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) stated that a trend in the sensor technology is the development of intelligent sensors also called smart sensors. The development of such sensors do not only rely on the hardware development but also on the software. The later should so meet the requirements on low costs and of quality. This paper presents our approach to model the software of a smart sensor and to generate the code for the embedded real-time application. It will also describe how the use of a domain-specific modelling methodology enabled us to achieve a high level of modularity which will permit to save costs and development time.

INTRODUCTION

 (European Commission, 2008)states that the marine environment should be preserved. It enforces a new legislation on the state members of the European Union to protect their marine waters by developing a preservation strategy. This strategy should include surveillance aspects. According to [START_REF] Favali | Seafloor observatory science: a review[END_REF] only long term study provided by a seafloor observatory can fulfil the needs expressed by the European Commission. As a matter of fact a long term study provides data on occurring events, eases the correlation of multiple kinds of data for a particular area and enables studies on different time scales. It also meets the requirements of the European Commission for coastal area. [START_REF] Spencer | Smart sensing technology: Opportunities and challenges[END_REF] stresses that a technology called smart sensors brings the ability to tackle the issue of scalability. That is why the use of smart sensors in a seafloor observatory can be interesting.

The different data acquired by the sensors must be sent to a ground station to be analysed. So the sensors are linked to an information system. However the sensing domain and the information system domain are very different in their basic requirements. So the design of a sensor does not take into account the needs of the information system. Both a conceptual and a functional gap exists between the sensors and their associated information system. In order to fill this gap a possible approach is to use Model Driven Engineering (MDE). The design phase of the sensor is left unchanged but through a code generation process it is possible to integrate easily the sensor into the information system. Our approach enables to generate both the functional code of a sensor and the code that links the sensor to its information system with the same model.

Section 2 delves into the issue of the use of so called smart sensors in the field of seafloor observatories and how it is possible to model them. Then section 3 dwells on the proposed architecture for the realtime embedded software of the smart sensors. After that section 4 expands on the code generation strategy. Finally section 5 concludes on our approach for modelling and generating operating embedded code for smart sensors and provides clues on the next steps of our work.

SMART SENSORS FOR SEA FLOOR OBSERVATORIES

This section intends to provide an overview of smart sensing and of the specific needs for seafloor observatories. Then we would like to expand on the Smart Sensor metamodel introduced in [START_REF] Zein | Smart sensor metamodel for deep sea observatory[END_REF]. [START_REF] Spencer | Smart sensing technology: Opportunities and challenges[END_REF] introduces the main concepts which enable to differentiate smart sensors. Their main characteristics are the presence of an embedded Central Processing Unit, their small size, their use of wireless communications and their promise of being low cost. The use of a microprocessor enables to do digital processing, to ease self-diagnostics, selfadaptation or self-identification by the use of interfacing functions and to do some calculations. In [START_REF] Brooks | Using smart accelerometers and wireless interfaces for condition monitoring[END_REF] Brooks describes the basic functions a smart sensor must provide. Among them are bi-directional command and data transmission, user-defined algorithms, internal self-verification/analysis and compensation algorithms.

Definition

Specificities in the Context of Seafloor Observatories

Seafloor observatories are an excellent proving ground for the use of smart sensors in a stringent environment. We are currently working on a cabled coastal seafloor observatory network called MeDON (Marine eData Observatory Network). The requirements for the MeDON seafloor observatory network are described in [START_REF] Medon | Deliverable 2.3 monitoring strategy draft v 0.3[END_REF].

Although the smart sensors are described to have wireless communications with the rest of the world, the specificities of the marine environment force to use a cabled communication between the physical sensor and a relay point that concentrates the data coming from the different smart sensors. Even with a cabled network we have to face some design challenges. The first challenge is to obtain a robust software. The coastal environment may be considered as hostile for the hardware which have to be designed to resist to strong underwater current. It means also that it will not be easy to replace a faulting component.

Along with the need of robustness comes the need of remote logging. So the sensor network must have the ability to provide full state information for the different sensors and more precisely their failure state and the events causing them. It implies the need for the software to have logging facilities both networked and on-board. It also requires the different software units to be capable of handling the occurring exceptions.

Besides due to the environmental conditions and the low costs requirements the cabled links between the sensors and the ground station will be made of Ethernet links. However, we have to transfer high quantities of raw data. So we are facing some challenges in the design of the data transmission facilities which can lead to the definition of an internal transfer protocol.

A last but not the least requirement on the system is the need of modularity in the software part. The smart sensors developed for the MeDON project must have the ability to be connected to various hardware sensors with various interface protocols. Due to the low cost requirement it is not possible to design a smart sensor for each physical sensor. The developed smart sensor infrastructure both hardware and software must support the different physical sensor. So we have to achieve a high level of modularity. We also need to be able to create clean communication means between the sensor vendors and the final user of the smart sensors. A first step to fulfil this requirement is to use a modular design methodology such as MDE.

A Metamodel for Smart Sensors

One of the approaches described in model driven engineering is the use of domain specific languages (DSLs) to cope with issues specific to a particular domain. In [START_REF] Zein | Smart sensor metamodel for deep sea observatory[END_REF] Zein and al. introduced a metamodel to define a DSL for the design of smart sensors.

This metamodel describes the three main aspects of a smart sensor, its interface with the environment, its attributes and its behaviour. From a high level point of view it can be seen as a regular UML object with public and private attributes and methods and which implements different interfaces. This coherence between the metamodel for smart sensors and the object oriented design eases the system design of the whole system in which the sensors will be included.

Figure 1 page 3 shows the description of the internal structure of a sensor. It may have two different interfaces. The first one defines the sensor global features that are available for the environment. The second one is type specific. It determines all the features that are associated to the type of sensor. Each of these interface is linked to the global behaviour of the sensor which determines the way the sensor interacts with its environment. Among the static properties of a sensor its latitude, longitude and depth can be found.

Each interface is made of a set of services. A service is the functional element of the sensor as it is described in Figure 2 This metamodel enables to model the functioning of a smart sensor at a high abstraction level. As this description is platform independent it can be reuse for the definition of other smart sensors. This is eased by the fact that the metamodel makes a clear separation between the behavioural and the structural features and between the type specific elements and the global ones. However Pohjonen and Kelly pointed out in [START_REF] Pohjonen | Domain-specific modeling: Improving productivity and time to market[END_REF] that the use of Domain-Specific Modelling cannot only rely on the domain metamodel. It must be linked with a well-defined architecture of the targeted software and platform. The use of the combination of metamodelling and software architecture provides the separation of concerns needed to easily integrate a smart sensor in a complex information system. In order to complement Zein's work we suggest a platform independent software architecture.

INTEGRATION IN THE INFORMATION SYSTEM

Software Architecture

A smart sensor is made of two levels of services which can be distinguished according to their level of abstraction from the hardware part of the sensor. This view of the composition of a smart sensor enables to build a software architecture based on layers. According to [START_REF] Krakowiak | Middleware Architecture with Patterns and Frameworks[END_REF] it is a convenient way to deal with multilevel application. The lowest layer deals with the hardware part of the sensor. So it is made of the different drivers needed to the functioning of the sensor. The middle layer which is called Control Layer is made of the low level services of the smart sensor. They are the control services of the smart sensor which provide the needed control and overview of the hardware of the sensor. The highest layer which is called Service Layer is made of the high level services. Those services are defined by the user and provide the embedded intelligence of the smart sensor. Each layer is able to communicate with its neighbours through interfaces. Table 1 page 5 describes the services which are involved in the integration of the smart sensor in the information system.

According to the description of the different services we can distinguish two kind of integration into the information system. The first one is a logical integration. The high level services and the SensorControl service provide their functions to the information system. So the other elements of the information system can logically access to their function. However the physical way to access to those services is not defined. It is the Network service which provide the physical integration of the smart sensor into the information system infrastructure. It defines the way to address the smart sensor in the information system which also defines the way to access to the proposed logical services.

Logical Integration

The first level of integration of a sensor into an information system can be called logical integration. This level consists in making a description of the sensor available for the different actors in the information system. As the description is an abstraction of the actual sensor it can be considered as a logical view of the sensor. Such a description can be obtain by the use of metadata as stated in [START_REF] Joshi | Data oriented architecture: A looselycoupled real-time soa[END_REF]. In the sensing field a format for the metadata is the SensorML language from the Open Geospatial Consortium (Open Geospatial Consortium Inc., 2007). It enables to describe the data which are provided by the sensor. It especially describes the measures which are done by the sensor, their type and their format. So any application in the information system is aware of the kind of data provided by the sensor without being physically linked to it.

Physical Integration

Through the logical integration the information system is aware of the abilities of the smart sensor. But it has no way to really access to those functionalities. In order to make them available we decide to organise the smart sensor according to the REST architecture principles described in [START_REF] Fielding | Architectural styles and the design of network-based software architectures[END_REF]. REST relies on the use of the HTTP protocol. All the actions of the sensor are commanded by HTTP packets. A HTTP packet begins with the name of a method and a targeted URL. The REST architecture only uses four of the methods defined by HTTP:

• GET: retrieves the resource from the targeted URL

• POST: creates the resource at the targeted URL

• PUT: updates the resource at the targeted URL

• DELETE: removes the resource at the targeted URL

The HTTP packets are parsed. According to the results of the parsing predefined functions are called. So the REST architecture provides a standardised way for the stakeholders of the information system to communicate with the sensors. In our case a URL is a service provided by the sensor. We derived the meaning of the HTTP methods used in REST to fit to our specific needs:

• GET: retrieves the value of the attributes of the service

• POST: starts a service

• PUT: changes the value of the attributes of the service

• DELETE: stops a service. The use of a REST infrastructure for the command and control of the sensor provides a lightweight mechanism which can be easily extended and reused among the information system. The distinction between the logical and the physical integration of the smart sensor in the information system provides the needed flexibility in the information system. It ensures that any change in one integration mode will not affect the other one which provide a more efficient way to maintain the smart sensor in the information system.

CODE GENERATION

Description of the Modelling Method

The metamodel for smart sensors seems to be able to handle different modelling levels. In order to test this ability we have completely modelled a smart sensor for an hydrophone. The first step in the modelling of a smart sensor is to define its global behaviour and its interfaces. We choose to command the smart sensor using HTTP commands as defined by REST. So the global behaviour describes the reaction of the sensor toward the arrival of a network message and its call of an implementation specific service which defines which high level service should be triggered. The behaviour also Enables to get the data stored within a time interval or to flush the memory.

MeasureResults

Enables to access to the last measure from the sensor.

defines that the smart sensor is able to send data back to the control station.

There are two interfaces. The global interface which contains the Log, the NetworkManager, the Dispatching, the DataAccess, the Storing and the TimerStoring services. The SensorControl, the Config, the MeasureResults and the TimerMeasureResults are defined in the type specific interface for SoundDevice.

The different services have been mapped to the concept of Service defined in the metamodel. The high-level services distinguish themselves from the low-level ones as they are purely functional. So they do not need to have an associated behaviour. When needed the behaviour of a service has been described as a state machine. Figure 5 page 5 depicts the behaviour of the SensorControl service as a finite state machine. The state is defined a a StartService state which is a concept defined in the metamodel. Table 2 page 6 describes how the depicted transition is modelled according to the smart sensor metamodel.

IdleMeasure

The high level services are only described as a set of Attributes and of Operations. The functional code associated with an operation is added in C language in the description field of the Operation.

Projection on the Platform

The previously defined model can now be used to generate code for the embedded target. The target is made of a Luminary LM3S9B96 central processing unit with an already ROM-loaded operating system. The operating system is SafeRTOS (High Integrity Systems). This operating system defines a dynamical preemptive scheduler. The different tasks can have the same priority. The interprocess communication mechanism is only made of message queues. There is also no mutual exclusion mechanism. These kind of facilities should be emulated by the use of message queues.

The low-level services are translated into tasks. Each task will have a message queue associated to it. Their behaviour is described with switch-case statements. The wait for the reception of an event is implemented as the wait for the reception of a message in the message queue associated to the task. However SafeRTOS does not provide a blocking wait mechanism that is why a test should be implemented in order to ensure that the expected event has been received. Table 3 page 6 defines the rules associated to the implementation of the state machine of the lowlevel services.

The high-level services are translated into C structures. Those structures are made of fields representing the attributes of the service and of pointer of functions that describes the operation associated to the service. We also defined rules to create the SensorML descrip- We have obtained a mapping between the concepts defined in the SMS metamodel and the code that can be written in C language or the SensorML description of the sensor. This mapping defines the rules used to automatically generate code from a model compliant to the smart sensor metamodel into the embedded software for the physical smart sensor. We used the Kermeta workbench (Triskell team) in order to implement the code generation.

Results

As we may have two different platform in the near future we were forced to separate the architectural features of the system and its platform features. A first transformation is obtained by the mapping between the metamodel concepts and the concepts defined in the proposed architecture. A second one is specific to the code generation. These process enables to do fine tuning of the model obtained after the first transformation in order to be compliant with high constraining requirements. The second step of the process enhances the reusability of the model as the platform specific implementation details are contained within the code generator and not in the architecture.

The use of the smart sensor metamodel enables to obtain a high level description of a smart sensor. It efficiently describes its structural and behavioural features. This includes the description of the interaction with the environment but also the internal exchanges of information. As a consequence it enables to obtain a well defined breakdown of a smart sensor. It also helps in defining the different interfaces of the smart sensor both external and internal. However it lacks of facilities to describe the operational behaviour from a domain point of view.

The use of a defined architecture enabled us to obtain a generated code which corresponds to our basic needs. Besides we have obtained a clearer separation between concerns in the sensor domain and concerns in the real-time systems domain. This architecture is described using a general modelling language.

We have defined a methodology which uses a domain specific modelling languages and a general purpose language in order to be able to generate code. Each modelling language compensate for the lack of expressiveness of the other one. The domain specific language enables to model the system according to the domain requirements independently of the final implementation. The general purpose modelling language includes the domain specific definition of the system and adds the different implementation specific mechanisms. As a result the generated code fulfils the domain needs and the real-time requirements. We are also able to analyse the sensor in such a way the integration process in the information system is eased. The sensor can interoperate physically through a HTTP server which can be automatically generated. The REST architecture provides the logical integration of the sensor. The logical definition of the smart sensor can be easily embedded in the generated code.

CONCLUSION

The use of domain specific modelling enables us to develop quickly the software of a complex smart sensor. As we were able to identify quickly the needs for real-time software mechanism and to separate them from the design of the sensing part of the smart sensor we made also gain in design time. The designer only has to focus on the definition of the smart sensor the rest would be generated automatically. We have also made significant gain during the definition of the generator as the target elements of the mapping between the high level model of the smart sensor and the architecture are well described. It implies that a smart sensor can be easily and more quickly deployed according to its definition. The smart sensor is also easier to maintain. Any change of its definition or of the architecture only requires a regeneration of the code which could then be implanted again in the smart sensor. The latency between the notification of the change and the deployment of the modified smart sensor is reduced. This is a great benefit in the context of seafloor observatory in which the loss of data during a long period is not allowed.

We were also able to define the different pieces of software which are likely to change very often. They are grouped according to the changes they force in the code of the sensor. We have made significant gain into the modularity of our application and in our development process. The proposed architecture enables to be independent of the platform. It especially identifies the operating system specific mechanisms such as threads, semaphores or message queues. The modification of the code generator is easier as those point of variations are clearly identified.

Following these first results we will extend the smart sensor metamodel by creating domain specific instruction blocks. Those blocks will not contain any implementation code. The associated code will be automatically generated from by the code generator according to high level parametrisation contained in the block.

We will also define a model transformation between the smart sensor metamodel and the UML metamodel along with the code generation. It will enable us to annotate the obtained model with the MARTE profile annotation and to describe the target platform. So we will be able to use standard tools based on the MARTE profile to perform for example schedulability analysis.

  page 3. The behaviour of a service is described as a finite state machine as shown in Figure 3 page 3. The transition are event triggered. During the transition the associated operation are called.

Figure 1 :
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Figure 2 :

 2 Figure 2: Description of the services provided by the sensor

Figure 4 :
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 5 Figure 5: Description of the behaviour of the SensorControl service

Table 1 :

 1 Relevant services for the integration in the information system

	Services	Description
	Network	Enables to receive command
		through the network and sends data
		back.
	SensorControl	Performs the actual measure by
		controlling the hardware sensor.
	Config	Enables the configuration of the
		sensor. It includes among others
		the frequency of acquisition and the
		number of bits.
	Log	Enables to log the exceptions occur-
		ring in the system.
	DataAccess	

Table 2 :

 2 Description of a transition of a finite state machine according to the smart sensor metamodel

	Metamodel concept	Value
	Name	IdleMeasureTmFreqTransition
	event	tmFreqSensor
	eventSubmitted	
	outServiceState	IdleMeasure
	inServiceState	IdleMeasure
	Operation	doMeasure

Table 3 :

 3 Implementation rules of a finite state machine

	Metamodel concept	Translation
	BehaviorService	switch-case statement
	StateService	Integer value
	TransitionService	wait operation
	guard	if statement
	event	if statement
	tion of the smart sensor. This description can be em-	
	bedded in the software as a constant.	
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