

When we work with an “objective” source of information, we can apply the
principle of maximum of necessity. This principle comes from the theory of pos-
sibility [7,8,10]. The theory of possibility is a particular case of the theory of
belief functions (focal elements are always nested). In this situation, the plausi-
bility corresponds to possibility distribution and we consider the necessity which
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/\(fcs(a))=v([a,amax])
| A(fes(@) dA(a) Alfes(al))
a dV(a)

Qmax

dA(al)
a1 ____ ._._._Q v

a2

dv(a2) |
\ ]

Fig. 1. How to build belief functions from a probability density function Betf.

0

corresponds to the belief function. The idea is to work with the most informative
distribution of possibility (for the necessity ordering) which fulfils the following
assumptions. The first one is that the possibility dominates the probability, i.e.
for all A measurable IT (A) > P (A). The second one is that the ordering must
be kept, i.e. P(A) = P(A") I (A) > II (A").

These conditions can be transposed in the framework of belief functions [10].
Finding a belief function which verifies these properties is equivalent to find
a nested focal sets family such as for all A belonging to this family, A is the
smallest set (for the inclusion ordering) such as P (A) = [. This sets family
corresponds to the confidence sets in theory of probability. If we have as input a
continuous probability density function Betf, the focal set ( CIS(a) is the a-cuts
of Betf. We obtain a belief function defined by ( TouP (R)) such as if we adapt
the result of [10], we obtain [6] (cf. figure 1):

pl® (R) (z) = 1 — BetP (f!,(Betf ())) (12)

1.e.”:

dp® () = adV () with V ([a, amax]) = A ( ig(oe)) (13)

Within this framework, we can build belief functions on real number with
complex focal sets. In most of the cases, the information given by a sensor is
represented with a probability distribution. However, it happens we do not have
enough information to precizely define a distribution a probability. A belief func-
tion can be useful to take this phenomenom into account.

2 ) refers to the Lebegue’s measure.
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3 Model of sensor

We consider in this paper that a sensor is a detector. Each detector is defined
using two caracteristic measures, the probability of true positive (P;) and the
probability of false positive (Py). The probability of true positive is the proba-
bility that we detect an object when there is actually something. The probability
of false positive is the probability we decide there is something when there is
nothing. In the litterature, the probability of true positive has been defined as
a function of the distance between the sensor and the object we want to detect.
In our study case, to model the sensor, we make the following assumptions:

1. The sensor is passive. Hence, the probability of false positive is not a func-
tion of the distance between the sensor and the object. When the distance
between the sensor and the object is growing, the value of P; tends to Py.

2. If the distance between the sensor and the object is smaller than «, the
detection is guaranteed.

3. Beyond this point, the probability of true positive decreases such as the
inverse of a geometric law of parameter A. This type of behaviour has been
observed on seismic and magnetic sensor or microphone.

Hence, the following equation describes the probability of detection according a
distance d between the sensor and the target, the parameters o, A and Py:

1 ifd<a
Pi(d) = 1-P 14
+(d) a - > f + Py otherwise (14)

This is a trade off between the Elfe’s model [9] and the geometric model of
sensors [11]. The shape of the sensor coverage (the probability of true positive
according the distance) described in equation (14) is represented in figure 2.

We will estimate the coverage of a sensor, using our parametric model, when
we dispose of only a small amount of measures.

8 1
©
2
Sos
©
Zos .
= 40
©
2 0.4
® 40
Distance (m)

Fig. 2. Probability of detection on a grid. The sensor position defines the origin of our
coordinates (o =4, A = 0.5, Py = 0.15).
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4 Belief functions induced by sampling

The size of the sample set is not large enough to define precizely a distribution
of probability. As measure prospecting is an expensive process, we have to find
a way to describe imprecise knowlegde on true and false positive probabilities
using a small sample set. We will apply our work to the estimation of the sensor
performances.

4.1 Experimental settings

In order to illustrate our work, we assume we monitor vehicles moving on three
roads at different distances of the sensor ( cf. figure 3). In each case, we have

. d§20m

Fig. 3. The experimental setting.

obtained a different empirical value of the probability of detection according the
distance. The generic values used in our work are described in table 1.

Distance sensor /vehicule d{number of test n|number of detection k
5m 20 18
10 m 20 14
20 m 20 10

Table 1. Generic values.

As we work on a small amount of data, the estimates of probabilities of true
positive are imprecise. In fact, a family of probability distibutions can fit with
the data we obtain. The theory of belief functions is an efficient framework to
represent a family of probability distributions. Hence, we present some methods
to model information induced by a small learning set in the belief functions
framework.
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4.2 The Dempster’s approach

The first motive of Dempster [5] when he developped the theory of upper and
lower probabilities was to propose a mathematical framework to model statis-
tical inference. One of his main results in this domain concerns the binomial
sampling. When we have a small amount of samples following a binomial law,
it is impossible to precizely define the parameter p of this law. Hence we define
a set of distributions of probability using belief functions theory. Let P be the
interval [0, 1] which describes the parameter p of a binomial law. Let n be the
size of the sample set and k be the number of samples belonging to one of the
two classes of the binomial sampling. We obtain a conditional belief function

m” on the value of p over P knowing n and k [5] :

mP [n, ]43] ([U,U]) = quk_l(l — ’U)n_k_1 O<k<n
m¥ [n, k] ([0,v]) = n(1 —v)" ! k=0 (15)
mP [n, k] (Ju,1]) = nu"~! k=n

This kind of belief function can model our problem and be used to define our
probabilities. Unfortunately, they are difficult to handle and we cannot use on
them the maxz or the min operators. Indeed, generally, these operators do not
induce belief functions (cf. example in table 2). Hence, we have to find another
way to characterize our information. There are methods using confidence re-
gions or least commitment principle [1]. However, in this paper we focus on the
maximum of necessity principle as it will sum up the information contained by
all the confidence regions in an unique function.

focal elements | a b ¢ ab ac bc abc
ml 0(0.25| 0.11 | 0.03 | 0.06 | 0.10 | 0.15 0.3
m2 0/0.22| 0.07 | 0.04 | 0.09 | 0.10 | 0.13 | 0.35
pll 0(0.68| 0.59 | 0.94 | 0.61 | 0.89 | 0.75 1
pl2 0(0.71] 0.59 | 0.91 | 0.67 | 0.93 | 0.78 1
Plmax = max (pl1,pl2)| 0 0.71] 0.59 | 0.94 | 0.67 | 0.93 | 0.78 1
Mmax 0]0.415|0.1723|0.0040{0.1446|0.0923|0.2003|—0.0285

Table 2. The max operator does not induce a belief function.

4.3 Likelihood and maximum of necessity principles

As we cannot apply maz operator on the belief function defined in equation
(15), we decide to use the maximum likelihood principle [14] to define a belief
function associated to a binomial sampling. This principle can be resumed as
following:

Assuming a likelihood function [, the likelihood of a parameter 8 knowing that
x s true is equal to the likelihood of x© knowing that 6 is true.
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[[1(0) = 1[0] (=) (16)

The likelihood function [ must satisfy several properties. One of them is that the
likelihood of a set of hypothesis is higher than the likelihood of its subsets:

1(©)=1(0),06coO (17)
Another one is that the likelihood function must be a sub-additive function:
1(0avlp)<1(04)+1(0B) (18)

Indeed, two disjoint sets of hypothesis can have a likehood equals to 1. Hence,
we can use the plausibility as a likelihood function. In our study, according the
likelihood principle, we obtain for 7 subset of P and k in [0, n]:

pl[n, k] (x) = pl [n, 7] (k) (19)

Hence we have to define pl [n, ] (k). The distribution of probability P describing
a binomial law of parameter p is equal to :

Pn,p] (k) = (Z) PrPa-p)" " 0<k<n (20)

Applying the maximum of necessity principle to this distribution of probability
[8], we define a consonant continuous belief function pl [n, p]. This one is entirely
described by his contour function computed using algorithm 1. In parametric
models, data are highly dependant, hence we prefer not to use a conjunctive rule
to merge source of information but a disjunctive one:

pl[n, k] (7) = pl[n, 7] (k) = max (pl [n, p] () (21)

peET

Result: Plausibility of p for a given pair (n, k).
tmp = 0;
n A
M = <k> PP (1-p)"
for i € [0,n] do
. n i n—i
Pl = (1) a-n
if P[n,p] (i) < M then
| tmp = tmp + P [n, p] (i);
end
end
pl[n,p] (k) = tmp; // maximum of necessity principle.

pl[n, k] (p) = pl[n,p] (k); // likelihood principle.
Algorithm 1: How to compute plausibility of p knowing (n, k).
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5 Combination of information

We have previously defined belief functions to describe the plausibility of P; and
Py for given values of d. As we want to define these probabilities on the whole
space, we have, using the model of sensor described by equation (14), to infer
the plausibility of the 3-tuplet (o, k, Py).

5.1 Independant sources of information

Using the sensor model (cf. equation (14)), we can associate for each distance d of
measure a 3-tuplet (o, k, Py) to a given probability of true positive P;. Moreover,
using table 1, we can define pl7 (P;). Let T be the parameter framework. We
obtain thanks to a mass transfert:

pl] (e, N, Py) = plf (P,) (22)

The experiments which lead us to define P; for given distances d are cognitively
independent. Hence we can merge these different sources of information using
the conjective rule of combination[17]. As we use consonant belief functions, this
operation can be written:

P (NP =[] T (@, \Py) (23)
de{5,10,20}

Hence, we assume that all the sources of information are relevant and reliable.

5.2 Inference using the max

For a given distance d and probability of true positive (P;), there is, according the
sensor model described in equation (14), a set D of 3-tuples (c, A, Py) matching.
As we know the plausibility of each 3-tuples in D, we should be able to compute
the plausibility of P;. However, if we use the likelihood principle and set :

pli (P) =pl” (D) (24)

we obtain an inextricable equation. Indeed, after combination, the plausibility
function described in equation (23) is not consonant anymore. Then, we cannot
derive the plausibility function from the contour function. Hence, we decide to
define a consonant plausibility function such that its contour function fulfil this
condition:
plf (Pr) = (a&r’lg;geppl’r(a, A, Py) (25)
In this case, this belief function is more specific than the one we would obtain
using equation (24). However, as the plausibility of each 3-tuple is built using a
singleton P; of P, it can be considered like a good trade-off.
The algorithm 2 sums up all the results obtained in section 5 and helps us
to compute the plausibity to detect an object at a given distance of the sensor.
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Data: cf. table 1
Result: Plausibility function of P; for a given distance d
initialization;
for C; = (a, \,Pf)e[0:h:1]x[0:h:1] x[0:h:1] do
for d; € {5,10, 20} do
Pyi,qj) = function(C;, d;); // cf. equation (14)
pl@ (Pt(i7dj)) = function(ndj7kdj,Pt(Ldj)); // cf. algorithm 1
Pl (Ci) = Pl (Pes.ap )
end

Pl (Ci) = ] [Pl (Co);

Pyiay = fujlction(Ci,d);

end

D= {C¢|abs (Pt(i,d) — Pt) < h};

pIf (P) = max pl” (C;)

' Algorithm 2: How to compute plausibility.

6 Results

The results of this work appear in figure 4. The curve d = 5m (respectively
d = 10m and d = 20m), represents the plausibility that the probability of
true positive of the sensor is equal to Py at the distance d = 5m (respectively
d = 10m and d = 20m). To build this curve, we have only used data given by the
table 1 and the reasoning described in the section 4. To plot the other curves,
we have used the sensor model described in the section 3 and the combination
and inference process suggest in section 5.

We remark three things. Firstly, the plausibility function of P; when d = 10000
could be linked to the one of Py as P; tends to Py when d increases. Indeed,
we have assumed that we use a passive sensor. Secondly, the closer the sensor
is of our points of measure, the smaller is the peak of the plausibility function
of P;. Hence in this case the estimate of the probability of detection is more
accurate. Thirdly, the plausibility functions look like step-wise functions. It is
normal as we found the construction of a plausibility function on the binomial
law (B(n, k)) which is discrete.

7 Conclusion

This study has proposed a way to deal with small amount of data in order to
estimate the performance of a sensor. Continuous belief fonctions have been used
in two contexts, the first has been to represent an uncertain knowledge about
the distribution of probability describing an phenomenon. The second has been
to infer information within a parametric model. In this kind of situation, we
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-=-d=bm=—d=10m---d=20m —d=15m-=-d=10000m

Plausibility of P

Fig. 4. Plausibilities of P; for different distances.

are often faced inextricable situation and we have to make our approach more
simple to find a solution.

This work is a step to define the coverage a sensor networks. Now we have
to study the question a the fusion of the information coming from the different
sensors in order to have a better estimation of the global network performance.
We have also to include some consideration about the reliability of a sensor to
improve the study.
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