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Abstract

Interval methods have been shown to be efficient, robust and reliable to solve difficult set-membership local-

ization problems. However they are unsuitable in a probabilistic context, where the approximation of an unbounded

probability density function by a set cannot be accepted. This paper proposes a new probabilistic approach which

makes possible to use classical set-membership localization methods which are robust with respect to outliers. The

approach is illustrated on two simutated examples.

Index Terms

Gaussian noise, interval analysis, probabilistic estimation, robust estimation, set-membership estimation, out-

liers.

I. I NTRODUCTION

The dynamic localization problem of a mobile robot is generally described by the following discrete-

time nonlinear state equations 



x(k + 1) = fk(x(k),n (k))

y(k) = gk(x(k)),

wherex corresponds the pose of the robot,n is the state noise,y the measured output vector andk

is the time. Sincef is time-dependent, this formalism can deal robots for whicha known inputu. Two

approaches are generally considered to solve this nonlinear localization problem: theprobabilistic and
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the set membership approaches, even if there exists some atypical and promising other approaches such

as that proposed in [20] which proposes a method combining interval analysis with belief functions for

localization.

Probabilistic approach. It is assumed that some prior probability density functionsπ (x(0)) , π (n (k)),

π (y (k)) are available for the initial posex(0) and for the signalsn (k) andy (k). The functionπ (y (k))

is built from the measurement vectorỹ(k) of the output vectory(k) in order to take into account some

noises that could corrupt the measurements. Then probabilistic estimation techniques (Kalman filtering,

Bayesian estimation, particle filters) [23], [24] blend these probability density functions with the state

equations of the robot in order to provide an approximation of the posterior probability density functions

π (x(k)) for the posesx(k). These methods are very efficient in linear Gaussian context[11], but have

difficulties to deal with strongly nonlinear problems.

Set-membership approach. It is assumed that the initial posex(0) belongs to a known setX0 and that

signalsn (k) andy (k) are bounded, or more precisely, that they belong to setsN (k) andY (k). The sets

N (k) are known a priori and the setsY (k) are obtained from a measurẽy(k) of y(k). Set-membership

methods have often been considered for robot localization (see,e.g., [18], in the case where the problem

is linear). The feasible setX(k) corresponding to the set of all pose vectorsx(k) that are consistent with

the past can be computed recursively [2] [12] by the relationX(k+ 1) = fk
(
X(k) ∩ g−1k (Y(k)) ,N (k)

)
.

Moreover, when strong nonlinearities are involved, interval analysis [19] has been shown to be particularly

adapted [4] [8] [15], [1] [5]. In practice, it may happen thatsome of they(k), the actual value of the

output vector at timek, do not belong to their corresponding setsY(k). The vectory(k), is said to be

an inlier if y (k) ∈ Y (k) and anoutlier otherwise. Set-membership methods can still be used, but have

to relax some data [21] [16] [22] [14] [10], as few as possible.

Probabilistic set-membership approach. The main contribution of this paper (also presented at the

workshop WPMSIIP [6]) is to give a probabilistic interpretation of set-membership observers which make

possible to use set-membership approaches to solve state estimation problems that are expressed in a

probabilistic form. More precisely, the resulting method computes an lower bound for the probability that

x(k) belongs to the computed set. Let us stress that with this approach, we do not assume that the noise

in certainly bounded, as it is the case for all existing set-membership method. We only assume that the
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noise is bounded with known bounds with a known probability.

Section II recalls a set-membership observer which is robust with respect to outliers. Section III

provides some probabilistic properties of the observer. Two illustrative testcases based on simulated data

are provided in Section IV. Section V concludes the paper.

II. ROBUST STATE ESTIMATOR

A. Relaxed intersection

In a set-membership context, estimators that are robust with respect to outliers can be obtained by using

the notion ofrelaxed intersection. The q-relaxed intersection
{q}⋂
Xi of m setsX1, . . . ,Xm is the set of all

x which belong to allXi’s, exceptq at most.

Example. Consider for instance the 8 intervalsX1 = [1, 4], X2 = [2, 4],X3 = [2, 7],X4 = [6, 9],X5 =

[3, 4],X6 = [3, 7]. We have

{0}⋂
Xi = ∅,

{1}⋂
Xi = [3, 4],

{2}⋂
Xi = [3, 4],

{3}⋂
Xi = [2, 4] ∪ [6, 7],

{4}⋂
Xi = [2, 7],

{5}⋂
Xi = [1, 9],

{6}⋂
Xi = R.

In the case where theXi’s are intervals, the relaxed intersection can be computed efficiently with a

complexity ofn log n. Let us now describe a possible method for this purpose.

• Take all bounds of all intervals with their brackets. For ourexample, the bounds are

Bounds 1 4 2 4 2 7 6 9 3 4 3 7

Brackets [ ] [ ] [ ] [ ] [ ] [ ]

• Sort the columns with respect the bounds. We get

Bounds 1 2 2 3 3 4 4 4 6 7 7 9

Brackets [ [ [ [ [ ] ] ] [ ] ] ]
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Fig. 1. Set-membership function associated with the 6 intervals

• Scan these bounds from the left to the right, counting+1, when the bound is associated with a left

bracket and−1 otherwise. We get

Bounds 1 2 2 3 3 4 4 4 6 7 7 9

Brackets [ [ [ [ [ ] ] ] [ ] ] ]

Sum 1 2 3 4 5 4 3 2 3 2 1 0

• From the sum (third line), we can build the set membership function µ (x) which corresponds to the

number of intervals containingx (see Figure 1). From this function, we directly read the relaxed

intersections.

Similar algorithms for computing the relaxed intersectionof boxes or of subsets ofRn can be found

in [9].

B. Robust Set-membership Observer (RSO)

Define by induction the following notations

fk1:k2+1 (X) = fk2(fk1:k2 (X) ,N (k2)), k1 ≤ k2.

wherefk:k (X) = X. The setfk1:k2 (X) represents the set of allx (k2), that are consistent with the fact that

x (k1) ∈ X. Consider the following robust set-membership observer

RSO:






X(k) = f0:k (X(0)) if k < m, (initialization step)

X(k) = fk−m:k (X(k −m)) ∩
{q}⋂

i∈{1,...,m}

fk−i:k◦g
−1
k−i (Y(k − i)) if k ≥ m

(1)
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Fig. 2. The feasible set for the state vectorX(k), assuming at mostq = 1 outlier, can be defined recursively fromX(k− 3) and from the

data setsY(k − 1),Y(k − 2),Y(k − 3).

If we assume that (i) within any time window of lengthm we never have more thanq outliers and that

(ii) X(0) contains the true value forx (0), then it can be proved [7] that RSO computes to the setX(k)

of all feasiblex (k). The principle of the observer (1) is illustrated by Figure 2for m = 3 andq = 1. In

this figure, double arrows are used to describe the relationsbetween sets. For instance, the rightmost set

corresponds tofk−2:k◦g
−1
k−2 (Y(k − 2)) and represents the set of allx (k) that are consistent with thek−2

data interval. The small grey circles are the true values of the state vectorsx (k − i) and output vectors

y (k − i). Note thaty (k − 2) is outsideY(k− 2) and is thus an outlier, whereasy (k − 1) andy (k − 3)

are inliers. The state estimator can efficiently be implemented using an interval constraint propagation

approach which recursively computes supersets which enclose theX(k)’s.

III. PROBABILISTIC ANALYSIS

We shall now provide a probabilistic interpretation of the robust set-membership observer presented in

Section II. We shall assume that all events "y (k) ∈ Y (k)", k > 0 and the eventx (0) ∈ X (0) are all

independent. This assumption can be interpreted as the factthat the occurrence of an outlier at timek is

independent from the past, which is close to the classical Markovian assumption. For simplicity, we also

assume that the prior probabilityπy = Pr (y (k) ∈ Y (k)) does not depend onk. The following theorem
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provides a lower bound for the probability that the setsX(k) generated by RSO enclose the posesx(k).

Theorem. If X(k) are the sets computed by the observer RSO (1), we have

Pr (x (k) ∈ X(k)) ≥ Pr (x (k −m) ∈ X(k −m)) ∗
m∑

i=m−q

m! πiy. (1− πy)
m−i

i! (m− i)!
.

Proof. Consider the following hypothesis, denoted byHq(k1:k2), which states that among allk2−k1+1

output vectors,y(k1), . . . ,y(k2), at mostq of them are outlier. Since the prior probability of having exactly

i inliers amongm follows a binomial law, we have

Pr (Hq(k −m : k − 1)) =
m∑

i=m−q

m!

i! (m− i)!
πiy. (1− πy)

m−i .

Moreover from (1), we have the following implication

x (k −m) ∈ X(k −m)

Hq(k −m : k − 1)





⇒ x (k) ∈ X(k). (2)

Since the two eventsx (k −m) ∈ X(k −m) andHq(k −m : k − 1) are all independent, we have

Pr (x (k) ∈ X(k)) ≥ Pr (x (k −m) ∈ X(k −m)) ∗ Pr (Hq(k −m : k − 1))

and thus

Pr (x (k) ∈ X(k)) ≥ Pr (x (k − 1) ∈ X(k − 1)) ∗ m

√
Pr (Hq(k −m : k − 1)), (3)

which concludes the proof. �

IV. A PPLICATION TO LOCALIZATION

In order to illustrate the principle of RSO and its probabilistic interpretation, we shall consider two

testcases related to the localization of mobile robots. Both testcases are based on simulated data. The

first testcase will allow a comparison between RSO and the classical EKF (Extended Kalman filter). The

second testcase will show that RSO can deal in a reliable way with problems that cannot be treated using

an EKF, mainly because the initial state is unknown and the matching problem between the distances and

the obstacles is unsolved.
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Fig. 3. A robot (unicycle type) which measures its angley1 with respect to the markm

A. Testcase 1

Consider a robot described by the following unicycle model





ẋ1 = x4 cos x3

ẋ2 = x4 sin x3

ẋ3 = u1

ẋ4 = u2,

where(x1, x2)
T corresponds to the position of the robot’s center,x3 is its heading andx4 is its speed (see

Figure 3). The robot measures the angley1 between its heading and a punctual landmarkm = (mx,my)
T.

It also measures its heading and its speed. As a consequence the observation equations are





y1 = atan2(my − x2,mx − x1) + x3 ± 2kπ, k ∈ Z

y2 = x3

y3 = x4.

For the simulation, the landmark is taken asm = (5, 5)T and the initial state isx (0) =
(
0, 0,−π

3
, 1
)T

.

Moreover, for allt, the input isu(t) = (0.1, 0)T. The sampling time is fixed atδ = 0.1sec andt belongs

to the interval[0, 50] sec. The system has been discretized to get the formxk+1 = fk (xk) using an Euler

method. The resulting trajectory is a circle enclosing the landmark. Three different scenarios will be

considered. All of them correspond to the same trajectory for the robot, but to different ways to generate

the noises on the exteroceptive outputy(1). For each of these scenarios, we shall estimate the state of

the robot using both an EKF and RSO. For EKF, we shall represent the projections on thex-y space of
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the0.99-confidence ellipsoids. For RSO the subpaving that is supposed (with a decreasing probability) to

enclose the state will be depicted. RSO will assume that within any time window of length50 we never

have more than10 outliers, i.e., the parameters of RSO arem = 50 and q = 10. For all scenarios, RSO

assumes that the probability fory(1) to be inside the interval[ỹ1 − 0.02, ỹ1 + 0.02] is πy = 0.9, whereỹ1

is the angle measurement.

Scenario 1. The measurement noises as well as the state noises are all Gaussian and centered with a vari-

ance of0.01. The results obtained by RSO and EKF are represented on Figure 4. The top left subfigure cor-

responds to the EKF ellipsoids and RSO subpavings at timest ∈ {100, 150, 200, 250, 300, 350, 400, 450} .

To avoid any overlapping, the sets fort < 100 have not been represented. The corresponding zooms

are represented of the 8 small subfigures at the bottom. The subfigure at the top right represents the

estimates provided by EKF (gray) and by RSO (black). These estimates correspond either to the center

of the ellipsoids for EKF or the Tchebychev center of the subpaving (i.e., the center of the smallest cube

enclosing it). All robots represented correspond to the true poses. EKF generates ellipsoids that are not

centered on the true value for the pose. This bias is due to thefact that any error on the measurementy1

moves the ellipsoid toward the landmark. The linearizationperformed by EKF is the main responsible of

this bias. The interval method which does not linearize any equation does not yield any visible bias. For

t = t8, the lower bound for the probability for the subpaving to enclose the true state is0.97, whereas

the (unreliable) probability provided by EKF to be inside the confidence ellipsoid is0.99.

Scenario 2. The way of generating the data is similar to Scenario 1, except that at each step, with a

probability of 5%, an outlier fory1 is generated, by adding toy1 a centered normalized Gaussian noise.

This data corruption is not known by both observers (EKF and RSO). Figure 5 represents the results

obtained by EKF and by RSO. EKF provides ellipsoids around the landmark. When no outlier occur for

several steps, the ellipsoid slowly moves toward the true pose, but it suffices to have a single outlier to

bring back the ellipsoid toward the landmark as shows by the jumps (paint gray) of the subfigure at the

top right. This illustrates the well known default of EKF which becomes inconsistent as soon as outliers

occur, because it gives much more influence to outliers than it gives to any other inliers. Of course, for

this testcase, these jumps can be detected and methods to detect outliers could be implemented in order

to remove the outliers. But in the general case the detectionof outliers is based on heuristics that are
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Fig. 4. Scenario 1: All noises are Gaussian

strongly related to the application. As shown by the figure, RSO provides good and consistent estimates

for the pose of the robot. This is due to the fact that the assumption of RSO which states that within any

time window of length50 we never have more than10 outliers is still satisfied.

Scenario 3. This scenario is similar to Scenario 1, except that for allt, a bias of0.5 is added toy1.

After 10 seconds RSO yields an empty set This inconsistency is due to the fact that the main assumption

of RSO (which states that within any time window of length50 we never have more than10 outliers) is

not valid anymore (indeed,50% of the data are outliers). This bias does not disturb EKF which continues

to provide small (but inconsistent) ellipsoids. The jumps that were observed for Scenario 2 do not appear

anymore and EKF has no way to detect that there exists a problem in the data. In practice, this phenomenon

can be dangerous: the robot believes that it is inside the confidence ellipsoid and may take a decision that

could lead to collisions.



10

Fig. 5. Scenario 2:1% of the data are outliers

Fig. 6. Scenario 3. An unknown bias has been added to the anglemeasurement. EKF provides inconsistent estimates whereasRSO quickly

detects an inconsistency.
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B. Testcase 2

Consider the localization of an underwater robot [7], [3] with a constant depth and with neither roll

nor pitch. Its motion is described by the following state equations





ẋ1 = x4 cos x3

ẋ2 = x4 sin x3

ẋ3 = u2 − u1

ẋ4 = u1 + u2 − x4,

where x1, x2 are the coordinates its center,x3 is its heading andx4 is its speed. The inputsu1 and

u2 are the accelerations provided by the left and right propellers, respectively. The localization problem

for this type of robot in the presence of outliers is similar to that treated in [17] or [13], but, in these

two papers, the outliers were treated with a static manner,i.e., at eachk a lot of measurements were

collected (24 sensors were available for the application treated). The robot pose had to be consistent with

all measurements made at timek exceptq of them. Again, the system has been discretized to get the

discretized formxk+1 = fk (xk) using an Euler method with a sampling timeδ = 0.01 sec. The robot

moves inside a swimming pool with a known shape (four vertical planar walls and three vertical cylinders).

The robot is equipped with a sectorial sonar which measures the horizontal distance between the robot

and the border of the pool following the direction pointed bythe sonar. The angular speed of the sonar is

5rad/ sec. Denote byα(k) the angle between the direction of the sonar and the axis of the robot. Since the

swimming pool is known, the observation equation of the system has the formd = gk (x). The Tchebychev

centerx̂k of the setXk returned by RSO is chosen an estimation of the pose. This estimate is then used

by the controller to compute the controlu. Consider now a mission for the robot with three waypoints.

Once a waypoint is thought to be reached with a precision lessthan 0.5m, the planner sends the next

waypoint, until all waypoints have been reached. The parameters of RSO are chosen asm = 100 (length

of the sliding window) andq = 60 (number of allowed outliers). In our simulation, an outlieris generated

with a probability of0.5. Moreover, to the measured distance, we added a white noise with a uniform

distribution with an error of±3cm. Figure 7 illustrates a reconstruction build by RSO of themission of

the robot fort ∈ {3, 6, 9, 12, 15, 16.2} where 16.2 sec corresponds to the duration of the mission. The

black squares represent the current waypoint where the robot plans to go. The grey segments correspond

the sonar distances estimated by our observer. The small black circles represent the current position of
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Fig. 7. Illustration of the robot mission for different times t

the robot. The associated black tail represents all positions the robot had in the time interval[t−mδ, t].

The emission diagram corresponding to end of the mission is represented on Figure 8. The outliers

correspond to the grey segments. The black segments correspond to distances filtered by RSO.

The actual trajectory as well as the set-membership envelope returned by RSO are depicted on Figure

9.

Figure 10 represents the distances measured by the sonar (first subfigure). The second subfigure

represents the number of inliers among them last measurements. As shown by the black circle, during

the mission, the number of outliers (here 61) was greater than q = 60, or equivalently, the number of

inliers inside the sliding window was lower thanm− q. Since the set computed by RSO was not empty,

RSO was not able to detect that its main assumption about the number of outliers were not satisfied.
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Fig. 8. Emmision diagram at timet = 16.2 sec

Fig. 9. Actual trajectory of the robot and the correspondingenvelope
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Fig. 10. (above) distances returned by the sonar; (below) number of inliers amoung them last measurements

After this date, the sets returned by RSO are not reliable anymore, even if can be checked that these sets

always enclose the true state vector, for this particular testcase.

Applying the Theorem of Section III, we get that for allt we have

Pr (x (t) ∈ X (t)) ≥ e−0.01176.t.

When the robot terminates its mission,t = 16.2, the setX(t) encloses the state vector with a probability

higher than0.827. The computation time for all the mission takes less than100 sec on classical personal

computer, which makes the approach consistent with real time applications. The C++ Builder 5 source

codes of this test case are available at the following address:

www.ensta-bretagne.fr/jaulin/probintk.html

V. CONCLUSION

Many researchers or engineers believe that set-membershipmethods cannot be used when the noise is

Gaussian and that they can only deal with bounded noise. Thispaper shows that it is not the case and

that they can even provide results with the same efficiency asfor the bounded-error case. An approach

for state estimation which combines an interval set-membership approach with probabilities has been

presented. This approach makes possible to build an observer RSO that has several advantages over
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classical approaches. By propagating the assumptions on the possible outliers through time, the RSO

is made robust with respect to a large number of outliers. Thanks to interval analysis, RSO is able to

deal with nonlinear (or non-differentiable and even noncontinuous) state equations, without linearizing

nor approximating them. But the remarkable property of RSO is its ability to provide a lower bound

for the probability associated with the current setX (k). RSO is able to take into account the fact that

there always exists a nonzero probability that some of the set-membership assumptions are not fulfilled,

contrary to other set-membership observers, but RSO is alsoable to detect inconsistencies, contrary to

most probabilistic observers.
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