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Abstract�In this paper we will apply interval methods to solve
the problem of robust localization of an underwater robot. The
localization problem is cast into a constraint satisfaction problem
(CSP) where constraint propagation algorithms are particularly
ef�cient. The method is designed to work in real environments
with numerous outliers. Besides, we used a new approach to
represent the map by a binary image. This allow us to represent
even unstructured maps. We tested the algorithm on a real data
set gathered by an underwater robot in a marina located in Costa
Brava.
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I. INTRODUCTION

There are many ways to address a problem of robot localiza-

tion. Most of the proposed solutions are based on probabilistic

estimation techniques (Kalman �ltering, Bayesian estimation,

particle �lters, see [Thrun et al., 2005]) which aim at blending

data with some state equations of the robot. For the experiment

to be presented, we will use a set-membership approach. In

this formulation, both input data and computed position are

represented by their respective membership sets. Constraints

between the position of the robot and the sensor observations

are used to contract the actual position set i.e. reduce its size

thus increasing the estimates precision.

Set-membership methods have often been considered for

the localization of robots (see, e.g., [Meizel et al., 1996],

[Halbwachs and Meizel, 1996], in the case where the

problem is linear and also [Caiti et al., 2002] when the robot

is underwater). In situations where strong nonlinearities

are involved, interval analysis has been shown to be

useful (see, e.g., [Meizel et al., 2002], where the �rst

localization of an actual robot has been solved with interval

methods). Another strong point of set membership methods

is the ability to deal with outliers (see [Jaulin, 2009]).

There are other robotics applications such as state

estimation (see [Gning and Bonnifait, 2006]), dynamic

localization of robots (see [Gning and Bonnifait, 2006]),

SLAM (see [Le Bars et al., 2010]), control of robots (see

[Lydoire and Poignet, 2003] and [Vinas et al., 2006])

or topology analysis of con�guration spaces (see

[Delanoue et al., 2006]) where interval constraint propagation

methods have been successful.

In this article we will present an example of robust localiza-

tion using set membership methods. We will also propose an

original method to use maps in the form of an binary image by

constructing a contractor (see [Chabert and Jaulin, 2009] and

[Jaulin et al., 2001]) on this image. We tested the algorithms

on a data set derived from experiments carried out in a marina

located in the Costa Brava (Spain) by Girona university AUV.



Fig. 1. Sonar measures sample

II. LOCALIZATION EXPERIMENT

The localization experiment to be considered here has been

designed in order to illustrate a method for underwater SLAM

(see [Ribas et al., 2008]). The data was gathered during an

extensive survey of a abandoned marina in the Costa Brava

(Spain). Girona university Ictineu AUV gathered a data set

along a 600m trajectory which included a small loop around

the principal water tank and a 200m straight path through an

outgoing canal. The data set included measurements from the

Imaging Sonar (a Tritech Miniking), DVL - Doppler Velocity

Log - (a SonTek Argonaut) and MRU - Motion Reference Unit

- sensors (Xsens MTi). For validation purposes, the vehicle

was operated close to the surface attached to a GPS equipped

buoy used for registering the real trajectory (ground truth).

Figure 1 shows a sample of sonar data, the green dots show

where the sonar beam found an obstacle which is actually

a wall from the marina. As one can see, the data is noisy

and contains a lot of outliers. The long segments mean that

obstacles are out of range i.e. beyond 50m.

III. THE LOCALIZATION PROBLEM IS A CSP

A. Setting the problem into equations

Consider a system characterized by discrete-time dynamic

equations.

fk : R
m ! R

m;gk : R
m ! R

`

xk+1 = fk(xk)
yk = gk(xk):

(1)

In our case, xk is the robots pose, fk characterizes robots

dynamics and yk is the output vector. yk and xk are related by

the observation function gk which express in our case geomet-

rical relations between the position, the measures and the map.

Denote by Xk;Yk the sets containing xk;yk respectively.

Using the recursive equation (1), we can easily prove that

the system satis�es
8
>>>>>><

>>>>>>:

xk+1 = fk � g
�1
k
(y
k
)

xk+1 = fk � fk�1 � g
�1
k�1(yk�1)

:::
xk+1 = fk � fk�1 � :::fk�n � g

�1
k�n(yk�n)

xk+1 = fk(xk)
xk+1 2 R

m;xk 2 Xk;yi 2 Yi; i 2 [k � n::k]:

(2)

Thus the problem of localization becomes a CSP i.e. Con-

straint Satisfaction Problem.

B. Robustness

More generally speaking, we can write the problem as

follows 8
>><

>>:

f0(x) = 0
f1(x) = 0
:::
fn(x) = 0

fi : R
m ! R

ni ;
x 2 X:

(3)

The solution of this CSP is

S = fx 2 Rm;8i 2 [0::n]; fi(x) = 0g (4)

In some cases, this CSP doesn't admit any solution. In

the context of localization, that will be the case when

some of the measurements are erroneous i.e. we have

outliers. Dealing with outliers has already been considered

by several authors, in a set membership context (see,

e.g., [Norton and Verez, 1993], [Lahanier et al., 1987],

[Pronzato and Walter, 1996], [Kreinovich et al., 2003]

,[Jaulin, 2009]). In this case, we de�ne a solution set Sq
where x 2 Sq satis�es only a part of the set of equation. We
will call this problem a relaxed CSP.

De�nition 1: A q-relaxed resolution of the CSP (3) is

searching for a solution set Sq where x 2 Sq satis�es at

least n� q among n equations i.e. searching for the following
solution set

Sq = fx 2 R
m;9I � f1; ::; ng;

card(I) =n� q;8i 2 I; fi(x) = 0g:
(5)

C. Using set membership methods

Set membership methods allow us to manipulate sets

(see [Moore, 1979] and [Jaulin et al., 2001]). As an example,

those methods allow to compute intersection A = B \ C,
union A = B [ C, set inversion A = f�1(B), image of a
set by a function A = f(B)...
Denote by

Xi = f
�1
i (0) : (6)

We can deduce that solution of the CSP is

S =
T

i2f0::ng

Xi

Following the de�nition of Sq, the q-relaxed resolution of the
CSP gives

Sq=

fqg^

i2f0::ng

Xi = fx 2 R
m;9I � f1; ::; ng;

card(I) =n� q;8i 2 I;x 2 Xig
(7)



Fig. 2. Example of relaxed intersection

fqg^

i2f0::ng

is the q-relaxed intersection (see [Jaulin, 2009]).

Figure 2 illustrates the q-relaxed intersection of sets

X1;X2;X3;X4;X5. We have

f0g^

i2f0::5g

Xi =
T

i2f1::5g

Xi = ; (8)

f2g^

i2f0::5g

Xi = X3 \ X4 \ X5 (dark gray part in Fig. 2)

f5g^

i2f0::5g

Xi =
S

i2f1::5g

Xi

IV. SOLVING

A. Interval analysis

Interval analysis is used to create algorithms corresponding

to operations on sets such as union, intersection, set inversion,

....

Sets are represented by a set of intervals or boxes which

are de�ned below.

De�nition 2: An interval is a connected and closed subset

of R.

Example 3: ;; f�1g; [�1; 1]; [�1;1];R are intervals.
Notation 4: If x is a real variable we denote by [x] the

interval containing this variable.

An interval has an upper and lower bound which we will

note as follows[x] = [x�; x+]
IR is the set of all the intervals. Denote by w([x]) = x+ �

x� the width of the interval [x]:
De�nition 5: A box of Rn is de�ned by a Cartesian product

of intervals. A box can be also considered as an interval vector.

Example 6: [1; 3]� [2; 4] is a box of R2:
Notation 7: if x is a real variable vector we denote by

[x] the box containing this variable. Denote by [A] the box
enclosing the set A.

Interval analysis resembles a lot real analysis

except that we use intervals instead of real numbers.

Fig. 3. Example of a constraint and the corresponding contractor

We can thus de�ne binary operations on intervals

f+;�; �; =;max;ming, interval functions....(see

[Moore, 1979] and [Kearfott and Kreinovich, 1996] and

[Jaulin et al., 2001] for more details about interval analysis)

B. Resolution algorithm

Once we found the expression of our relaxed CSP, we can

use the RSIVIA solver (see [Jaulin, 2009]) to compute the

solution set. RSIVIA uses interval analysis and particularly

the concept of contractors (see [Chabert and Jaulin, 2009]

and [Jaulin et al., 2001]). A contractor is an operator which

applied on a box shrinks it in a speci�c manner. Contractors

are used to represent and manipulate sets in algorithms. In

fact, RSIVIA take each equation i.e. constraint from the CSP

and transform it into a contractor.

Example : Consider a constraint x = (x; y) 2 [x]; ax+by+
c = 0. Figure 3 shows how the constraint is transformed into
a contractor C.

C. Image contractor

1) Introduction: As one can see in Figure 1, the map of

the marina can be represented mostly by line segments and

polygons. However, it is often cumbersome to extract those

lines in order to use them as constraints in the CSP. As such,

we propose the usage of an image contractor where the map is

represented by a binary image. In the following part, we will

show how to build an image contractor from a continuous

binary image. The case where the image is discrete is easily

derived from the continuous case.

Consider a continuous binary image de�ned by

f : R2 ! f0; 1g (9)

Let [x] be a box of R2. The contractor C on the image is

de�ned by

E = fx 2 [x]; f(x) = 1g
C([x]) = [E]

(10)

In fact, we choose the dark pixels x where f(x) = 1 as the
pixels of interest. Figure 4 shows the action of the contractor.



Fig. 4. Example of contraction on image

Fig. 5. Illustration of the role of �

2) Implementation of the contractor: Before computing the

contractor, we will characterize the intersection between the

box [x] and the set de�ned by f(x) = 1 i.e. the contractor
set.

Consider the function

 : R2 ! R

 (a; b) =
R a
0

R b
0
f(x; y)dxdy:

(11)

 characterizes the quantity of pixels of interest in the box
[0; a]� [0; b].
Generally speaking, the quantity of dark pixels in one box

[x] = [x]� [y] is de�ned by the function �:

� : IR2 ! R;
�([x]; [y]) =

R
(x;y)2[x]�[y]

f(x; y)dxdy:
(12)

In fact, as seen in Figure 5 for the blue box, � can be obtained
from  :

� : IR2 ! R;
�([x]; [y]) =  (x+; y+)�  (x�; y+)

�  (x+; y�) +  (x�; y�):
(13)

The idea is to compute  only once and obtain � instantly for

Fig. 6. Sonar data interpretation

every box.

In fact, � characterizes the intersection between the box [x]
and the set de�ned by f(x) = 1 as shown in Figure 5. �
will be used to construct the contractor as explained in the

following part.

3) Contraction algorithm: Denote by C the image contrac-
tor. Consider [x] = [x]� [y] 2 IR2 and C([x]) = [xc]: In our
2D case, we have

x�c = max(x 2 [x]; �([x
�; x]; [y]) = 0)

x+c = min(x 2 [x
�
c ; x

+]; �([x; x+]; [y]) = 0)
y�c = max(y 2 [y]; �([xc]; [y

�; y]) = 0)
y+c = min(y 2 [y

�
c ; y

+]; �([xc]; [y; y
+]) = 0):

(14)

For the min and max calculus, we can use dichotomy thus the

contractor complexity is logarithmic.

V. EXPERIMENT

A. Dynamic function

Robot's evolution is characterized by the following discrete-

time dynamic equations.

xk+1 = xk + vk cos(�k)dt
yk+1 = yk + vk sin(�k)dt:

(15)

Where (xk; yk) is the position of the robot, vk is its speed and
�k is its orientation at time step k.

B. Observation function

Denote (xmap; ymap) the points of the map. With the sonar
we measure the distance to �rst obstacle - here marina walls -

along a vector de�ned by the sensor angle and robots heading

(see Figure 6). There is a geometrical relationship (translation)

between the position and the measure which is

(xk; yk) = (xmap � dk cos(�k + �k); ymap � dk sin(�k + �k)):
(16)

Where dk is the distance to the wall and �k is the sonar beam
angle relative to the robot. (xmap; ymap) are the points of the
map.



Fig. 7. Computing the image contractor

C. Map

As explained in part IV-C, the map will be represented as

a binary image. The computation of the associated contractor

on this image is showed on Figure 7 . First take a real map

or image of the area (see Figure 7.a). Secondly, make edge

detection or segmentation to obtain a binary image of the map

(see Figure 7.b), Finally, compute  (see Figure 7.c) and the
contractor is ready to use.

D. Results

Figure 8 shows a comparison between the reference GPS

trajectory (in black) and the Dead Reckoning trajectory (in

blue) which is obtained by merging DVL and MRU data.

We can observe that Dead Reckoning trajectory suffers from

an appreciable drift even causing it to go outside the canal.

The trajectory computed using set membership approach is

represented in Figure 9. The algorithm returns the trajectory

as a set of boxes (in rose) but we usually take the center of the

box as the actual position (in red). The red trajectory follows

the GPS trajectory.

The algorithm execution was realtime on a core 2 duo.
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